
International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 107

A 32-Bit Signed/Unsigned Fixed Point Non-Restoring Square-Root

Operation Using VHDL

Ms. M.U. Buradkar, Prof. P. P. Zode
Department of Electronics Engg.

Yeshwantrao Chavan College of Engineering, Nagpur, India

Abstract
After analyzing the advantages and disadvantages of all the general algorithms adopted in designing square root on FPGA chips

with pipeline technology, a proposed algorithm based on digit by digit calculation method is discussed. The algorithm is realized

on the ModelSim SE 6.3f development platform with VHDL language and the simulation results show that it is characterized by

occupying less resource as well as processing is in a faster speed. Therefore it is an effective algorithm for implementing square

root on commonly-used FPGA chips with pipeline technology. Square root operation deserves attention because of its frequent

use in a number of applications. Square root operation basically is considered difficult to implement in hardware and it’s a basic

operation in computer graphics and scientific calculation applications. A pipelined architecture to implement 32-bit fixed-point

signed/unsigned square root operation on an FPGA using a non-restoring pipelined algorithm that does not require floating-point

hardware is discussed. The main principle of proposed method is two-bit shifting and subtract-multiplexing operations, in order

to achieve a simpler implementation and faster calculation. The proposed algorithm is used to implement FPGA based signed

and unsigned 32-bit square root successfully and it is efficient in hardware resource.

Keywords- Pipelining, fixed-point arithmetic, signed and unsigned square root, non-restoring algorithm, FPGA, digit

recurrence calculation.

I. INTRODUCTION
Square root is one of the most useful and vital operation in computer graphics and scientific calculation applications such as

digital signal processing and control and even multimedia application [1-6]. In addition to the basic arithmetic operations (+, -, *

and ÷), the square root is also an essential operation frequently employed by signal and image processing applications. [1-3]. It is

a classical problem in computational number theory and often encountered , which is hard task to get an exact result [7-8]

Fixed-point hardware with appropriate software support is often used to achieve low -cost implementation of algorithms. This

alternative approach usually provides accuracy very close to that of floating-point hardware. Furthermore, the fixed-point

accuracy heavily depends upon the operand values and selection of format for fixed-point operations. Small or extremely large

values of operands may produce minor errors for complex operations due to the rounding and the truncation of least significant

digits [9-11]. However, real-time portable applications emphasize time and power efficient solutions since minor errors in the

answer do not often affect the quality of the results.

Fixed-point addition and subtraction operations are relatively easy to implement on an FPGA, while rounding and

truncation errors are negligible. The multiplication, division and square-root operations require complex procedures towards

accuracy. They often rely on special types of algorithm for embedded system realization. Out of these three operations, the

square root is the most complex one [8] because it usually involves convergence or approximation algorithms, and thus becomes

computationally intensive [4, 13].

Numerous techniques have been reported in the literature to implement the square root operation on FPGAs [8]. FPGA

implementations provide tradeoffs between general purpose and ASIC solutions. They offer flexibility near that of a general

purpose solution and performance closer to an ASIC since they support low-level hardware design. They provide dynamic

reconfiguration capabilities for run-time architecture changes. They are cost effective for customized applications and are

commonly used for prototyping before ASIC realization. However, end products containing FPGAs are now commonly

employed to create time and power efficient designs for real-time portable applications.

A lot of square root algorithms has have been studied, developed and implemented, such as Rough estimation,

Babylonian method, exponential identity, Taylor-series expansion algorithm, Newton-Raphson method, Sweeney Robertson

Tocher redundant method (SRT redundant method), SRT non redundant method and sequential algorithm (digit-by-digit method)

[1-9]. However, the early processors carry out the square root operation of the algorithms above by software means, which have

long delays for its completion [6].

With the rapid advancement of technology which is possible to integrate large circuits on a single chip and also increase

in demand for faster computational execution time, hardware implementation of square root operation became more attractive

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 108

[6]. Unfortunately because of the complexity of the square root algorithms, the square root calculation is not easy to implement

on field programmable array (FPGA) technology [1, 3, 5, 10].

There are some algorithms of square root which are implemented on FPGA. They are generally grouped into two distinct

categories. In first category is called estimation methods, such as Rough estimation and Newton-Raphson method (and also its

derivations: CORDIC, DeLugish's and

Chen's), and in second category is called digit-by-digit method. Finally, it is necessary to classify further digit-by-digit method

into two distinct classes: restoring and non-restoring algorithm. The restoring algorithm has a big limitation at restoring step in

the regular flow. Primarily for this reason, although initially having led the way for all the other methods, it has declined in

importance and nowadays it is no longer used [11]. Compared to the restoring algorithm, the non-restoring algorithm does not

restore the remainder, which can be implemented with fewest hardware resource and the result is hardware simple

implementation. It is most suitable for FPGA implementation and allows for IEEE standard rounding to be readily implemented

[1-3, 6].

There are many strategies or architectures conducted to implement the non-restoring digit-by-digit square root algorithm in

FPGA hardware. Yamin and Wanming [1-2, 9] have introduced a non-restoring algorithm with fully pipelined and iterative

version that requires neither multipliers nor multiplexors. They introduced the carry save adder (CSA) and carry propagate adder

(CPA) as basic building blocks. The other architecture proposed is fully combinational architecture. However, the FPGA is very

suitable for adoption of the fully pipelined architecture because of the characteristics of its structure. Hence, the very little or

even needless extra cost, if the pipeline technology is implemented in FPGA.

This paper proposes a new strategy to implement modified non restoring algorithm based on FPGA which adopt fully

pipelined architecture. In the proposed strategy is introduced a new basic building block called subtract-multiplex (SM), and

also it needs fewer pipeline stages.

II. SIGNED NUMBER REPRESENTATIONS
Signed-digit representation of numbers indicates that digits can be prefixed with a − (minus) sign to indicate that they

are negative.

Signed-digit representation can be used in low-level software and hardware to accomplish fast addition of integers

because it can eliminate carries. In computing, signed number representations are required to encode negative numbers in binary

number systems. In mathematics, negative numbers in any base are represented by prefixing them with a − sign. However, in

computer hardware, numbers are represented in bit vectors only without extra symbols. The four best-known methods of

extending the binary numeral system to represent signed numbers are: sign-and-magnitude, ones' complement, two's

complement.[12]

A. Sign-and-magnitude method

In the first approach, the problem of representing a number's sign can be to allocate one sign bit to represent the sign: set that

bit (often the most significant bit) to 0 for a positive number, and set to 1 for a negative number. The remaining bits in the

number indicate the magnitude (or absolute value). Hence in a byte with only 7 bits (apart from the sign bit), the magnitude can

range from 0000000 (0) to 1111111 (127). Thus you can represent numbers from −12710 to +12710 once you add the sign bit (the

eighth bit). A consequence of this representation is that there are two ways to represent zero, 00000000 (0) and 10000000 (−0).

Decimal −43 encoded in an eight-bit byte this way is 10101011. [12]

This approach is directly comparable to the common way of showing a sign (placing a "+" or "−" next to the number's

magnitude). Some early binary computers (e.g. IBM 7090) used this representation, perhaps because of its natural relation to

common usage. Sign-and-magnitude is the most common way of representing the significand in floating point values.

B. Ones' complement

The ones' complement of a binary number is defined as the value obtained by inverting all the bits in the binary

representation of the number (swapping 0's for 1's and vice-versa). The ones' complement of the number then behaves like the

negative of the original number in most arithmetic operations. However, unlike two's complement, these numbers could not have

widespread use because of issues like negative zero, end-around borrow, etc.

A ones' complement system or ones' complement arithmetic is a system in which negative numbers are represented by

the arithmetic negative of the value. In such a system, a number is negated (converted from positive to negative or vice versa) by

computing its ones' complement. An N-bit ones' complement numeral system can only represent integers in the range −(2
N−1

−1)

to 2
N−1

−1. A conventional eight-bit byte is −12710 to +12710 with zero being either 00000000 (+0) or 11111111 (−0). 8-bit one’s

complement is as given in table 1. [12-14]

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Signedness
http://en.wikipedia.org/wiki/Negative_number
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Signed_number
http://en.wikipedia.org/wiki/Signed_number_representations#Sign-and-magnitude_method
http://en.wikipedia.org/wiki/Signed_number_representations#Ones.27_complement
http://en.wikipedia.org/wiki/Signed_number_representations#Two.27s_complement
http://en.wikipedia.org/wiki/Signed_number_representations#Two.27s_complement
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/%E2%88%920
http://en.wikipedia.org/wiki/IBM_7090
http://en.wikipedia.org/wiki/Significand
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Two%27s_complement

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 109

C. Two's complement

The two's complement of a binary number is defined as the value obtained by subtracting the number from a large power

of two (specifically, from 2
N
 for an N-bit two's complement). The two's complement of the number then behaves like the

negative of the original number in most arithmetic, and it can coexist with positive numbers in a natural way.[15]

A two's-complement system, or two's-complement arithmetic, is a system in which negative numbers are represented by

the two's complement of the absolute value; this system is the most common method of representing signed integers on

computers. In such a system, a number is negated (converted from positive to negative or vice versa) by computing its ones'

complement (i.e. its bitwise negation) and adding one. An N-bit two's-complement numeral system

Table.1. 8-bit One’s Complement

can represent every integer in the range −2
N−1

 to 2
N−1

−1. 8-bit two’s complement is as given in table 2.

D. Making the two's complement of a number

In two's complement, positive numbers are represented as binary numbers whose most significant bit .

Negative numbers are represented with the most-significant bit , making use of the left-most bit's negative weight.

All radix complement number systems use a fixed-width encoding. Every number encoded in such a system has a fixed width

so the most-significant digit can be examined.

E. How to create algorithmically for the two's complement binary value?

(The algorithm is mainly due to)

1. Express the binary value for (important: express all coefficients)

2. If (the case is already finished by 1. since and for all , especially

)

 2a. Complement each (i.e. replace by for

)

 2b. Add the coefficient 1 (this 1 represents) to

 the latest binary representation. The addition

 leads to the final representation for which is

http://en.wikipedia.org/wiki/Binary_number
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Arithmetic
http://en.wikipedia.org/wiki/Signed_number_representations
http://en.wikipedia.org/wiki/Signed_number_representations
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Most_significant_bit

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 110

Table. 2. 8-bit two’s-complements

III. DIGIT-BY-DIGIT CALCULATION METHOD
In digit-by-digit calculation method, each digit of the square root is found in a sequence where it only one digit of the square

root is generated at each iteration [2, 6]. It has several advantages, such as: every digit of the root found is

known to be correct and it will not has to be changed later; if the square root has to expand, it will terminate after the last digit is

found; and the algorithm works for any number base.

In general, this method can be divided in two classes, i.e. restoring and non-restoring digit-by-digit algorithm [6]. In restoring

algorithm, the procedure is composed by taking the square root obtained so far, appending 01 to it and subtracting it, properly

shifted, from the current remainder. The 0 in 01 corresponds to multiplying by 2; the 1 is a new guess bit. The new root bit

developed is truly 1, if the resulting remainder is positive, and vice versa is 0, which the remainder must be restored by adding

the quantity just subtracted. It is different, in non-restoring algorithm does not restore the subtraction if the result was negative.

Instead, it appends a 11 to the root developed so far and on the next iteration it performs an addition. If the addition causes an

overflow, then on the next iteration you go back to the subtraction mode. Figure 1 (a) and (b) gives an example to take the binary

square root of 01011101 (equivalent with 93 decimal) for restoring and non-restoring algorithm respectively.

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 111

(a)

(b)

Figure. 1. The example of digit-by-digit calculation to solve square root:

(a) restoring algorithm; (b) non-restoring algorithm

IV. PROPOSED NON-RESTORING SQUARE-ROOT

 ALGORITHM FOR SIGNED AND UNSIGNED NUMBER
A little different than conventional non-restoring digit-by-digit algorithm in Figure 1 (b), a modification as shown on Figure 2

can be conducted to give simpler implementation and faster calculation. In this modification, it only uses subtract operation and

append 01, while add operation and append 11 is not used.

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 112

Figure 2. The example of using modified non-restoring digit-by-digit calculation algorithm to solve square root

 A simple hardware implementation of the proposed non-restoring digit-by-digit algorithm for unsigned 8-bit square root by an

array structure is shown in Figure 4. The radicand is P (P7,P6,P5,P4,P3,P2,P1,P0), U (U3,U2,U1,U0) as quotient and R

(R5,R4,R3,R2,R1,R0) as remainder. It can be shown that the implementation needs 4 stage pipelines. The basic building blocks

of the array are blocks called as controlled subtract-multiplex (SM). Figure 5 present the details of a SM. Input of the building

block is x,y,b and u, and as an output is bo(borrow) and d result). If u=0, then d<=x-y-b else d<=x.

Step I. Start

Step II. Initialization of radicand (the n-bit number will be squared root), quotient (the result of squared root), and remainder.

To calculate square root of a 2n bit number, it needs n stage pipelines to implement the proposed algorithm.

Step III. Divide the radicand into groups of two digits

 starting from MSB

Step IV. Beginning on the left (most significant bit), select the first group of one or two digit (If n is odd then the first groups is

one digit, and vice versa)

Step V. Choose 1 squared, and then subtract.

 First developed root is “1” if the result of subtract

 is positive, and vice versa is “0”

Step VI. Shift two bits, subtract guess squared with append 01. Nth-bit squared is “1”, if the result of subtract is positive, and

.Because of subtract operation is done else Nth-bit squared is “0”, and not subtract.

Step VII. Go to step 5 until end group of two digits.

.

Step VIII. Follow step 0 through 6 for signed n-bit

 Number. If sign is negative, its negative

 number with MSB=1 else positive with MSB=0.

 Convert the negative number to equivalent 2’s

 Complement representation.

Step IX. The square root for signed number is computed as

 ni , where n= number of bits and

 i= imaginary output variable

 If MSB = ‘0’ then

 imag = ‘0’

 else

 imag= ‘1’

 Step X. End

 Fig 3. Modified Algorithm Principle for signed/unsigned number

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 113

 Fig 4. Simple hardware implementation of the non -restoring digit-by-digit algorithm for unsigned 8-bit square root

Fig 5. Internal structure of a SM block

V. SYNTHESIS REPORT
Table 3. The comparison of 32-bit squareroot circuits

No

 Design

Analysis

 32-bit square root

 Unsigned Signed

1

Design

statistics

BELLS:301

IOBUFFER:4

8

BELLS:419

IOBUFFER:49

2 Delay 181.674 ns 187.355 ns

3 Logic Level 122 157

4

Memory

Used 255948kb 256204kb

5 CPU time 10.19 secs 11.19 ecs

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 114

 REFERENCES
[1] L. Yamin and C. Wanming, "Implementation of Single Precision on Floating Point Square Root on FPGAs," in FCCM’97,

IEEE Symposium for Custom Computing Machines, Napa, California, USA, 1997, pp. 226-232.

[2] L. Yamin and C. Wanming, "Parallel-array implementations of a non-restoring square root algorithm," in Computer

Design: VLSI in Computers and Processors, 1997. ICCD '97. Proceedings. 1997 IEEE International Conference on, 1997,

pp. 690-695.

[3] K. Piromsopa, et al., "An FPGA Implementation of a fixed-point square root operation," presented at the Int. Symp. on

Communications and Information Technology (ISCIT 2001), ChiangMai, Thailand, 2001.

[4] D. R. Llamocca-Obregon, "A Core Design to Obtain Square Root Based on a Non-Restoring Algorithm," presented at the

IBERCHIPS Workshop, Salvador Bahia, Brazil, 2005.

[5] XiaojunWang, "Variable Precision Floating-Point Divide and Square Root for Efficient FPGA Implementation of Image

and Signal Processing Algorithms," 2003

[6] S. Samavi, et al., "Modular array structure for non-restoring square root circuit," Journal of Systems Architecture, vol. 54,

pp. 957-966,2008.

[7] H. Dong-Guk, et al., "Improved Computation of Square Roots in Specific Finite Fields," Computers, IEEE Transactions

on, vol. 58,pp. 188-196, 2009.

[8] S. Lachowicz and H. J. Pfleiderer, "Fast Evaluation of the Square Root and Other Nonlinear Functions in FPGA," in

Electronic Design, Test and Applications, 2008. DELTA 2008. 4th IEEE International Symposium on, 2008, pp. 474-477.

[9] W. Chu; and Y. Li;, "Cost/Performance Tradeoff of n-Select Square Root Implementations," in 5th Australasian Computer

Architecture Conference (ACAC 2000), Canberra, ACT 2000, pp. 9-16.

[10] J. Xiaoliang, "Implementation of Square Root Arithmetic Based on FPGA," Modern Electronics Technique, vol. 30, 2007.

[11] P. Montuschi and M. Mezzalama, "Survey of square rooting a lgorithms," in Computers and Digital Techniques, IEE

Proceedings Italy, 1990, pp. 31 - 40.

[12] Nicholaas C.DeTroye “Digital Root Extraction Circuit” in patent no. 4,748,581, May 31, 1988.

[13] Sau-Gee Chen, Hsinchu, Chieh-Chih Li, “Apparatus for finding the Square root of a number” in patent no. 5,430,669, Jul.

4, 1995.

[14] Yoshitsugu Kitora. “Square Root Extractor” in patent no.5, 331,586,Jul. 19, 1994

[15] Keshav K. Parhi, “ A Systematic approach for design of digit serial signal processing architectures”, IEEE transactions on

circuits and systems , vol. 38, no.4, april 1991.

B.E.Saglam, G.Cosgul, Comments on “ A Systematic approach for design of digit serial signal processing architectures”,

IEEE transactions on circuits and systems-II , vol. 47, no.4, april 2000.

(a)

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 115

(b)

(c)

(d)

Fig 6. Simulation result of square root using simple hardware

implementation method of the non-restoring digit-by-digit algorithm:

(a) 8-bit in binary display , (b) 8-bit in decimal display

(c) 32-bit in binary display (d) 32-bit in decimal display

(a)

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 116

(b)

Fig 7. RTL Schematic (a) 8-bit signed square root ,

(b) 8-bit unsigned square root

(a)

(b)

Fig 8. RTL Schematic (a) 32-bit signed square root,

(b) 32-bit unsigned square root.

