
International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 29

Modification on Non-Cryptographic Hash Function

C. Krishna Kumar
1
, Dr. C. Suyambulingom

2

1,
 Sathyabama University, Chennai, India,

2
Professor (Rtd.), Dept. of Mathematics, TAU, Coimbatore, India

Abstract—
This paper presents an automatic approach to Modification on non-cryptographic hash function design based on grammar guided

genetic programming. The paper describes how it is possible to design a non-cryptographic hash function, implementation issues

such as terminal and nonterminal symbols, fitness measure, and used context-free grammar. The main aim of this paper is to link

the expert knowledge in the design of non-cryptographic hash function and the process of automatic design which can try many

more combinations then an expert can. The hash function automatically designed in the paper is competitive with human design

and it is compared with the most used non-cryptographic hashes in the field of speed of processing and in the field of collision

resistance. The results are discussed in the last section and further improvement is mentioned.

Keywords— Modification on Non-cryptographic Hash Function, Evolutionary optimization, Genetic Programming, Context-

free Grammar, Collision Resistance.

I. Introduction
THE hash function is generally understood as a view that assigns an output sequence of always fixed length to an arbitrarily long

input sequence, according to a strictly defined algorithm. Formally, hash function is the mathematical function h transferring bits

of the input sequence I to the output sequence O, which is of a fixed length. According to Mao [1] the hash functions should have

several basic characteristics. The first one is that the function converts any number of input data to output data of always the

same length (the output is called hash). The second feature is that a small change of input data during the hashing process will

achieve a big change of output data–this effect is called an avalanche effect. The last feature is a high probability that two

messages with the same hash value will be identical. The definition of hash function implies the existence of collisions, which

means that a pair of input data (x, y); x ≠ y have the same hash values h(x) = h(y). Collisions are undesirable, but in the principle

they cannot be avoided. Collisions can only be reduced, because if a collision should be completely eliminated, it would be a

hash of the same length as the input data, which would be completely a loss of efficiency lying in compression.

 In the following text, the term hash function will be understood as a non-cryptographic hash function which is not so

complicated as the cryptographic hash function and it is not mentioned to use it in cryptographic applications, but it is widely

used in database systems, hash tables, and other data structures involved in most programming languages.

 The most common approach for designing a non-cryptographic hash function is the static design by a human expert in

the field of cryptography. Hash function design can be a very time-consuming process, because an expert has to try a significant

number of hash functions combining various building blocks. And this is the field where the genetic programming can be used

with an advantage of automatic process of design, evaluation and interpretation of the result.

 The main contribution of this paper is to link the expert knowledge in the design of hash functions and evolution

process of genetic programming which can build and evaluate many more combinations of building blocks for a fraction of the

time then a human expert. The second goal is to test an evolution framework developed by the authors, mostly used in the field

of image filter design, in the other area of interest and to test its competitiveness in the hash function design with the [2, 3]. The

rest of the paper is organized as follows. The second chapter summarizes hash function design issues, i.e. determination of

function and terminal set, fitness measure, grammar, and implementation parameters. The application of the proposed method

and the evaluation of comparison results are described in chapter three. The fifth chapter brings the discussion about reached

results. The last chapter summarizes the results obtained in this paper.

Ii. Hash Function Design
The main goal of this paper is to introduce possibilities of an automatic design of non-cryptographic hash function similar to the

already known hash functions, such as: APHash [4], BJHash [5], DEKHash [6], DJBHash [7], FNVHash [8], and to demonstrate

the competitiveness of design by the evolution framework developed at BUT with the similar research proposed in the articles [2,

3]. The articles [2, 3] propose GPHash by means of genetic programming but completely without any expert knowledge. The

proposed hash function in this article is called EFHash and it is implemented by genetic programming and a context-free

grammar.

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 30

A Set of Terminals

It was much easier to establish a set of terminal symbols, because it involves only three elements. The first element is the

previously hashed value (hash value from previous iteration of hash function). The second element is so-called magic number,

which is useful e.g. when some function has

two arguments. It is inspired by FNV hash [8], and it brings more non-linearity. The magic number is set to the value

0x811C9DC5 (the value of magic number in decimal system is 2,166,136,231 and it is a prime number of course). The origin of

this magic number comes from FNV hash (32bit

FNV hash specifically), where the magic number is used to produce a hash of certain length. The value of magic number is

different for all variants of FNV hash. The third value represents character at certain position in the processed input string

sequence.

B. Set of Non-Terminals
First, it was necessary to establish a set of functions (nonterminal symbols) which represents basic building blocks for

assembling the resulting hash function. This set is composed of such functions which are quickly and easily feasible, because the

resulting hash function must be easily applicable to any hardware and has to work very quickly. This set of functions is strongly

inspired by existing hash functions.

The set of functions includes operations, such as: right bit rotation (rr), logical exclusive disjunction (xor, ^), logical

disjunction (or, /), logical conjunction (and, &), logical negation (not, ~), summation (sum, +), and multiplication

(mult, *). Attaching both right and left bit rotation or bit shifting can cause introns, and that is why only the right bit rotation is

involved..

C. Fitness measure

When designing hash function a major sign of success can be randomness of solution or random distribution of the output bit

string, respectively. Entropy, mean value,

correlation coefficient, and others can be used as the fitness function. It does not matter what function is used to measure the

performance of the solution, because that does not guarantee an optimal solution. Therefore, it is better to use multiple evaluation

functions. In the [2, 3] authors recommend using the function for non-linearity measure between input and output data. There are

several definitions of non-linearity and none of them is agreed by most of scientists. If it is decided to use this measurement, a

proper function should measure property called the avalanche effect, so-called intersymbol interference.

 In our case, the fitness measure is done by a simple measuring of the number of collisions obtained by hashing 106 random

strings of 32bit length. First, it is computed hash bit by bit from the 32bit input string by the proposed candidate hash function

produced by genetic programming. The 10
6

random strings are hashed by this candidate hash function. Second, it is calculated

how many collisions were produced by the candidate hash function, and this is the score of the hash function (lower number is

better). The hash function which reaches the minimum number of collisions is declared as the best solution given by the

evolution framework.

D. Implementation

TABLE I

Parameters of Genetic Programming Algorithm

--

Title Value

Number of generations 500

Size of population 100

Max. depth of individual 20

Crossover rate 80%

Mutation rate 15%

Terminal set hash, magic_number

Non-terminal set rr, xor, or, and, not,

 Sum, mult

When the genetic programming algorithm is designed, several attributes must be set, see Table I. The evolution process was

started with the parameters in Table I.

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 31

E. Grammar

The aim of grammar is to define the possibilities of connecting of building blocks. Usually, the grammar is defined by an expert

with respect to a specific problem

domain. For the design of the non-cryptographic hash function the following grammar has been defined, see Fig. I.

Root := E,

E := E ^ E | E or E | E & E | E + E | E * E |

E ^ C | E or C | E & C | E + C | E * C |

E ^ N | E or N | E & N | E + N | E * N |

N ^ C | N or C | N & C | N + C | N * C | F,

F := RR N | RR F | RR E |

NOT N | NOT F | NOT E |N,

C := 0x811C9DC5,

N := hash (from previous iteration, first is

 set to 0) | character (char of

 string in iteration order).

Fig. 1. Context-free grammar in BNF notation.

Fig. 2. Resulting hash function as graph of tree based genetic programming

Iii. Results of Experiment
Many different configurations of the terminal and nonterminal sets and fitness function have been tried. The rates of crossover

and mutation have been subjected to examination too. And after many weeks of testing the genetic programming algorithm, the

appropriate parameters which refer to controlling the run were set, see Table I, and the best solution was finally found.

A. Proposed Hash Function

On the basis of parameters, see Table I, the following candidate solution among all the individuals was found. The resulting hash

function is shown in Fig. 2 and Fig. 3.

public long run (String str) {

long magic_number = 0x811C9DC5;

long hash = 0;

for (int i = 0; i < str.length(); i++) {

hash = ((hash&magic_number)+

 str.charAt(i));

hash= (hash)*((~((~hash) +

 magic_number)) >> 2);

}

return hash;

}

Fig. 3. Resulting hash function algorithm.

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 32

B. Hash Functions for Comparison

The following functions were selected as reference functions with which the resulting hash function given by the evolution

framework was compared. The best known hash function is FNVHash [8]. The basis of algorithm was taken from an idea sent as

reviewer comments to the IEEE POSIX P1003.2 committee by Glenn Fowler, Phong Vo and Landon C. Noll in 1991. This

function is used in domain name servers, databases, web search engines, email servers, antispam filters and many other

applications.

 DEKHash is an algorithm proposed by the well-known mathematician Donald E. Knuth in The Art of Computer

Programming – Volume 3, under the topic of sorting and

search in chapter 6.4 [6]. DJBHash [7] is an algorithm produced by professor Daniel J. Bernstein and it is one of the most

efficient hash functions that has ever been published.

BJHash [5] is a hash algorithm proposed by Robert Jenkins and is widely used in hash tables. APHash [4] is an algorithm

produced by Arash Partow, it took ideas from all the above mentioned hash functions to make a hybrid rotative and additive hash

algorithm.

GPHash [2, 3] is a hash function produced by the automatic process of genetic programming in 2006. This function is quite fast

and the results in the field of collisions are also on a very good level, so it is very good to use it in comparison

with the hash proposed by our evolution framework.

C. Speed Test

The speed of processing is one of the methods that can be used for comparison between hash algorithms. This test was carried

out as follows. All hash algorithms have been implemented in JAVA programming language, in which all tests were carried out.

At the beginning, the strings of 32, 64, 128, 256, 512, and 1,024 bits were randomly generated. In each group there were 106

random strings. The hash function processed each group ten times. These ten measurements were averaged arithmetically and

stored. The results of time

simulation in seconds are represented in Table II. The headers of the columns represent the length of randomly generated

strings in bits. Fig. 4 provides results depicted in the graph. Discussion about reached results is in Section V.

TABLE II

Speed Test of Hash Functions

--

Algorithm 32 64 128 256 512 1024

--

APHash 0.076 0.114 0.188 0.346 0.665 1.293

BJHash 0.367 0.413 0.606 0.986 1.816 2.871

EFHash 0.074 0.105 0.169 0.293 0.550 1.065

GPHash 0.074 0.111 0.177 0.301 0.575 1.125

DEKHash 0.056 0.074 0.104 0.183 0.318 0.598

DJBHash 0.057 0.074 0.103 0.181 0.314 0.59

Fig. 4. Speed test of hash functions.

D. Collision Test

This test includes two collision sub-tests. Sub-tests aim to demonstrate the number of collisions obtained by each of the tested

hash functions. The first collision test is performed on the same randomly generated strings as the speed test. There are six sets of

different bit lengths and each of sets contains unique strings. Strings are randomly generated from characters a-z and 0-9. All sets

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 33

are mixed up to one set with 106 randomly generated strings in range from 32 bits to 1,024 bits. Hash functions were started on

this set. The first 10
2
, 10

3
, 10

4
, 10

5
, and 10

6
strings of each set were processed and the results of reached collisions are depicted in

Tables III. The results for measure of 10
6
 strings were entered to the graph, see Fig. 5. Discussion about reached results is in

Section V. The second collision test shows how many hashes (in average) a hash function algorithm can produce before

generating the first collision. Besides, it is depicted how the number of collisions growths when the number of hashes growths.

The Mersenne Twist Generator was used in this test. The test set consists of random numbers only. Maximum length of random

number is 1,024 bits. The hash function was processed ten times. These measurements were averaged arithmetically and

rounded up. The results reached are depicted in Table III. The results were also entered to the graphs, see Fig. 6 – 7. This test

was processed on 10
7

random numbers and complete number of collision generated by each hash is shown in Table IV and in

Fig. 8. Discussion about reached results is in Section V.

Table Iii

Collision Test I

--

Algorithm 10
2

 10
3
 10

4
 10

5
 10

6

--

APHash 0 0 0 0 0

BJHash 0 0 0 2 119

EFHash 0 0 0 0 0

GPHash 0 0 0 0 0

DEKHash 0 35 319 1293 1340

DJBHash 0 29 288 951 992

FNVHash 0 0 0 0 0

Fig. 5. Collision test I, Number of collisions for 106 strings.

TABLE IV

Collision Test Iia

--

Algorithm 1 2 3 4 5

--Hash 72619 81547 123146 163063 199989

BJHash 117145 168322 178507 182541 188182

EFHash 73561 148137 165383 251736 306792

GPHash 76519 133368 137280 156540 161076

DEKHash123094 187204 206570 212548 233598

DJBHash 57724 90071 127812 188884 218495

FNVHash 152515 207282 210895 215018 227487

--

Fig. 6 Collision test IIa, 1st collision.

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 34

Fig. 7 Collision test IIa, 5th collision.

TABLE V

Collision Test Iib

Algorithm Total number of collisions

--

APHash 11697

BJHash 11780

EFHash 11580

GPHash 11708

DEKHash 11766

DJBHash 11525

FNVHash 11520

--

Fig. 8 Collision test IIb.

Iv. Discussion
Based on the results of the first test, it can be concluded that the proposed hash function EFHash is on the average level.

However, the results of measurement show that EFHash can be compared with GPHash, which is also designed by means of

genetic programming. EFHash reached better results than APHash and BJHash, but it is almost twice slower than the fastest

DJBHash. The EFHash could be optimized in a speed of processing in the future. The results of measurement the first collision

test are shown in Table III. Table III and Fig. 5 shows that EFHash reached very good results on the testing set. There is no

collision generated by EFHash during the whole fitness measurement. In contrast, BJHash, DEKHash, and DJBHash generate a

significant amount of collisions. The results of measurement of the second collision test are shown in Table IV. Results show

that proposed EFHash allows generating the most hashes with only five collisions. On the other hand, the first collision occurred

in 73,651 strings, and its suggestion of further improvement. Total number of collisions, which occurred during hashing the set

of 107 randomly generated strings by Mersenne Twister Generator are shown in Table V. The resulting values of all algorithms

are very similar, but it can be seen that EFHash reached very good position. The EFHash is designed to be a fast and simple hash

function with a low collision rate. The EFHash allows to quickly hash lots of data in a various applications. It is possible to make

both a software and hardware implementation of this hash function. The proposed hash function can be used in domain name

servers, in databases for indexing, in web search or indexing engines, in file systems, in non-cryptographic file fingerprints and

so on.

International Journal of Computational Engineering Research (IJCER) ISSN: 2250-3005

National Conference on Architecture, Software system and Green computing

AVIT, CSE, Vinayaka Missions University, Chennai Page 35

V. Conclusion
This paper introduced an automatic design of Modification on non cryptographic hash function based on the grammar guided

genetic programming and the expert knowledge. The paper describes a complete process of genetic programming algorithm

design in the field of hash functions. The resulting hash function is introduced and compared to other well known non-

cryptographic hash functions. The results obtained for EFHash in both the speed and collision test are shown in the tables and

graphs in Section III. All measurements were done in JAVA programming language, and the standard Intel C2D E8400

architecture was used. The non-cryptographic hash function (EFHash) proposed by evolutionary framework could run faster, but

in the field of collision avoidance it reaches quite good results in

comparison with other hashing algorithms. Regarding to the competitiveness of design by evolutionary framework, the results in

Section IV shows that EFHash can compete with GPHash, because they reached very similar results.

References
[1] C. Estebanez, J. C. Hernandez-Castro, A. Ribagorda, and P. Isasi, “Finding State-of-the-Art Non-cryptographic Hashes

with Genetic Programming,” in T. P. Runarsson, H.-G. Beyer, E. Burke, J. J. Merelo- Guervos, L. D. Whitley, X. Yao

(eds.), PPSN 2005. LCSN, vol. 4193, pp. 818-827. Springer, Heidelberg (2006).

[2] A. Partow, General Purpose Hash Function Algorithms, ONLINE http://www.partow.net/programming/hashfunctions/

[3] R. J. Jenkins, Hash Functions for Hash Table Lookup, ONLINE, 1995- 1997, http://burtleburtle.net/bob/hash/evahash.html

[4] D. E. Knuth, The Art of Computer Programming: Volume 3, Addison- Wesley Professional, 2nd edition, May 4 1998, p.

800, ISBN: 987-0-201-89685-5.

[5] D. J. Bernstein, Mathematics and ComputerScience,ONLINE,http://cr.yp.to/djb.html

[6] G. Fowler, L. Noll, P. Vo, Fowler/Noll/Vo (FNV) Hash, ONLINE

http://isthe.com/chongo/tech/comp/fnv/23

[7] W. Mao, Modern Cryptography: Theory and Practice. Prentice Hall PTR, August 4, 2003, p. 648. ISBN 987-0-130-66943-

8.

[8] C. Estebanez, J. César, A. Ribagorda, and P. Isasi, “Evolving Hash Functions by Means of Genetic Programming,” in

GECCO’06, July 8-12, 2006, Seattle, Washington, USA

http://isthe.com/chongo/tech/comp/fnv/23

