
                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 
 

Issn 2250-3005(online)                                                     November| 2012            Page 522 

 
      

 

Smart Microgrid 
 

Akash K Singh, PhD 
IBM Corporation Sacramento, USA 

 

 

Abstract 
Smart microgrids offer a new 

challenging domain for power theories and 

compensation techniques, because they include a 

variety of intermittent power sources, which can 

have dynamic impact on power flow, voltage 

regulation, and distribution losses. When 

operating in the islanded mode, low-voltage 

smart microgrids can also exhibit considerable 

variation of amplitude and frequency of the 

voltage supplied to the loads, thus affecting power 

quality and network stability. Due to limited 

power capability in smart microgrids, the voltage 

distortion can also get worse, affecting 

measurement accuracy, and possibly causing 

tripping of protections. In such context, a 

reconsideration of power theories is required, 

since they form the basis for supply and load 

characterization, and accountability. A revision 

of control techniques for harmonic and reactive 

compensators is also required, because they 

operate in a strongly interconnected environment 

and must perform cooperatively to face system 

dynamics, ensure power quality, and limit 

distribution losses. This paper shows that the 

conservative power theory provides a suitable 

background to cope with smart microgrids 

characterization needs, and a platform for the 

development of cooperative control techniques 

for distributed switching power processors and 

static reactive compensators. 

 

Keywords- Advanced metering infrastructure 

(AMI),  communication technologies, quality-of-
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I.  INTRODUCTION  
SMART grids represent one of the grand 

challenges at planetary level. The infusion of 

information technology throughout the electric grid 

creates new capabilities, with potential impact on 

environment, science and technology, economics, 

and lifestyle. The term ―smart grid‖ outlines the 

evolution of electrical grids and a change of 

paradigm in the electric market organization and 

management [30], [31]. In a global perspective, 

implementation of smart grids and microgrids on a 

large scale will result in dramatic improvement of 

electrical services and considerable market increase. 

Technically speaking, smart grids include a number 

of distributed energy resources and electronic power 

processors, which must be fully exploited to reduce 

carbon footprint, improve power quality, and  

 

increase distribution efficiency [22], [32], [34]. The 

smart-grid paradigm is therefore different from the 

traditional one, based on the assumption of few 

power sources with large capacity and sinusoidal 

supply. Especially in smart microgrids (low-voltage 

smart grids with installed power not exceeding the 

megawatt range), energy sources can be small, 

distributed and interacting, and supply voltages can 

be asymmetrical and distorted. From the earlier 

considerations, it follows that facing the problems of 

smart grids, and in particular of smart microgrids, 

requires a revision of traditional power theories and 

a comprehensive approach to cooperative operation 

of distributed electronic power processors. This 

paper shows that the conservative power theory 

(CPT) offers a consistent framework to approach 

smart microgrid characterization and control 

problems. In particular, the influence of frequency 

variation and voltage distortion can be taken into 

account, and the load and supply responsibility for 

reactive power, asymmetry, and distortion can be 

analyzed, thus setting the basis for a revision for 

metering and billing procedures. 
 

A. Theoritical Considerations 

Dealing with the reactive power is a 

sensitive matter. The problem starts from the very 

beginning, the definitions. Here one realizes that 

even the definitions and their equivalent 

mathematical relations are suffering in the three 

phase circuit case. Even if the situation is pressing 

and some new authors [4], [5] are rediscovering old 

solutions of an another author [2], [3], the problem 

stands unsolved as the three phase apparent power is 

still smaller than the square radius of the quadratic 

sum of the active, reactive and nonactive 

(nonsinusoidal component) powers three phase 

components. Letting aside the above mentioned 

problem, from practical point of view the circulation 

of the reactive power in the MG is to be optimally 

solved, in order to prevent extra problems in the grid 

(transmission network). That especially due to the 

rather large amount of power electronics related to 

RES utilization. In the present approach we start 

with losses due the reactive power. In future works 

we will refine this initial model, after the 

experimental validation of the model presented in 

this paper, considering the nonsinusoidal power. In 

the paper we consider the network resistances only, 

as the reactive components of the cables in the 
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low/medium voltage networks can be neglected [7]. 

In a less precise model, but accurate enough in MG 

case the voltage along the same line is considered to 

remain constant [7]. The optimal compensation of 

reactive power in a network, the MG in our case, is 

asked to solve the following problems:  

 

a. Establishing the total amount of reactive power to 

be compensated in efficient economical conditions; 

b. Optimal partitioning of the above amount in the 

network nodes.  

 

From theoretical point of view, considering only the 

cable resistance R, the losses ΔP 1 are expressed by 

eq. (1) 

 

II. THE MICROGRID SIMULATION SOFTWARE 

WITH OPTIMIZATION OF POWER LOSSES 
In the paper [1] we have optimized the 

active current flow through the network resistors 

supplied by Renewable Sources RES. We have 

presented a mathematical model for the problem of 

finding the flow through resistors so that the total 

loss of power is minimal. This model is a convex 

optimization model that can be solved using an 

adaptation of the Klein’s algorithm for minimum 

cost flow problem (linear case). The adapted 

algorithm is also presented in [1], too. In this paper 

we study the reactive current optimization problem. 

The problem also consists in finding the optimal 

current flow through resistors, but for the reactive 

current. But, before doing this it is necessary to 

decide where to put the condensers and how to 

distribute them. This was done using the conclusions 

e) and f) from chapter II. Even doing  this it is 

difficult to optimize in practice the distribution of 

them (where to put more and where to put less). We 

have tested all these using an application written by 

us in Delphi. This application is an extended version 

to the reactive current of the application described in 

[1]. We started from placing the capacitors banks. 

So, the capacitors should be placed nearby the 

reactive inductive power sources and the best way to 

distribute them is by placing more condensers where 

there is more reactive currents to absorb. Moreover, 

using our application, before optimizing the reactive 

current flow through the network resistors, we 

optimize the distribution of K sources (capacitors) 

direct proportionally to the reactive current to be 

absorbed from the nearest neighbors. Now, we shall 

present our application. In this version of our 

application a new kind of node appears. The new 

node is representing the capacitors (K sources). 

Moreover, for each we must specify cos(fi) (Power 

Factor) for each generator and each load. The nodes 

are introduced and modified, according to the 

studied case, using the window from fig. 2:  

 

1. If the node is set to be generator, then the value of 

flow produced by this node must be specified in the 

edit box below. 

2. If the node is set to be load, then the value of flow 

consumed by this node must be specified in the edit 

box below. 

3. If the node is set to be dual (generator or load), 

then the value of flow produced by this node and the 

value of the flow consumed by the node must be 

specified in the edit boxes below. 

 

III. ANALYTICS IN SMART MICROGRIDS 
The analytics discussed in this paper are 

classified by application. Analytics pertaining to 

smart microgrids are very often concerned with 

operational decision-making. Considerations in 

architecture of microgrids related to applications, 

ownership, benefits, operating modes, etc. may be 

incorporated in decision-making analysis. Decisions 

related to the type and location of the microsource 

(generation within the microgrid), the network 

configuration best suited to address specific needs, 

and optimum location of distribution assets such as 

cables, capacitor banks and energy storage elements 

may define the designs of microgrids. Decision 

making also plays an integral role in reequipping 

substations in light of the proliferation of microgrids 

– in essence, defining the location of intelligent 

controls in the microgrid. Yet another aspect of 

microgrids that require decision making is the 

economic benefits to the owners and users of the 

microgrids. The analytics discussed here will 

therefore very often involve decision-making. 

 

A. Operations 

In this section we discuss analytics that 

apply when there is no fault within the microgrid. It 

therefore includes both grid-connected operation as 

well as islanded operation; as long as the microgrid 

itself is healthy, its operation will be considered 

normal. 

 

At the very least, the operation of a 

microgrid should satisfy (a) Kirchoff’s laws, i.e., 

power flow conditions, and (b) operating rules, such 

as how to deal with situations where the capacity 

drops below the demand. There rules should include 

―community rules‖ that may be applicable, such as 

agreements between neighbors some of whom own 

generation while others do not. In some instances, 

load prioritization may involve decision-making; an 

example of analytics for accomplishing this is 

discussed below. In some instances, simple markets 

may exist within the community; such situations are 

also discussed below. 
 

Considerable research has been conducted 

on load management in microgrids [9], [10]. Much 

of this work has focused on increasing or decreasing 

curtailable or deferrable load to keep up with 
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varying generation in microgrids, particularly from 

renewable resources. Future deployment of ―smart 

appliances‖ in ―smart homes‖ will contribute to 

development of further analytics in load 

management. Analytics have also been used for load 

prioritization. In [11], the Analytic Hierarchy 

Process (AHP) [12] has been used for load 

prioritization. AHP uses pair-wise comparisons of 

all elements of a system arranged in a reciprocal 

matrix to determine relative priorities among all 

elements of that system, and has the advantage of 

being able to use subjective constraints. 

 

When a microgrid separates from the grid, 

it is no longer obligated to operate at grid frequency. 

In some instances, if both sources and loads 

fundamentally use dc, a microgrid can switch to dc 

operation under off-grid conditions. Alternatively, of 

conditions allow, it may be able to adjust its 

frequency so that transmission components operate 

at surge impedance. References [13]–[15] describe 

the analytics behind controlling such standalone 

systems. 

 

IV. AN INTEGRATED FRAMEWORK FOR MG 

MANAGEMENT  
The proposed framework for MG control, 

modeling, and monitoring is based on the SOA 

model, which is a component model that interrelates 

different functional units of an application, called 

services, through well-defined interfaces and 

contracts between services. The interface is defined 

in a neutral manner that should be independent of 

the hardware platform, the operating system, and the 

programming language that the service is 

implemented in. This allows services, built on a 

variety of such systems, to interact with each other 

in a uniform and universal manner. The main 

benefits of a SOA system are the improvement of 

interoperability and the integration of new and 

legacy applications, the ability to survive 

evolutionary changes in the structure, and 

implementation of the internals of each service. 

SOAs are not a new concept, but an alternative 

model to more traditional tightly coupled object-

oriented models that have emerged in the past 

decades. Many technologies can be adopted to 

implement a SOA. Examples are the common object 

request broker architecture (CORBA), and message-

oriented middleware systems, and more recently the 

standard web services technologies, which are 

emerging technologies able to ensure a high degree 

of integration among existing or newly created 

services exposed on the web. Web services extend 

the advantages of software components making it 

possible to employ an existing low-level middleware 

infrastructure based on web servers and HTTP 

protocol. A web service is a set of operations 

provided by some software applications. Such a 

service can easily be accessed through a well-

defined interface independently from the service 

deployment details. In Fig. 1, the overall distributed 

meta-architecture for MG monitoring and control is 

shown. The core component of the meta-architecture 

is the MG engine which is responsible for the 

execution of MG control, modeling, and monitoring 

functions in a geographically distributed scenario. It 

includes high level components which are mainly 

the submission service, the operation service, and 

the notification service. The submission service is 

responsible for the handling of user submission 

requests and is designed to simplify the submission 

phase made by a nonexpert network operator. 

TheMG operation service is responsible for the 

MGcontrol and monitoring execution. Finally, the 

notification service is responsible for the 

asynchronous management of output data of an 

application able to notify specific events. A basic 

and fundamental component of the MG engine is the 

workflow enactor, which manages the execution of 

the MG service and adds some functionalities related 

to the specific monitoring application. Here the 

workflow enactor is traditionally described using its 

business logic description, and it is written in a 

certain workflow language. The web service 

definition language (WSDL) interfaces of the three 

kinds of web services defined above are the 

following: 

 

1) GISinterfaceWS: for georeferential information 

acquisition; 

2) DataAcquisitionWS for real-time data acquisition; 

3) eAssessmentWS: for MG generation/storage unit 

capability assessment; 

 

Fig. 1. The overall web-services based architecture. 

Vaccaro et al.: An Integrated Framework for Smart 

Microgrids 

4) ComputationalWS: to process the mathematical 

computations required by the MG control and 

monitoring functions; 

5) DataStorageWS: related to the data storage 

functionalities. In the following text, the above web 

services will be briefly addressed. 

 

A. GISinterfaceWS 

The GISinterfaceWS was defined for the acquisition 

of geo referentiated information on the MG. It 

delivers the following services: 

• GetNetworkdata that acquires MG structural data 

concerning the geographical map, the network 

topology, and the sources of power supply; 

• GetControlDevicesAsset: type, location, and 

characteristic parameters of the available control and 

monitoring devices; 

• GetElectricalNetworkDetails: line parameters, 

power transformer rating and numbers, impedance 

values, bus bar scheme, and circuit breaker type and 

installation;  
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• GetOperationalParameters: substation equipment 

status, feeder breakdowns, failure of distribution 

transformers, tripping on feeders/ lines, and 

consumer outages 

V. DISTRIBUTED CONTROL AND OPTIMIZED 

OPERATION MANAGEMENT  

Smart grids enable small producers to 

generate and sell electricity at the local level. The 

smart grid concept provides an effective approach to 

integrating small-scale Distributed Energy Resources 

(DERs) into the bulk electric grid. Without the 

additional information and intelligence provided by 

sensors and software designed to react 

instantaneously to imbalances caused by intermittent 

sources, such distributed generation can degrade 

system quality. Hence automated intelligent software 

is necessary for the decentralized management of 

distributed generation. Small Distributed Generation 

(DG) units are DERs that have different owners and 

several decisions may be made locally, making 

centralized management difficult. In order to make 

full use of operations facilitated by a smart grid, the 

controller of each unit participating in the market 

should have intelligence so as to make decisions and 

to coordinate the actions of different units. The local 

DG units selling power to the network have other 

tasks also. They produce heat for local installations, 

keep the voltage, locally, at a certain level or provide 

a backup system for local critical loads in case of 

main system failure [15]. These tasks stress the need 

for distributed management, control and autonomous 

operation. In this context, the Multi Agent System 

(MAS) technology is suitable for the autonomous 

management of DERs within a smart grid. The goal 

of our research is to advance the state of the art by 

determining the optimal generation schedule of the 

DERs using an optimization routine such as the 

Artificial Immune System (AIS) and to consider risks 

associated with the auction process. We employ 

agent-based framework for effective management 

and implementation of the auction process. In our 

implementation, first, the generator bids are 

calculated considering the optimal generations 

corresponding to minimum fuel cost and hence the 

quantity of power/energy the seller (DERs) is 

offering in the energy market is fixed, even before 

the auctions. Only the pricing for that quantity of 

energy is allowed to vary depending on the traders’ 

attitude (risk seeking or risk averse or risk neutral). In 

doing so, the profit for the seller and buyer are 

maximized as the seller determines the asking price 

based on minimum fuel cost. Thus running the 

optimization routine before bidding will aid the 

auction process in an energy market. The 

optimization process was implemented using AIS. 

The function of the agents is defined according to the 

characteristics of the individual energy resources. 

Secondly, a Risk Based (RB) auction strategy is 

implemented where an agent can assess the risk 

associated with a ―bid‖ or ―ask‖ under current market 

conditions and bid/ask accordingly to maximize the 

profit. The proposed approach was tested and 

validated on a test system and the results obtained 

prove that it is economically beneficial for the buyer 

and seller of power to use this method  for the 

auction process [16]. The communication 

architecture of agents is shown. The numbers on each 

branch indicates the order in which agents 

communicate amongst each other for efficient 

management of DERs. The MAS was implemented 

using JADE (Java Agent DEvelopment) framework 

[17]. Detailed description of this research can be 

found in [16]. The researchers at CAPS are 

advancing the research further by extending the agent 

based auction environment for charging of Electric 

Vehicles (EV) connected to the grid and is referred to 

as smart charging of EVs. The agents representing 

EVs and grid will be involved in trading of charge 

between the grid and EVs based on the Time of Use 

(TOU) prices to determine the optimum charging 

time and duration to minimize the cost of energy to 

the consumers and to maximize the efficiency of the 

overall electrical system. 

We consider the following anycast field 

equations defined over an open bounded piece of 

network and /or feature space 
dR . They 

describe the dynamics of the mean anycast of each 

of p node populations. 

|

1

( ) ( , ) ( , ) [( ( ( , ), ) )]

(1)
( , ), 0,1 ,

( , ) ( , ) [ ,0]

p

i i ij j ij j

j

ext

i

i i

d
l V t r J r r S V t r r r h dr

dt

I r t t i p

V t r t r t T









   




   
   



  

We give an interpretation of the various 

parameters and functions that appear in (1),   is 

finite piece of nodes and/or feature space and is 

represented as an open bounded set of 
dR . The 

vector r  and r  represent points in   . The 

function : (0,1)S R  is the normalized sigmoid 

function: 

 

 
1

( ) (2)
1 z

S z
e




  

 

It describes the relation between the input 

rate iv  of population i  as a function of the packets 

potential, for example, [ ( )].i i i i iV v S V h    

We note V  the p   dimensional vector 

1( ,..., ).pV V The p  function , 1,..., ,i i p   

represent the initial conditions, see below. We note 

  the  p   dimensional vector 1( ,..., ).p   The 

p  function , 1,..., ,ext

iI i p  represent external 

factors from other network areas. We note 
extI  the 
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p   dimensional vector 
1( ,..., ).ext ext

pI I The p p  

matrix of functions , 1,...,{ }ij i j pJ J   represents the 

connectivity between populations i  and ,j  see 

below. The p  real values , 1,..., ,ih i p  

determine the threshold of activity for each 

population, that is, the value of the nodes potential 

corresponding to 50% of the maximal activity. The 

p real positive values , 1,..., ,i i p   determine 

the slopes of the sigmoids at the origin. Finally the 

p real positive values , 1,..., ,il i p   determine the 

speed at which each anycast node potential 

decreases exponentially toward its real value. We 

also introduce the function : ,p pS R R  defined 

by 1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     

and the diagonal p p  matrix 

0 1( ,..., ).pL diag l l Is the intrinsic dynamics of 

the population given by the linear response of data 

transfer. ( )i

d
l

dt
  is replaced by 

2( )i

d
l

dt
  to use 

the alpha function response. We use ( )i

d
l

dt
  for 

simplicity although our analysis applies to more 

general intrinsic dynamics. For the sake, of 

generality, the propagation delays are not assumed to 

be identical for all populations, hence they are 

described by a matrix ( , )r r  whose element 

( , )ij r r is the propagation delay between 

population j  at r  and population i  at .r  The 

reason for this assumption is that it is still unclear 

from anycast if propagation delays are independent 

of the populations. We assume for technical reasons 

that   is continuous, that is 
20( , ).p pC R 

   

Moreover packet data indicate that   is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r r   thus 

no assumption is made about this symmetry unless 

otherwise stated. In order to compute the righthand 

side of (1), we need to know the node potential 

factor V  on interval [ ,0].T  The value of T  is 

obtained by considering the maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r r 


   

Hence we choose mT   

 

A. Mathematical Framework 

A convenient functional setting for the non-delayed 

packet field equations is to use the space 

2 ( , )pF L R   which is a Hilbert space endowed 

with the usual inner product: 

 
1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history 

space 
0 ([ ,0], )mC C F   with 

[ ,0]sup ( ) ,
mt t F    which is the Banach 

phase space associated with equation (3). Using the 

notation ( ) ( ), [ ,0],t mV V t        we write 

(1) as  

.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


    


 
  

Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r dr  





  
  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the papers 

on this subject assume   infinite, hence requiring 

.m      

 

 

Proposition 1.0  If the following assumptions are 

satisfied. 

1. 
2 2( , ),p pJ L R     

2. The external current 
0 ( , ),extI C R F   

3. 
2

0 2( , ),sup .p p

mC R  

 
     

Then for any ,C  there exists a unique solution 

1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 

 

B. Boundedness of Solutions 

A valid model of neural networks should only 

feature bounded packet node potentials.  

 

Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
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Proof :Let us defined :f R C R   as 

2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
    

  

We note 1,...min i p il l   

 
2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t    

  

Thus,  if 

 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l


 
     

  

Let us show that the open route of F  of 

center 0 and radius , ,RR B  is stable under the 

dynamics of equation. We know that ( )V t  is 

defined for all 0t s  and that 0f   on ,RB  the 

boundary of RB . We consider three cases for the 

initial condition 0.V If 
0 C

V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose 

that ,T R  then ( )V T  is defined and belongs to 

,RB  the closure of ,RB  because  
RB is closed, in 

effect to ,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts 

the definition of T. Thus T R  and 
RB is stable. 

 Because f<0 on , (0)R RB V B   implies 

that 0, ( ) Rt V t B   . Finally we consider the 

case (0) RV CB . Suppose that   

0, ( ) ,Rt V t B    then 

2
0, 2 ,

F

d
t V

dt
     thus ( )

F
V t  is 

monotonically decreasing and reaches the value of R 

in finite time when ( )V t  reaches .RB  This 

contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity of 

  shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r

i i r

n

i i r r

r i r

E A E A E

A E E

    

  



  

 

  

   

  

  

 

  

Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    If 

,ij i jE A B   the

( ) ( ) ( )
ij

i j ij
E

s t d E        

and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with ijE  in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 

K is empty, then part of the hypothesis is vacuously 

satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 

Proof: By Tietze’s theorem, f  can be extended to a 

continuous function in the plane, with compact 

support. We fix one such extension and denote it 

again by f . For any 0,   let ( )   be the 

supremum of the numbers 2 1( ) ( )f z f z  Where 

1z  and 2z  are subject to the condition 

2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on, 

  will be fixed. We shall prove that there is a 

polynomial P  such that  
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( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      

By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

 

 



 

 
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z


    

 


    


  

Where X  is the set of all points in the 

support of   whose distance from the complement 

of K  does not  . (Thus  X contains no point 

which is ―far within‖ K .) We construct  as the 

convolution of f  with a smoothing function A. Put 

( ) 0a r   if ,r  put  

 
2

2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r 

 
   

  
And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . We 

claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
 



 

  







    

 

The constants are so adjusted in (6) that (8) 

holds.  (Compute the integral in polar coordinates), 

(9) holds simply because A  has compact support. 

To compute (10), express A  in polar coordinates, 

and note that 0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since f  and A  have compact support, so does  . 

Since  

 

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
 

And ( ) 0A    if ,    (3) follows 

from (8). The difference quotients of A  converge 

boundedly to the corresponding partial derivatives, 

since 
' 2( )cA C R . Hence the last expression in (11) 

may be differentiated under the integral sign, and we 

obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) 

and (13) give (4). If we write (13) with x  and 

y  in place of ,  we see that   has continuous 

partial derivatives, if we can show that 0   in 

,G  where G  is the set of all z K  whose distance 

from the complement of K  exceeds .  We shall do 

this by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior of 

K  for all   with .   The mean value 

property for harmonic functions therefore gives, by 

the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 

  

For all z G  , we have now proved (3), 

(4), and (5) The definition of X  shows that X is 

compact and that X  can be covered by finitely 

many open discs 1,..., ,nD D  of radius 2 ,  whose 

centers are not in .K  Since 
2S K  is connected, 

the center of each jD  can be joined to   by a 

polygonal path in 
2S K . It follows that each jD

contains a compact connected set ,jE  of diameter at 

least 2 ,  so that 
2

jS E  is connected and so that 

.jK E     with 2r  . There are functions 
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2( )j jg H S E   and constants jb  so that the 

inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z    

  

And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 





  

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


  

  

(18) shows that F  is a finite linear combination of 

the functions jg  and 
2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



  

Observe that the inequalities (16) and (17) are valid 

with R  in place of jQ  if X   and .z  

Now fix  .z   , put ,iz e     and estimate 

the integrand in (22) by (16) if 4 ,   by (17) if 

4 .    The integral in (22) is then seen to be less 

than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  

2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

  

Since ( ), ,F H K    and 
2S K  is 

connected, Runge’s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 

Hence (3) and (25) show that (2) can be satisfied. 

This completes the proof. 

 

Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of all 

continuously differentiable functions in the plane, 

with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

Then the following ―Cauchy formula‖ holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green’s theorem. 

However, here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  

The right side of (2) is therefore equal to the limit, as 

0,   of 

 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

 

 

 

For each 0,r   is periodic in ,  with 

period 2 . The integral of /    is therefore 0, 

and (4) becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
  

As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  

 

If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 
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,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


  

and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a   , is an 

ideal. The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one 

to one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 

 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write |X A   for the ideal corresponding to 

A  (subspace generated by the ,X a   ). 

 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S    is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is 

divisible by one of the , |X S    

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A   is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as 

the ideal generated by the leading monomials (rather 

than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in 

 1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g  where 1,..., sg g are any 

elements of a  whose leading terms generate 

( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in it 

is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 

implies that every monomial occurring in r  is 

divisible by one in ( )iLT g . Thus 0r  , and 

1( ,..., )sg g g . 

 

DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, 

S is a standard basis if the leading term of every 

element of a is divisible by at least one of the 

leading terms of the ig . 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 

 

PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated 

by single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every 

polynomial f  in n  variables 1,... nX X  can be 

expressed uniquely as a polynomial in nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X   
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Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a     

  

r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in [ ]A X . The 

leading coefficients of the polynomials in a  form an 

ideal 
'a  in A ,  and since A  is Noetherian, 

'a will 

be finitely generated. Let 1,..., mg g  be elements of 

a  whose leading coefficients generate 
'a , and let 

r be the maximum degree of ig . Now let ,f a  

and suppose f  has degree s r , say, 

...sf aX   Then 
'a a  , and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let 

da  be the subset of A  consisting of 0 and the 

leading coefficients of all polynomials in a  of 

degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose 

leading coefficients generate da . Then the same 

argument as above shows that any polynomial df  in 

a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   of 

degree 1d  . On applying this remark repeatedly 

we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

 

 and so the polynomials 
01 0,,..., mg g  generate a   

 

One of the great successes of category 

theory in computer science has been the 

development of a ―unified theory‖ of the 

constructions underlying denotational semantics. In 

the untyped  -calculus,  any term may appear in 

the function position of an application. This means 

that a model D of the  -calculus must have the 

property that given a term t  whose interpretation is 

,d D  Also, the interpretation of a functional 

abstraction like x . x  is most conveniently defined 

as a function from Dto D  , which must then be 

regarded as an element of D. Let 

 : D D D    be the function that picks out 

elements of D to  represent elements of  D D  

and  : D D D    be the function that maps 

elements of D to functions of D.  Since ( )f  is 

intended to represent the function f  as an element 

of D, it makes sense to require that ( ( )) ,f f    

that is, 
 D D

o id 


   Furthermore, we often 

want to view every element of D as representing 

some function from D to D and require that elements 

representing the same function be equal – that is   

( ( ))

D

d d

or

o id

 

 





  

The latter condition is called extensionality. 

These conditions together imply that and   are 

inverses--- that is, D is isomorphic to the space of 

functions from D to D  that can be the interpretations 

of functional abstractions:  D D D   .Let us 

suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D    where A is some 

predetermined domain containing interpretations for 

elements of C.  Each element of D corresponds to 

either an element of A or an element of  ,D D  

with a tag. This equation can be solved by finding 

least fixed points of the function 

 ( )F X A X X    from domains to domains 

--- that is, finding domains X  such that 

 ,X A X X    and such that for any domain 

Y also satisfying this equation, there is an embedding 

of X to Y  --- a pair of maps 

R

f

f

X Y   

Such that   
R

X

R

Y

f o f id

f o f id
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Where f g  means that 

f approximates g  in some ordering representing 

their information content. The key shift of 

perspective from the domain-theoretic to the more 

general category-theoretic approach lies in 

considering F not as a function on domains, but as a 

functor on a category of domains. Instead of a least 

fixed point of the function, F. 

 

Definition 1.3: Let K be a category and 

:F K K  as a functor. A fixed point of F is a 

pair (A,a), where A is a K-object and 

: ( )a F A A  is an isomorphism. A prefixed 

point of F is a pair (A,a), where A is a K-object and 

a is any arrow from F(A) to A 

Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       

Recall that a cocone   of an chain    is a K-

object X and a collection of K –arrows 

 : | 0i iD X i    such that 1i i io f    for 

all 0i  . We sometimes write : X   as a 

reminder of the arrangement of ' s  components 

Similarly, a colimit : X  is a cocone with 

the property that if 
': X   is also a cocone 

then there exists a unique mediating arrow 
':k X X  such that for all 0,, i ii v k o  . 

Colimits of chains  are sometimes referred to 

as limco its . Dually, an 
op chain   in K is 

a diagram of the following form: 
1 2

1 2 .....
of f f

oD D D    
 
A cone 

: X   of an 
op chain    is a K-object X 

and a collection of K-arrows  : | 0i iD i   such 

that for all 10, i i ii f o    . An  
op -limit of 

an 
op chain     is a cone : X   with 

the property that if 
': X  is also a cone, then 

there exists a unique mediating arrow 
':k X X  

such that for all 0, i ii o k    . We write k  

(or just  ) for the distinguish initial object of K, 

when it has one, and A  for the unique arrow 

from   to each K-object A. It is also convenient to 

write 
1 2

1 2 .....
f f

D D    to denote all of   

except oD  and 0f . By analogy, 


 is  | 1i i  . 

For the images of   and   under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of F 

– that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. With these definitions we can state that every 

monitonic function on a complete lattice has a least 

fixed point: 

 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 
2

! ( ) (! ( )) (! ( ))
2

( ) ( ) .........
F F F F F

F F
     

        

If both : D 
 
and ( ) : ( ) ( )F F F D  

are colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
 
 is the mediating arrow from 

( )F 
 
 to the cocone 



 
 

 

Theorem 1.4 Let a DAG G given in which 

each node is a random variable, and let a discrete 

conditional probability distribution of each node 

given values of its parents in G be specified. Then 

the product of these conditional distributions yields a 

joint probability distribution P of the variables, and 

(G,P) satisfies the Markov condition. 

 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

Where iPA is the set of parents of iX of in G and 

( | )i iP x pa is the specified conditional probability 

distribution. First we show this does indeed yield a 

joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x   for all values of the 

variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the 

conditional distributions they notationally represent 

in the joint distribution. Finally, we show the 

Markov condition is satisfied. To do this, we need 

show for 1 k n   that  
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whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of 

in G. Since k kPA ND , we need only show 

( | ) ( | )k k k kP x nd P x pa . First for a given k , 

order the nodes so that all and only nondescendents 

of kX precede kX in the ordering. Note that this 

ordering depends on k , whereas the ordering in the 

first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X



 





 

follows 
kd    

 

 

We define the 
thm cyclotomic field to be the field 

  / ( ( ))mQ x x
 
Where ( )m x is the 

thm

cyclotomic polynomial.   / ( ( ))mQ x x  ( )m x  

has degree ( )m over Q since ( )m x has degree 

( )m . The roots of ( )m x  are just the primitive 

thm roots of unity, so the complex embeddings of 

  / ( ( ))mQ x x are simply the ( )m maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it follows 

that ( ) ( )k

m mQ Q  for all k relatively prime to 

m . In particular, the images of the i coincide, so 

  / ( ( ))mQ x x is Galois over Q . This means that 

we can write ( )mQ  for   / ( ( ))mQ x x without 

much fear of ambiguity; we will do so from now on, 

the identification being .m x  One advantage of 

this is that one can easily talk about cyclotomic 

fields being extensions of one another,or 

intersections or compositums; all of these things 

take place considering them as subfield of .C  We 

now investigate some basic properties of cyclotomic 

fields. The first issue is whether or not they are all 

distinct; to determine this, we need to know which 

roots of unity lie in ( )mQ  .Note, for example, that 

if m is odd, then m is a 2 thm root of unity. We 

will show that this is the only way in which one can 

obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ 

so the result is clear 

 

LEMMA 1.6   If m and n are relatively prime, then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that ( , )m nQ  

has degree ( )mn
 
over  Q , so we must have 

   ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2 For any m and n  

 

 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 

 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 
 

Issn 2250-3005(online)                                                     November| 2012            Page 534 

 
      

 

PROOF.    Write 1 1

1 1...... ....k ke fe f

k km p p and p p

where the ip are distinct primes. (We allow 

i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 

An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 

Mutual information measures the information 

transferred when ix  is sent and iy  is received, and 

is defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

In a noise-free channel, each iy is uniquely 

connected to the corresponding ix  , and so they 

constitute an input –output pair ( , )i ix y  for which 

 2

1
( ) 1 ( , ) log

( )
i

i j
j i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the 

self-information that corresponds to the input ix
 
In a 

very noisy channel, the output iy and input ix would 

be completely uncorrelated, and so 

( ) ( )i
i

j

x
P P x

y
  and also ( , ) 0;i jI x y  that is, 

there is no transference of information. In general, a 

given channel will operate between these two 

extremes. The mutual information is defined 

between the input and the output of a given channel. 

An average of the calculation of the mutual 

information for all input-output pairs of a given 

channel is the average mutual information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 

 bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful 

for modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 
2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  

is usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in 

the noisy channel, and is a function of the backward 

conditional probability. The observation of an output 

symbol jy provides ( ) ( )XH X H
Y

  bits of 

information. This difference is the mutual 

information of the channel. Mutual Information: 

Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

The mutual information fits the condition 

( , ) ( , )I X Y I Y X  
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And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y

  

This last entropy is usually called the noise entropy. 

Thus, the information transferred through the 

channel is the difference between the output entropy 

and the noise entropy. Alternatively, it can be said 

that the channel mutual information is the difference 

between the number of bits needed for determining a 

given input symbol before knowing the 

corresponding output symbol, and the number of bits 

needed for determining a given input symbol after 

knowing the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

   

As the channel mutual information expression is a 

difference between two quantities, it seems that this 

parameter can adopt negative values. However, and 

is spite of the fact that for some , ( / )j jy H X y  

can be larger than ( )H X , this is not possible for 

the average value calculated over all the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 

Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

The above expression can be applied due to 

the factor ( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity iQ , 

which in this expression is a dummy variable that 

fits the condition 1ii
Q  . It can be concluded 

that the average mutual information is a non-

negative number. It can also be equal to zero, when 

the input and the output are independent of each 

other. A related entropy called the joint entropy is 

defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 

Theorem 1.5: Entropies of the binary erasure 

channel (BEC) The BEC is defined with an alphabet 

of two inputs and three outputs, with symbol 

probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the state

s , let n be a fixed positive integer, and ( )p x an 

arbitrary probability density function on Euclidean 

n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

Then for each positive integer u , there is a code 

( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F     

 

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 
 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

Set ( )

1

1
k

k

k ix i
B A B




  , If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets , 1, 2,..., ,iB i u
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form the desired code. Thus assume that the process 

terminates after t  steps. (Conceivably 0t  ). We 

will show t u  by showing that  

   ( , )ate P X Y A P X F      . We 

proceed as follows.  

Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 

C. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in A 

is a subset such that a is subgroup of A regarded as a 

group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is 

easy to verify that this is in fact an ideal, and that it 

consist of all finite sums of the form 
i i

rs  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by 

a b . The ideal generated by   | ,ab a a b b 

is denoted by ab . Note that ab a b  . Clearly 

ab consists of all finite sums 
i i

a b  with ia a  

and ib b , and if 1( ,..., )ma a a  and 

1( ,..., )nb b b , then 

1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an ideal 

of A. The set of cosets of a in A forms a ring /A a
, and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b   is a one to 

one correspondence between the ideals of /A a  and 

the ideals of A  containing a An ideal p  if prime if 

p A  and ab p a p    or b p . Thus p  

is prime if and only if /A p  is nonzero and has the 

property that  0, 0 0,ab b a      i.e., 

/A p is an integral domain. An ideal m  is 

maximal if |m A  and there does not exist an ideal 

n  contained strictly between m and A . Thus m is 

maximal if and only if /A m  has no proper nonzero 

ideals, and so is a field. Note that m  maximal   

m prime. The ideals of A B  are all of the form 

a b , with a  and b  ideals in A  and B . To see 

this, note that if c  is an ideal in  A B  and 

( , )a b c , then ( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 

Let A  be a ring. An A -algebra is a ring B  together 

with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , i.e., 

such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring 

homomorphism A B  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let 

A be a k -algebra. If 1 0  in A , then the map 

k A  is injective, we can identify k with its 

image, i.e., we can regard k as a subring of A  . If 

1=0 in a ring R, the R is the zero ring, i.e.,  0R 

. Polynomial rings.  Let  k  be a field. A monomial 

in 1,..., nX X  is an expression of the form 

1

1 ... ,naa

n jX X a N  . The total degree of the 

monomial is 
ia . We sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. 

The elements of the 

polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X  is irreducible if it is 

nonconstant and has only the obvious factorizations, 

a A



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 
 

Issn 2250-3005(online)                                                     November| 2012            Page 537 

 
      

 

i.e., f gh g   or h  is constant. Division in 

 k X . The division algorithm allows us to divide a 

nonzero polynomial into another: let f  and g  be 

polynomials in  k X with 0;g   then there exist 

unique polynomials  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding whether 

( )f g , namely, find r and check whether it is 

zero. Moreover, the Euclidean algorithm allows to 

pass from finite set of generators for an ideal in 

 k X to a single generator by successively 

replacing each pair of generators with their greatest 

common divisor. 

 

 (Pure) lexicographic ordering (lex). Here 

monomials are ordered by lexicographic(dictionary) 

order. More precisely, let 1( ,... )na a   and 

1( ,... )nb b   be two elements of 
n ; then  

   and  X X  (lexicographic ordering) if, 

in the vector difference    , the left most 

nonzero entry is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn’t quite how the dictionary would order them: 

it would put XXXYYZZZZ  after XXXYYZ . 

Graded reverse lexicographic order (grevlex). Here 

monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

   if 
i ia b  , or 

i ia b   and in 

   the right most nonzero entry is negative. For 

example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on  1,... nk X X  . Fix an ordering on 

the monomials in  1,... nk X X . Then we can write 

an element f  of  1,... nk X X  in a canonical 

fashion, by re-ordering its elements in decreasing 

order. For example, we would write 
2 2 3 2 24 4 5 7f XY Z Z X X Z   

  
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    
  

or 
2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 0 ;  

 The leading coefficient of 
f

to be LC(
f

)=
0

a ; 

 The leading monomial of  
f

to be LM(
f

) = 

0X


; 

 The leading term of 
f

to be LT(
f

) = 0

0
a X



   

For the polynomial 
24 ...,f XY Z   the 

multidegree is (1,2,1), the leading coefficient is 4, 

the leading monomial is 
2XY Z , and the leading 

term is  
24XY Z . The division algorithm in 

 1,... nk X X . Fix a monomial ordering in 
2 . 

Suppose given a polynomial f  and an ordered set 

1( ,... )sg g  of polynomials; the division algorithm 

then constructs polynomials 1,... sa a  and r   such 

that 1 1 ... s sf a g a g r      Where either 

0r   or no monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 

1( ) | ( )LT g LT f , divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , and 

so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 1 

with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, the 

ideal 
2 3( )a Y X   contains 

2 3Y X but not 

2Y  or 
3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  
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PROPOSITION 1.3. Let a be a monomial ideal, and 

let  |A X a  . Then A satisfies the 

condition , ( )nA           

And a  is the k -subspace of  1,..., nk X X  

generated by the ,X A   . Conversely, of A  is 

a subset of 
n  satisfying   , then the k-subspace  

a  of  1,..., nk X X  generated by  |X A 

is a monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

   

If a permutation is chosen uniformly and at random 

from the !n  possible permutations in ,nS  then the 

counts 
( )n

jC  of cycles of length j  are dependent 

random variables. The joint distribution of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy’s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
    

for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

Proof.   This can be established directly by 

exploiting cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    when ,j jc m  which 

occurs between the ingredients in Cauchy’s formula 

and the falling factorials in the moments. Write 

jm jm . Then, with the first sum indexed by 

1( ,... ) n

nc c c    and the last sum indexed by  

1( ,..., ) n

nd d d    via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 

0jd   for ,j n m   and a random permutation 

in n mS   must have some cycle structure 

1( ,..., )n md d  . The moments of 
( )n

jC   follow 

immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

Where the jZ  are independent Poisson-distribution 

random variables that satisfy ( ) 1/jE Z j   

 

The marginal distribution of cycle counts provides 

a formula for the joint distribution of the cycle 

counts ,n

jC  we find the distribution of 
n

jC  using a 

combinatorial approach combined with the 

inclusion-exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the ―property‖ G  of having ;  that is,  

G is the set of permutations nS   such that   

is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  

not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term ,rS  which is the sum of the 

probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 

are two cases to consider. If the r properties are 

indexed by r cycles having no elements in common, 

then the intersection specifies how rj  elements are 
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moved by the permutation, and there are 

( )!1( )n rj rj n   permutations in the intersection. 

There are 
[ ] / ( !)rj rn j r  such intersections. For the 

other case, some two distinct properties name some 

element in common, so no permutation can have 

both these properties, and the r -fold intersection is 

empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for the 

number of permutations having exactly k  properties 

is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

Which simplifies to (1.1) Returning to the original 

hat-check problem, we substitute j=1 in (1.1) to 

obtain the distribution of the number of fixed points 

of a random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

  

The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for 

each fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with 

mean 1/ ;j  we use the notation 
( )n

j d jC Z  

where (1/ )j oZ P j   to describe this. Infact, the 

limit random variables are independent. 

 

Theorem 1.6   The process of cycle counts 

converges in distribution to a Poisson process of   

with intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  

Where the , 1, 2,...,jZ j   are independent 

Poisson-distributed random variables with  

1
( )jE Z

j
   

Proof.  To establish the converges in distribution one 

shows that for each fixed 1,b   as ,n   

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

The proof of Theorem says nothing about the rate of 

convergence. Elementary analysis can be used to 

estimate this rate when 1b  . Using properties of 

alternating series with decreasing terms, for 

0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

 

It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  


  

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance 

between the distribution 
( )

1( )nL C  of 
( )

1

nC  and the 

distribution 1( )L Z  of 1Z
 

 

Establish the asymptotics of 
( )( )n

nA C     under 

conditions 0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 
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'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



   

and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



  

Where 
 
'

1,2,7
( )n  refers to the quantity derived 

from 
'Z . It thus follows that 

( ) (1 )[ ( )]n d

nP A C Kn    for a constant K , 

depending on Z  and the 
'

ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  and 

01( )B  are satisfied and if 
'

( )g

i O i    from some 

' 0,g   since, under these circumstances, both 

 
1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to zero as 

.n   In particular, for polynomials and square 

free polynomials, the relative error in this asymptotic 

approximation is of order 
1n

 if 
' 1.g    

 

For 0 /8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where 
 7,7

( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n





 

  
 

 



 

  

Suppressing the argument Z  from now on, we thus 

obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0

0 0

[ ]
[ ] 1

[ ]

bn
b

r n

P T n r
P T r

P T n 

  
   

 
  

[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n

b
b

r n r b

P T r
P T r

P T n 


  


   

0

0

[ ]( [ ] [ ]
n

b bn bn

s

P T s P T n s P T n r
 

 
       
 


 
[ /2]

0 0

/2 0

[ ] [ ]
n

b b

r n r

P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET
the third is 

bound by 

 

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P





 
 


  

 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n

b b

r s

b

n
n n P T r P T s r s

P

n ET

P n












 

 



  



 

  

Hence we may take 

 

 

 

10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P
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Required order under Conditions 0 1( ), ( )A D  and 

11( ),B  if ( ) .S    If not, 
   10.8

n
 can be 

replaced by 
   10.11

n
in the above, which has the 

required order, without the restriction on the ir  

implied by ( )S   . Examining the Conditions  

0 1( ), ( )A D  and 11( ),B it is perhaps surprising to 

find that 11( )B  is required instead of just 01( );B  

that is, that we should need 1

2
( )

a

ill
l O i 


   to 

hold for some 1 1a  . A first observation is that a 

similar problem arises with the rate of decay of 1i  

as well. For this reason, 1n  is replaced by 1n


. This 

makes it possible to replace condition 1( )A  by the 

weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for 
   7,7

,n b  to be 

of order ( / );O b n   the decay rate requirement of 

order 
1i  

 is shifted from 1i  itself to its first 

difference. This is needed to obtain the right 

approximation error for the random mappings 

example. However, since all the classical 

applications make far more stringent assumptions 

about the 1, 2,i l   than are made in 11( )B . The 

critical point of the proof is seen where the initial 

estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far 

tail element from 1n


 of the form 1 1( ) ( ),n u n   

which is only small if 1 1,a   being otherwise of 

order 11( )aO n  
 for any 0,   since 2 1a   is 

in any case assumed. For / 2,s n  this gives rise 

to a contribution of order  11( )aO n   
 in the 

estimate of the difference 

[ ] [ 1],bn bnP T s P T s     which, in the 

remainder of the proof, is translated into a 

contribution of order 11( )aO tn   
for differences 

of the form [ ] [ 1],bn bnP T s P T s     finally 

leading to a contribution of order 1abn  
 for any 

0   in 
 7.7

( , ).n b  Some improvement would 

seem to be possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of 

the form [ ] [ ]bn bnP T s P T s t     can be 

directly estimated, at a cost of only a single 

contribution of the form 1 1( ) ( ).n u n   Then, 

iterating the cycle, in which one estimate of a 

difference in point probabilities is improved to an 

estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        

 for any 0   could perhaps be attained, leading to 

a final error estimate in order  11( )aO bn n    for 

any 0  , to replace 
 7.7

( , ).n b  This would be 

of the ideal order ( / )O b n for large enough ,b  but 

would still be coarser for small .b   

With b and n  as in the previous section, we wish to 

show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  

Where 
 

121 1

7.8
( , ) ( [ ])n b O n b n b n        for 

any 0   under Conditions 0 1( ), ( )A D  and 

12( ),B with 12 . The proof uses sharper estimates. 

As before, we begin with the formula  

 

0

0 0

( ( [1, ]), ( [1, ]))

[ ]
[ ] 1

[ ]

TV

bn
b

r n

d L C b L Z b

P T n r
P T r

P T n 

  
   

 


 

  

Now we observe that  

 

[ /2]

0
0
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0

[ /2] 1

2 2

0 0 0
/2

0

10.5(2)2 2

0

[ ] [ ]
[ ] 1

[ ] [ ]

[ ]( [ ] [ ])

4 ( max [ ]) / [ ]

[ / 2]

3 ( / 2, )
8 , (1.1)

[0,1]

n

bn b
b

r rn n

n

b bn bn

s n

b b n
n s n

b

b

P T n r P T r
P T r

P T n P T n

P T s P T n s P T n r

n ET P T s P T n

P T n

n b
n ET
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We have   



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 
 

Issn 2250-3005(online)                                                     November| 2012            Page 542 

 
      

 

     

0[ /2]

0

0

[ /2]

0

0

[ /2]

0 0

0

0 02
0 00

1

010.14 10.8

[ ]

[ ]

( [ ]( [ ] [ ]

( )(1 )
[ ] [ ] )

1

1
[ ] [ ]

[ ]

( , ) 2( ) 1 4 ( )

6

bn

n

r

n

b bn bn

s

n

b n

s

b b

r sn
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P T n

P T s P T n s P T n r

s r
P T s P T n

n

P T r P T s s r
n P T n
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0 10.14

2 2

0 0 10.8

( , )
[0,1]

4 1 4 ( )

3
( ) , (1.2)

[0,1]

b

b

ET n b
nP

n ET K n

nP








  



   

  

 

The approximation in (1.2) is further simplified by 

noting that  

[ /2] [ /2]

0 0

0 0

( )(1 )
[ ] [ ]

1

n n

b b

r s

s r
P T r P T s

n



 

  
  

 
 

 

0

0

( )(1 )
[ ]

1
b

s

s r
P T s

n



 

  
  

 
  

 

[ /2]

0 0

0 [ /2]

1 2 2

0 0 0

( ) 1
[ ] [ ]

1

1 ( 1 / 2 ) 2 1 , (1.3)

n

b b

r s n

b b b

s r
P T r P T s

n

n E T T n n ET



 

 

 

 
  



    

 

 

 

and then by observing that  

 

0 0

[ /2] 0

1

0 0 0 0

2 2

0

( )(1 )
[ ] [ ]

1

1 ( [ / 2] ( 1 / 2 ))

4 1 (1.4)

b b

r n s

b b b b

b

s r
P T r P T s

n

n ET P T n E T T n

n ET







 





  
  

 

    

 

 

 

 

Combining the contributions of (1.2) –(1.3), we thus find 

tha

 

    

 

1

0 0

0 0

7.8

1

010.5(2) 10.14

10.82 2

0

( ( [1, ]), ( [1, ]))

( 1) [ ] [ ]( )(1 )

( , )

3
( / 2, ) 2 ( , )

[0,1]

24 1 ( )
2 4 3 1 (1.5)

[0,1]
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r s

b

b

d L C b L Z b

n P T r P T s s r

n b

n b n ET n b
P

n
n ET
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The quantity 
 7.8

( , )n b is seen to be of the order 

claimed under Conditions 0 1( ), ( )A D  and 12( )B , 

provided that ( ) ;S     this supplementary 

condition can be removed if 
 10.8

( )n
 is replaced 

by 
 10.11

( )n
   in the definition of 

 7.8
( , )n b , has 

the required order without the restriction on the ir  

implied by assuming that ( ) .S   Finally, a 

direct calculation now shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
1

2

b b

r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 

Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The vector 

r such as in the example is called the position vector 

or the radius vector of the point x  . (Or, in greater 

detail: r  is the radius-vector of x  w.r.t an origin 

O). Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the 

―standard origin‖.   Let us summarize. We have 

considered 
n  and interpreted its elements in two 

ways: as points and as vectors. Hence we may say 

that we leading with the two copies of  :n  
n = 

{points},      
n = {vectors}  

Operations with vectors: multiplication by a 

number, addition. Operations with points and 

vectors: adding a vector to a point (giving a point), 

subtracting two points (giving a vector). 
n treated 

in this way is called an n-dimensional affine space. 

(An ―abstract‖ affine space is a pair of sets , the set 

of points and the set of vectors so that the operations 

as above are defined axiomatically). Notice that 

vectors in an affine space are also known as ―free 
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vectors‖. Intuitively, they are not fixed at points and 

―float freely‖ in space. From 
n considered as an 

affine space we can precede in two opposite 

directions: 
n  as an Euclidean space  

n as an 

affine space  
n as a manifold.Going to the left 

means introducing some extra structure which will 

make the geometry richer. Going to the right means 

forgetting about part of the affine structure; going 

further in this direction will lead us to the so-called 

―smooth (or differentiable) manifolds‖. The theory 

of differential forms does not require any extra 

geometry. So our natural direction is to the right. 

The Euclidean structure, however, is useful for 

examples and applications. So let us say a few words 

about it: 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can 

consider lines and planes, and quadric surfaces like 

an ellipsoid. However, we cannot discuss such 

things as ―lengths‖, ―angles‖ or ―areas‖ and 

―volumes‖. To be able to do so, we have to introduce 

some more definitions, making 
n a Euclidean 

space. Namely, we define the length of a vector 
1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a     

After that we can also define distances between 

points as follows: 

( , ) : (2)d A B AB


  

One can check that the distance so defined possesses 

natural properties that we expect: is it always non-

negative and equals zero only for coinciding points; 

the distance from A to B is the same as that from B 

to A (symmetry); also, for three points, A, B and C, 

we have ( , ) ( , ) ( , )d A B d A C d C B   (the 

―triangle inequality‖). To define angles, we first 

introduce the scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also 

denote by dot: . ( , )a b a b , and hence is often 

referred to as the ―dot product‖ . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral multiple 

of 2  . For this definition to be consistent we have 

to ensure that the r.h.s. of (4) does not exceed 1 by 

the absolute value. This follows from the inequality 
2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three 

names are applied in different books). One of the 

ways of proving (5) is to consider the scalar square 

of the linear combination ,a tb  where t R . As  

( , ) 0a tb a tb    is a quadratic polynomial in t  

which is never negative, its discriminant must be 

less or equal zero. Writing this explicitly yields (5). 

The triangle inequality for distances also follows 

from the inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  

is simply 
ih .From these examples follows that we 

can rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  

which is the standard form. Once again: the partial 

derivatives in (1) are just the coefficients (depending 

on x ); 
1 2, ,...dx dx  are linear functions giving on 

an arbitrary vector h  its coordinates 
1 2, ,...,h h  

respectively. Hence 

  

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 0

nx   at 

0t t  and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t  , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   when

0h  . Combining it together, for the increment 

of ( ( ))f x t   we obtain 
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0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

For a certain ( )t   such that ( ) 0t   when 

0t   (we used the linearity of 0( )df x ). By the 

definition, this means that the derivative of 

( ( ))f x t  at 0t t  is exactly 0( )( )df x  . The 

statement of the theorem can be expressed by a 

simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  

 

To calculate the value Of df  at a point 0x  on a 

given vector   one can take an arbitrary curve 

passing Through 0x  at 0t  with   as the velocity 

vector at 0t and calculate the usual derivative of 

( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions , :f g U   ,

,nU     

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and an 

arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the 

usual derivative Now, almost without change the 

theory generalizes to functions taking values in  
m  

instead of  . The only difference is that now the 

differential of a map : mF U    at a point x  

will be a linear function taking vectors in 
n  to 

vectors in 
m (instead of  ) . For an arbitrary 

vector | ,nh    

 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  

 

In this matrix notation we have to write vectors as 

vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t         

Where ( ) 0t    when 0t  . By the 

definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h      

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a point 

can be viewed as the velocity vector of some curve 

passing through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 
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Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the 

differential .Consider a curve ( )x t  in 
n  with the 

velocity vector 
.

x . Basically, we need to know to 

which vector in  
p it is taken by ( )d GoF . the 

curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the same 

theorem, it equals the image under dG  of the 

Anycast Flow vector to the curve ( ( ))F x t  in 
m . 

Applying the theorem once again, we see that the 

velocity vector to the curve ( ( ))F x t is the image 

under dF of the vector 
.

( )x t . Hence 

. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary 

vector 
.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  

Then the chain rule can be expressed as follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

Where 
idF  are taken from (1). In other words, to 

get ( )d GoF  we have to substitute into (2) the 

expression for 
i idy dF  from (3). This can also 

be expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       

 

 

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

Where it is assumed that the dependence of 
my  

on 
nx  is given by the map F , the dependence 

of 
pz  on 

my  is given by the map ,G  

and the dependence of  
pz on 

nx is given 

by the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU   . 

Consider also another copy of 
n , denoted for 

distinction 
n

y , with the standard coordinates 

1( ... )ny y . A system of coordinates in the open 

domain U  is given by a map : ,F V U  where 

n

yV    is an open domain of 
n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

The coordinates of a point x U  in this system are 

the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y

  

Here the variables 
1( ..., )ny y  are the ―new‖ 

coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  
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( ) : ( ), ( ) (1)x t r r t t     

We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 

the maps  ( ( ), ( )), ( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   

   

Here 
.

r  and 
.

  are scalar coefficients depending on 

t , whence the partial derivatives ,x x
r 

 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the ―standard‖ coordinates: 
. . .

1 2x e x e y  . Consider the vectors   

,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

From where it follows that these vectors make a 

basis at all points except for the origin (where 0r 
). It is instructive to sketch a picture, drawing 

vectors corresponding to a point as starting from that 

point. Notice that  ,x x
r 

 
 

 are, respectively, 

the velocity vectors for the curves ( , )r x r    

0( )fixed   and 

0( , ) ( )x r r r fixed   . We can conclude 

that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if 

as a basis we take : , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

A characteristic feature of the basis ,re e  is that it 

is not ―constant‖ but depends on point. Vectors 

―stuck to points‖ when we consider curvilinear 

coordinates. 

 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In particular, 

the elements of the basis ii
xe

x



 (originally, a 

formal notation) can be understood directly as the 

velocity vectors of the coordinate lines 

1( ,..., )i nx x x x   (all coordinates but 
ix  are 

fixed). Since we now know how to handle velocities 

in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt


  

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 0

nx   to vectors attached to 

the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  

In particular, for the differential of a function we 

always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a 

change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in 

the standard coordinates: 

 

A ydx xdy     In the polar coordinates we will 

have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in the 

polar coordinates. In particular, we see that this is 

again a 1-form, a linear combination of the 

differentials of coordinates with functions as 

coefficients. Secondly, in a more conceptual way, 

we can define a 1-form in a domain U  as a linear 

function on vectors at every point of U : 
1

1( ) ... , (1)n

n         
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If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path 

, the integral 



  does not change if we change 

parametrization of   provide the orientation 

remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 

 

 

Let p  be a rational prime and let ( ).pK    We 

write   for p  or this section. Recall that K  has 

degree ( ) 1p p    over .  We wish to show 

that  .KO    Note that   is a root of 1,px   

and thus is an algebraic integer; since K  is a ring 

we have that   .KO   We give a proof without 

assuming unique factorization of ideals. We begin 

with some norm and trace computations. Let j  be 

an integer. If j is not divisible by ,p  then 
j  is a 

primitive 
thp  root of unity, and thus its conjugates 

are 
2 1, ,..., .p   

 Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p

K pTr            

  

If p  does divide ,j  then 1,j   so it has only the 

one conjugate 1, and  / ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

We also need to compute the norm of 1  . For 

this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ),

this shows that  / (1 )KN p   The key result 

for determining the ring of integers KO  is the 

following. 

 

LEMMA 1.9 

  (1 ) KO p      

Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose 

now that the inclusion is strict. Since 

(1 ) KO  is an ideal of   containing p  

and p is a maximal ideal of  , we must have  

(1 ) KO   
 
Thus we can write 

 1 (1 )     

For some .KO   That is, 1   is a unit in .KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have  

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

Where the i  are the complex embeddings of K  

(which we are really viewing as automorphisms of 

K ) with the usual ordering.  Furthermore, 1
j  is 

a multiple of 1   in KO  for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number and 

let | ( )pK    be the 
thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 
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2

0 1 2... p

pa a a   

      With .ia   

Then 

 

2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next consider 

the algebraic integer  
1 3

0 1 2 2( ) ... ;p

pa a a a    

      This is 

an algebraic integer since 
1 1p    is. The same 

argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 

  

Example 1.4   Let K   , then the local ring ( )p  

is simply the subring of   of rational numbers with 

denominator relatively prime to p . Note that this 

ring   ( )p is not the ring p of p -adic integers; to 

get  p one must complete ( )p . The usefulness of 

,K pO  comes from the fact that it has a particularly 

simple ideal structure. Let a be any proper ideal of 

,K pO  and consider the ideal Ka O  of .KO  We 

claim that ,( ) ;K K pa a O O     That is, that a  is 

generated by the elements of a  in .Ka O  It is 

clear from the definition of an ideal that 

,( ) .K K pa a O O   To prove the other inclusion, 

let   be any element of a . Then we can write 

/    where KO   and .p   In 

particular, a   (since / a    and a  is an 

ideal), so KO   and .p   so .Ka O    

Since ,1/ ,K pO   this implies that 

,/ ( ) ,K K pa O O      as claimed.We can 

use this fact to determine all of the ideals of , .K pO  

Let a  be any ideal of ,K pO and consider the ideal 

factorization of Ka O in .KO  write it as 

n

Ka O p b   For some n  and some ideal ,b  

relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  
, , ,( ) n n

K K p K p K pa a O O p bO p O      

Since , .K pbO  Thus every ideal of ,K pO  has the 

form 
,

n

K pp O  for some ;n  it follows immediately 

that ,K pO is noetherian. It is also now clear that 

,

n

K pp O is the unique non-zero prime ideal in ,K pO

. Furthermore, the inclusion , ,/K K p K pO O pO  

Since , ,K p KpO O p   this map is also 

surjection, since the residue class of ,/ K pO    

(with KO   and p  ) is the image of 
1 

 

in / ,K pO  which makes sense since   is invertible 

in / .K pO  Thus the map is an isomorphism. In 

particular, it is now abundantly clear that every non-

zero prime ideal of ,K pO is maximal.  To 

show that ,K pO is a Dedekind domain, it remains to 

show that it is integrally closed in K . So let K   

be a root of a polynomial with coefficients in  

, ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x
 

 





    With i KO   and 

.i K pO   Set 0 1 1... .m      Multiplying by 

m  we find that   is the root of a monic 

polynomial with coefficients in .KO  Thus 

;KO   since ,p   we have 

,/ K pO    . Thus  ,K pO is integrally close 

in .K   

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free -

module of rank ,n    
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// ( )K K KO N O   Will have order 
/ ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     

This completes the proof.  In the general case, let L  

be the Galois closure of K  and set [ : ] .L K m   

 

D. PV Microgrid 

Currently the relatively low penetration 

levels of renewable systems cause few problems. As 

penetration becomes greater the availability of sun 

becomes a greater problem requiring central 

generation to provide the power backup. Such 

systems are intermittent and can cause similar 

stability problems found with intermittent loads such 

as rolling mills and arc furnaces. Central generation 

or DER units are required to smooth out power 

fluctuations from these renewable sources. In any 

case there is a need for reserves when there is no sun. 

An obvious solution includes DER units on the 

distribution system. Without storage and/or local 

generation there is a technical limit to the amount of 

PV generation on the distribution system. Systems 

with high levels of PV penetration need to be 

supplemented with local Bdispatchable[ resources 

such as storage and local generation to fill-in for 

temporary loss of solar energy. PV microgrids can be 

designed for high export of PV energy without the 

short-term problems associated with intermittent 

power fluctuations. The DER units in a PV microgrid 

can have multi-roles such as control of real and 

reactive power flow between the microgrid and 

distribution system, power fill-in when intermittent 

generation is not available and local load support 

during islanding. Typically a PV micorgrid has 

photovoltaic energy for export, local generation 

and/or storage. The generation and storage provide 

the fill-in energy required to smooth out or shape the 

power provided to the distribution system. The 

inverter based AC storage allows the generation to be 

connected directly to the microgrid without an 

inverter. If storage is not used the generation need the 

fast response provided through an inverter interface. 

Islanding a PV microgrid has special issues. For 

example a PV microgrid may have PV power levels 

greater than the loading when islanded. This requires 

either high storage capacity to absorb the extra 

energy or have methods of reducing the power output 

of the solar panel. The power vs. frequency droop 

controller provides an elegant method of backing off 

the solar output during low load islanding. An island 

with excess generation will experience an increase in 

frequency which autonomously reduces the output of 

generation, moves storage to a charging mode and 

smoothly backs off the PV output as necessary 

 

E. Customer Driven Microgrid 

Electric power microgrids are self-contained 

subsets of an area electric power system with access 

to distribution system assets for serving local loads 

using distributed energy sources that can function in 

one of two modes, viz., grid-tied and islanded [11], 

[13]. Microgrids are credited with supplying local 

loads with high reliability of supply and panoply of 

ancillary services including voltage and frequency 

regulation, on-demand power quality, and provision 

of reserves [11], [15], [16], [17]. In contemporary 

systems, electric power microgrids are classified as 

either utility microgrids, or industrial/commercial 

microgrids, or remote microgrids depending on 

ownership, service requirements, and types and 

ratings of load served [17]. Utility microgrids serve 

central urban downtown loads such as business 

districts; industrial microgrids serve large industrial 

loads with high power quality and reliability 

requirements; and remote microgrids serve loads in 

rural regions that may not be suitable for laying 

dedicated cables and feeders [11], [18]. A new 

paradigm of electric power microgrids known as the 

customer-driven microgrid is currently being 

investigated as a solution for introducing the 

advantages of microgrid deployments to the 

distribution customer. In this emerging paradigm, the 

customer (residential or commercial) possesses the 

key to the functionalities of the microgrid within 

economic, technical, and social constraints. In times 

when high penetration of renewables like 

photovoltaic installations is expected in the 

distribution realm [19], the customer-driven 

microgrid is projected to play a significant role in the 

management and utilization of electric energy at the 

distribution end. While the proliferation of renewable 

energy sources in the distribution side of the grid 

may occur in a disordered manner, the concept of 

customer-driven microgrid- governed by common 

rules for integration and engagement between the 

distribution utility and the customers- may help in 

reducing the impact of largely uncoordinated 

generation sources on the distribution end [11]. The 

customer-driven microgrid, like the other paradigms 

of microgrid, can work in one of two modes: grid-

tied or islanded. The difference between the 

customer-driven paradigm from the other microgrids 

is that the customer-driven microgrid mode of 

operation is decided based on a set of community 

rules that govern the functionalities of its 

components, much like the rules of a condominium 

or a home owners association in the US. In the grid-

tied mode, the customer-driven microgrid will 

participate as a single entity in its interactions with 

the grid while a central entity within the customer 

driven microgrid performs the functions of arbitration 

and generating reference points for the constituents 

loads and generation committed to scheduling. In the 

islanded mode, the central entity of the customer-

driven microgrid determines the optimum mix of 

loads and generation for maintaining a certain level 

of reliability within the microgrid and issues signals 

to the constituents to perform load shedding and/or 
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generation services. Those constituents unwilling to 

participate within the microgrid- in either mode- are 

removed from the purview of the central entity. Such 

distributed generation sources and their loads can 

interact independently with the grid or serve their 

own electrical demands in the grid isolated mode. 

Some of the aspects of the customer-driven microgrid 

include: pervasive installations of renewable energy 

sources with small ratings; schedulable loads; 

distributed control [20]; a secure communication 

network such as home area network enabled using 

smart meters [21]; advanced power electronic 

interfaces for efficient and seamless interconnection 

to and disconnection from the grid [22]; and an end-

user energy management scheme for economic 

incentives [23], [24]. Many of enabling technologies 

for the above mentioned attributes of a customer-

driven microgrid were presented in detail in a panel 

at the 2009 IEEE Power & Energy Society’s General 

Meeting in Calgary, Canada [11], [17], [20], [22], 

[23], [24]. An interesting component of the customer-

driven microgrid is distributed storage (DS). The 

following section describes the use of distributed 

storage and its applications in the microgrid milieu. 

 

F. Microgrid Controllers 

According to the selected architecture of 

MG and the communication network devices, the 

MG controllers can be defined as follows: the AP is 

placed at the MGCC, there is one ED in each LC and 

MC and, if necessary, these EDs could also act as 

REs. Microgrid Central Controller/Access Point The 

MGCC, as the most important device of the 

management system, incorporates the AP. Physically, 

in the proposed architecture, the MGCC is a 

microcontroller based system. It must process the 

information received via radio from LCs and MCs in 

order to calculate the power balance in the MG, and 

the measures of the PCC voltage to detect the 

islanding. Afterwards, the MGCC sends the 

commands to the corresponding LC or MC in order 

to connect/disconnect a load (according with the 

programmed priority) or to increase/decrease the 

generation. Fig. 4 shows the block diagram of the 

MGCC/AP set. 

 

G. Survival Topology Design for SMGN 

In any EPS, reliable service is the primary 

concern because electrical services are not tolerant to 

interruption. Reliability and survivability have been 

extensively studied in telecommunication networks; 

therefore, we first revisit the solutions that have been 

proposed for survivable design of telecommunication 

networks [10]. Survivability schemes can be grouped 

into two classes, proactive or reactive, where the 

former corresponds to protection and the latter to 

restoration. Protection stands for configuring the 

network beforehand in such a way that it can stay in 

working condition in case of a failure; in restoration, 

the network is restored after a failure. Restoration is 

not in the scope of our article, so we only focus on 

protection approaches in the backbone and metro-

access networks. Survivability for backbone 

networks can be realized in various ways, such as 

dedicated protection, shared protection, shared 

segment protection, and preconfigured protection 

cycles (p-cycles). In dedicated protection, a link 

disjoint backup path is designated to protect the 

working path. In the context of an SMGN, a failure 

will correspond to the case when the DERs of an 

SMG are not capable of supporting the load on the 

same SMG. Therefore, dedicated path protection 

corresponds to having fully charged batteries of 

capacities equal to the maximum load in each SMG. 

In practice, dedicated protection is not feasible since 

large-scale storage technologies are costly and 

occupy a large physical space. On the other hand, 

shared path protection reserves one link/node disjoint 

backup path for several working paths. Shared path 

protection corresponds to having an idle storage 

capacity that can accommodate the maximum load of 

the SMGs. This protection is not practical as well, 

since the need for capacity will correspond to the 

same timeframe in all SMGs (i.e., peak hours), 

whereas in telecom networks, having a large number 

of simultaneous failures is not common. In a shared 

segment protection scheme, the primary path is 

divided into a number of segments, and each segment 

is protected by a separate backup subpath. This 

approach suffers from the same problem as shared 

path protection. Furthermore, it reserves more backup 

resources than shared path protection does, and hence 

may lead to more blocking in a resource-constrained 

environment and under uncertainty of the future 

demands. P-cycles form a cycle over the underlying 

physical topology where oncycle and straddling 

spans of the working path are protected in different 

ways. The p-cycle approach appears promising for 

SMGNs; however, it introduces the scalability 

problem. In fact, most of the survivability schemes 

proposed for the backbone aim to protect the traffic 

against any failure between source and destination 

nodes. However, in the SMGN concept, a failure 

refers to insufficient energy generation. Hence, 

backbone survivability schemes are unlikely to form 

a basis for the reliable overlay topology design of 

SMGNs. Another survivability approach proposed 

for metro-access networks is based on forming 

survivable clusters of access networks [11]. In [11], 

the authors consider a number of fiberwireless (Fi-

Wi) access networks where each optical back-end 

segment consists of a passive optical network (PON) 

technology with a number of ONUs that are 

connected to an optical line terminal (OLT). The Fi-

Wi access networks are grouped into clusters in order 

to allow some of the lightly loaded OLTs to sleep and 

save power. The PON segments in each cluster are 

connected through fiber links forming a ring 

topology (i.e., survivable multiple disconnected 

rings). Developing an analogy between a single PON 
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segment in the Fi-Wi network and an SMG, this 

approach seems to be promising for SMGNs since it 

can provision renewable resources effectively, and 

hence is survivable. In the next section, we present 

our reliable overlay topology design approach for the 

SMGN which inherits the multiple disconnected ring 

concepts from [11]. 

 

H. A Reliable Overalay Topology Design for the 

SMGN 

The overlay topology of the SMGN can be 

represented as a dynamic graph, G(t) = {V, E(t)}, 

where V is the set of SMGs and E(t) is the set of 

logical links among SMGs. The number of SMGs do 

not vary within the timescale considered in this 

article and |V| = N. We assume that the overlay 

topology is recalculated in periodic cycles based on 

the predicted loads and generation. A link between 

two SMGs, (u, v) ∈ E(t), means that SMGs u and v 

can share the stored capacity on their storage banks. 

Once again, the storage banks denote the total 

distributed storage units within an SMG, and they are 

used to store the excess energy produced from 

renewable resources. Energy produced by non-

renewable generators (e.g. diesel generators, engine 

generators) is stored only for regulation purposes, 

and in negligibly small amounts. To design a reliable 

overlay topology for the SMGN, we propose to 

cluster the SMGs such that the total capacity of the 

storage banks in cluster i will be equal or larger than 

the total load: Ki=1 SBi where K ≤N. We assume 

the generation varies slightly since wind generation 

can be dominant during night and solar generation 

during the day, and we can assume that their total 

output, Gi, does not vary significantly. Load basically 

follows natural consumer activity: it increases in the 

downtown area during the day, and during evenings 

it increases in residential and campus areas. Since 

load varies in time, it will impact the formation of the 

clusters. Load of SMGi is denoted by Li(t). We 

consider a physical area of mXm where N SMGs 

operate, and the SMGs are divided into three classes 

based on the type of the area they cover: downtown, 

campus, and residential SMGs. The number of 

downtown, campus, and residential SMGs are 

denoted D, C, and R, respectively. Our clustering 

method consists of two steps. The first step 

formulates an integer linear programming (ILP) 

model in order to cluster the SMGs. The objective 

function of the optimization model is shown in Eq. 1. 

In the objective function j i denotes a binary 

variable, which is one if and only if the two SMGs, 

SMGi and SMGj are on the same cluster. Hence, the 

objective function aims to minimize the number of 

SMGs on each cluster. This corresponds to 

increasing the manageability of the clusters where the 

constraints of the ILP enforce that the members of 

the clusters are selected such that the renewable 

energy generation in one SMG is consumed in 

another SMG, and hence not wasted. (1) The ILP 

formulation starts with an overestimated number of 

clusters. It uses binary variables to denote whether 

SMGi is located on cluster r (r i ), whether two 

SMGs coexist in the same cluster, and whether two 

SMGs coexist in a specific cluster. First, for each 

SMG, the total unutilized energy on the cluster where 

the SMG is located is constrained to be larger than 

the usage of the corresponding SMGs. Hence, energy 

supply and survivability are guaranteed at the same 

time. Total unutilized energy denotes the difference 

between the total energy generated and consumed by 

the other SMGs in the same cluster. This constraint is 

formulated by Eq. 2. 
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