

Smart Microgrid

Akash K Singh, PhD

IBM Corporation Sacramento, USA

Abstract

Smart microgrids offer a new challenging domain for power theories and compensation techniques, because they include a variety of intermittent power sources, which can have dynamic impact on power flow, voltage When regulation, and distribution losses. operating in the islanded mode, low-voltage smart microgrids can also exhibit considerable variation of amplitude and frequency of the voltage supplied to the loads, thus affecting power quality and network stability. Due to limited power capability in smart microgrids, the voltage distortion can also get worse, affecting measurement accuracy, and possibly causing tripping of protections. In such context, a reconsideration of power theories is required, since they form the basis for supply and load characterization, and accountability. A revision of control techniques for harmonic and reactive compensators is also required, because they operate in a strongly interconnected environment and must perform cooperatively to face system dynamics, ensure power quality, and limit distribution losses. This paper shows that the conservative power theory provides a suitable background to cope with smart microgrids characterization needs, and a platform for the development of cooperative control techniques for distributed switching power processors and static reactive compensators.

Keywords- Advanced metering infrastructure (AMI), communication technologies, quality-ofservice (QoS), smart grid, standards

I. INTRODUCTION

SMART grids represent one of the grand challenges at planetary level. The infusion of information technology throughout the electric grid creates new capabilities, with potential impact on environment, science and technology, economics, and lifestyle. The term "smart grid" outlines the evolution of electrical grids and a change of paradigm in the electric market organization and management [30], [31]. In a global perspective, implementation of smart grids and microgrids on a large scale will result in dramatic improvement of electrical services and considerable market increase. Technically speaking, smart grids include a number of distributed energy resources and electronic power processors, which must be fully exploited to reduce carbon footprint, improve power quality, and

increase distribution efficiency [22], [32], [34]. The smart-grid paradigm is therefore different from the traditional one, based on the assumption of few power sources with large capacity and sinusoidal supply. Especially in smart microgrids (low-voltage smart grids with installed power not exceeding the megawatt range), energy sources can be small, distributed and interacting, and supply voltages can be asymmetrical and distorted. From the earlier considerations, it follows that facing the problems of smart grids, and in particular of smart microgrids, requires a revision of traditional power theories and a comprehensive approach to cooperative operation of distributed electronic power processors. This paper shows that the conservative power theory (CPT) offers a consistent framework to approach smart microgrid characterization and control problems. In particular, the influence of frequency variation and voltage distortion can be taken into account, and the load and supply responsibility for reactive power, asymmetry, and distortion can be analyzed, thus setting the basis for a revision for metering and billing procedures.

A. Theoritical Considerations

Dealing with the reactive power is a sensitive matter. The problem starts from the very beginning, the definitions. Here one realizes that definitions and their even the equivalent mathematical relations are suffering in the three phase circuit case. Even if the situation is pressing and some new authors [4], [5] are rediscovering old solutions of an another author [2], [3], the problem stands unsolved as the three phase apparent power is still smaller than the square radius of the quadratic sum of the active, reactive and nonactive (nonsinusoidal component) powers three phase components. Letting aside the above mentioned problem, from practical point of view the circulation of the reactive power in the MG is to be optimally solved, in order to prevent extra problems in the grid (transmission network). That especially due to the rather large amount of power electronics related to RES utilization. In the present approach we start with losses due the reactive power. In future works we will refine this initial model, after the experimental validation of the model presented in this paper, considering the nonsinusoidal power. In the paper we consider the network resistances only, as the reactive components of the cables in the low/medium voltage networks can be neglected [7]. In a less precise model, but accurate enough in MG case the voltage along the same line is considered to remain constant [7]. The optimal compensation of reactive power in a network, the MG in our case, is asked to solve the following problems:

🕼 IJCER

a. Establishing the total amount of reactive power to be compensated in efficient economical conditions;b. Optimal partitioning of the above amount in the network nodes.

From theoretical point of view, considering only the cable resistance R, the losses ΔP 1 are expressed by eq. (1)

II. THE MICROGRID SIMULATION SOFTWARE WITH OPTIMIZATION OF POWER LOSSES

In the paper [1] we have optimized the active current flow through the network resistors supplied by Renewable Sources RES. We have presented a mathematical model for the problem of finding the flow through resistors so that the total loss of power is minimal. This model is a convex optimization model that can be solved using an adaptation of the Klein's algorithm for minimum cost flow problem (linear case). The adapted algorithm is also presented in [1], too. In this paper we study the reactive current optimization problem. The problem also consists in finding the optimal current flow through resistors, but for the reactive current. But, before doing this it is necessary to decide where to put the condensers and how to distribute them. This was done using the conclusions e) and f) from chapter II. Even doing this it is difficult to optimize in practice the distribution of them (where to put more and where to put less). We have tested all these using an application written by us in Delphi. This application is an extended version to the reactive current of the application described in [1]. We started from placing the capacitors banks. So, the capacitors should be placed nearby the reactive inductive power sources and the best way to distribute them is by placing more condensers where there is more reactive currents to absorb. Moreover, using our application, before optimizing the reactive current flow through the network resistors, we optimize the distribution of K sources (capacitors) direct proportionally to the reactive current to be absorbed from the nearest neighbors. Now, we shall present our application. In this version of our application a new kind of node appears. The new node is representing the capacitors (K sources). Moreover, for each we must specify cos(fi) (Power Factor) for each generator and each load. The nodes are introduced and modified, according to the studied case, using the window from fig. 2:

1. If the node is set to be generator, then the value of flow produced by this node must be specified in the edit box below.

2. If the node is set to be load, then the value of flow consumed by this node must be specified in the edit box below.

3. If the node is set to be dual (generator or load), then the value of flow produced by this node and the value of the flow consumed by the node must be specified in the edit boxes below.

III. ANALYTICS IN SMART MICROGRIDS

The analytics discussed in this paper are classified by application. Analytics pertaining to smart microgrids are very often concerned with operational decision-making. Considerations in architecture of microgrids related to applications, ownership, benefits, operating modes, etc. may be incorporated in decision-making analysis. Decisions related to the type and location of the microsource (generation within the microgrid), the network configuration best suited to address specific needs, and optimum location of distribution assets such as cables, capacitor banks and energy storage elements may define the designs of microgrids. Decision making also plays an integral role in reequipping substations in light of the proliferation of microgrids - in essence, defining the location of intelligent controls in the microgrid. Yet another aspect of microgrids that require decision making is the economic benefits to the owners and users of the microgrids. The analytics discussed here will therefore very often involve decision-making.

A. Operations

In this section we discuss analytics that apply when there is no fault within the microgrid. It therefore includes both grid-connected operation as well as islanded operation; as long as the microgrid itself is healthy, its operation will be considered normal.

At the very least, the operation of a microgrid should satisfy (a) Kirchoff's laws, i.e., power flow conditions, and (b) operating rules, such as how to deal with situations where the capacity drops below the demand. There rules should include "community rules" that may be applicable, such as agreements between neighbors some of whom own generation while others do not. In some instances, load prioritization may involve decision-making; an example of analytics for accomplishing this is discussed below. In some instances, simple markets may exist within the community; such situations are also discussed below.

Considerable research has been conducted on load management in microgrids [9], [10]. Much of this work has focused on increasing or decreasing curtailable or deferrable load to keep up with varying generation in microgrids, particularly from renewable resources. Future deployment of "smart appliances" in "smart homes" will contribute to development of further analytics in load management. Analytics have also been used for load prioritization. In [11], the Analytic Hierarchy Process (AHP) [12] has been used for load prioritization. AHP uses pair-wise comparisons of all elements of a system arranged in a reciprocal matrix to determine relative priorities among all elements of that system, and has the advantage of being able to use subjective constraints.

🕼 IJCER

When a microgrid separates from the grid, it is no longer obligated to operate at grid frequency. In some instances, if both sources and loads fundamentally use dc, a microgrid can switch to dc operation under off-grid conditions. Alternatively, of conditions allow, it may be able to adjust its frequency so that transmission components operate at surge impedance. References [13]–[15] describe the analytics behind controlling such standalone systems.

IV. AN INTEGRATED FRAMEWORK FOR MG MANAGEMENT

The proposed framework for MG control. modeling, and monitoring is based on the SOA model, which is a component model that interrelates different functional units of an application, called services, through well-defined interfaces and contracts between services. The interface is defined in a neutral manner that should be independent of the hardware platform, the operating system, and the programming language that the service is implemented in. This allows services, built on a variety of such systems, to interact with each other in a uniform and universal manner. The main benefits of a SOA system are the improvement of interoperability and the integration of new and legacy applications, the ability to survive evolutionary changes in the structure, and implementation of the internals of each service. SOAs are not a new concept, but an alternative model to more traditional tightly coupled objectoriented models that have emerged in the past decades. Many technologies can be adopted to implement a SOA. Examples are the common object request broker architecture (CORBA), and messageoriented middleware systems, and more recently the standard web services technologies, which are emerging technologies able to ensure a high degree of integration among existing or newly created services exposed on the web. Web services extend the advantages of software components making it possible to employ an existing low-level middleware infrastructure based on web servers and HTTP protocol. A web service is a set of operations provided by some software applications. Such a service can easily be accessed through a welldefined interface independently from the service deployment details. In Fig. 1, the overall distributed meta-architecture for MG monitoring and control is shown. The core component of the meta-architecture is the MG engine which is responsible for the execution of MG control, modeling, and monitoring functions in a geographically distributed scenario. It includes high level components which are mainly the submission service, the operation service, and the notification service. The submission service is responsible for the handling of user submission requests and is designed to simplify the submission phase made by a nonexpert network operator. TheMG operation service is responsible for the MGcontrol and monitoring execution. Finally, the service is responsible for notification the asynchronous management of output data of an application able to notify specific events. A basic and fundamental component of the MG engine is the workflow enactor, which manages the execution of the MG service and adds some functionalities related to the specific monitoring application. Here the workflow enactor is traditionally described using its business logic description, and it is written in a certain workflow language. The web service definition language (WSDL) interfaces of the three kinds of web services defined above are the following:

1) GISinterfaceWS: for georeferential information acquisition;

2) DataAcquisitionWS for real-time data acquisition;3) eAssessmentWS: for MG generation/storage unit capability assessment;

Fig. 1. The overall web-services based architecture. Vaccaro et al.: An Integrated Framework for Smart Microgrids

4) ComputationalWS: to process the mathematical computations required by the MG control and monitoring functions;

5) DataStorageWS: related to the data storage functionalities. In the following text, the above web services will be briefly addressed.

A. GISinterfaceWS

The GISinterfaceWS was defined for the acquisition of geo referentiated information on the MG. It delivers the following services:

• GetNetworkdata that acquires MG structural data concerning the geographical map, the network topology, and the sources of power supply;

• GetControlDevicesAsset: type, location, and characteristic parameters of the available control and monitoring devices;

• GetElectricalNetworkDetails: line parameters, power transformer rating and numbers, impedance values, bus bar scheme, and circuit breaker type and installation;

International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7

V. DISTRIBUTED CONTROL AND OPTIMIZED OPERATION MANAGEMENT

Smart grids enable small producers to generate and sell electricity at the local level. The smart grid concept provides an effective approach to integrating small-scale Distributed Energy Resources (DERs) into the bulk electric grid. Without the additional information and intelligence provided by and software designed sensors to react instantaneously to imbalances caused by intermittent sources, such distributed generation can degrade system quality. Hence automated intelligent software is necessary for the decentralized management of distributed generation. Small Distributed Generation (DG) units are DERs that have different owners and several decisions may be made locally, making centralized management difficult. In order to make full use of operations facilitated by a smart grid, the controller of each unit participating in the market should have intelligence so as to make decisions and to coordinate the actions of different units. The local DG units selling power to the network have other tasks also. They produce heat for local installations, keep the voltage, locally, at a certain level or provide a backup system for local critical loads in case of main system failure [15]. These tasks stress the need for distributed management, control and autonomous operation. In this context, the Multi Agent System (MAS) technology is suitable for the autonomous management of DERs within a smart grid. The goal of our research is to advance the state of the art by determining the optimal generation schedule of the DERs using an optimization routine such as the Artificial Immune System (AIS) and to consider risks associated with the auction process. We employ agent-based framework for effective management and implementation of the auction process. In our implementation, first, the generator bids are calculated considering the optimal generations corresponding to minimum fuel cost and hence the quantity of power/energy the seller (DERs) is offering in the energy market is fixed, even before the auctions. Only the pricing for that quantity of energy is allowed to vary depending on the traders' attitude (risk seeking or risk averse or risk neutral). In doing so, the profit for the seller and buyer are maximized as the seller determines the asking price based on minimum fuel cost. Thus running the optimization routine before bidding will aid the auction process in an energy market. The optimization process was implemented using AIS. The function of the agents is defined according to the characteristics of the individual energy resources. Secondly, a Risk Based (RB) auction strategy is implemented where an agent can assess the risk associated with a "bid" or "ask" under current market Issn 2250-3005(online)

conditions and bid/ask accordingly to maximize the profit. The proposed approach was tested and validated on a test system and the results obtained prove that it is economically beneficial for the buyer and seller of power to use this method for the auction process [16]. The communication architecture of agents is shown. The numbers on each branch indicates the order in which agents communicate amongst each other for efficient management of DERs. The MAS was implemented using JADE (Java Agent DEvelopment) framework [17]. Detailed description of this research can be found in [16]. The researchers at CAPS are advancing the research further by extending the agent based auction environment for charging of Electric Vehicles (EV) connected to the grid and is referred to as smart charging of EVs. The agents representing EVs and grid will be involved in trading of charge between the grid and EVs based on the Time of Use (TOU) prices to determine the optimum charging time and duration to minimize the cost of energy to the consumers and to maximize the efficiency of the overall electrical system.

We consider the following anycast field equations defined over an open bounded piece of network and /or feature space $\Omega \subset \mathbb{R}^d$. They describe the dynamics of the mean anycast of each of p node populations.

$$(\frac{d}{dt} + l_i)V_i(t, r) = \sum_{j=1}^p \int_{\Omega} J_{ij}(r, \bar{r})S[(V_j(t - \tau_{ij}(r, \bar{r}), \bar{r}) - h_{|j})]d\bar{r} + I_i^{ext}(r, t), \quad t \ge 0, 1 \le i \le p,$$
$$V_i(t, r) = \phi_i(t, r) \quad t \in [-T, 0]$$

We give an interpretation of the various parameters and functions that appear in (1), Ω is finite piece of nodes and/or feature space and is represented as an open bounded set of \mathbb{R}^d . The vector r and \overline{r} represent points in Ω . The function $S: \mathbb{R} \to (0,1)$ is the normalized sigmoid function:

$$S(z) = \frac{1}{1 + e^{-z}}$$
(2)

It describes the relation between the input rate v_i of population i as a function of the packets potential, for example, $V_i = v_i = S[\sigma_i(V_i - h_i)]$. We note V the p- dimensional vector $(V_1,...,V_p)$. The p function $\phi_i, i = 1,..., p$, represent the initial conditions, see below. We note ϕ the p- dimensional vector $(\phi_1,...,\phi_p)$. The p function $I_i^{ext}, i = 1,..., p$, represent external factors from other network areas. We note I^{ext} the **November** 2012 **Page** 525 (1)

p – dimensional vector $(I_1^{ext}, ..., I_n^{ext})$. The $p \times p$ matrix of functions $J = \{J_{ij}\}_{i, j=1,...,p}$ represents the connectivity between populations i and j, see below. p real values $h_i, i = 1, ..., p$, The determine the threshold of activity for each population, that is, the value of the nodes potential corresponding to 50% of the maximal activity. The p real positive values σ_i , i = 1, ..., p, determine the slopes of the sigmoids at the origin. Finally the p real positive values l_i , i = 1, ..., p, determine the speed at which each anycast node potential decreases exponentially toward its real value. We also introduce the function $S: \mathbb{R}^p \to \mathbb{R}^p$, defined $S(x) = [S(\sigma_1(x_1 - h_1)), ..., S(\sigma_p - h_p))],$ by and the diagonal $p \times p$ matrix $L_0 = diag(l_1, ..., l_p)$. Is the intrinsic dynamics of the population given by the linear response of data transfer. $(\frac{d}{dt} + l_i)$ is replaced by $(\frac{d}{dt} + l_i)^2$ to use the alpha function response. We use $\left(\frac{d}{dt} + l_i\right)$ for simplicity although our analysis applies to more general intrinsic dynamics. For the sake, of generality, the propagation delays are not assumed to be identical for all populations, hence they are described by a matrix $\tau(r, r)$ whose element $au_{ii}(\vec{r,r})$ is the propagation delay between population j at r and population i at r. The reason for this assumption is that it is still unclear from anycast if propagation delays are independent of the populations. We assume for technical reasons that τ is continuous, that is $\tau \in C^0(\overline{\Omega}^2, R_{\perp}^{p \times p})$. Moreover packet data indicate that τ is not a symmetric function i.e., $\tau_{ii}(r, r) \neq \tau_{ii}(r, r)$, thus no assumption is made about this symmetry unless otherwise stated. In order to compute the righthand side of (1), we need to know the node potential factor V on interval [-T, 0]. The value of T is obtained by considering the maximal delay:

$$\tau_m = \max_{i,j(r,\bar{r}\in\overline{\Omega\times\Omega})} \tau_{i,j}(r,\bar{r})$$
(3)

Hence we choose $T = \tau_m$

A. Mathematical Framework

A convenient functional setting for the non-delayed packet field equations is to use the space

 $F = L^2(\Omega, \mathbb{R}^p)$ which is a Hilbert space endowed with the usual inner product:

$$\left\langle V, U \right\rangle_F = \sum_{i=1}^p \int_{\Omega} V_i(r) U_i(r) dr$$
 (1)

To give a meaning to (1), we defined the history space $C = C^0([-\tau_m, 0], F)$ with $\|\phi\| = \sup_{t \in [-\tau_m, 0]} \|\phi(t)\| F$, which is the Banach phase space associated with equation (3). Using the notation $V_t(\theta) = V(t + \theta), \theta \in [-\tau_m, 0]$, we write (1) as

$$\begin{cases} V(t) = -L_0 V(t) + L_1 S(V_t) + I^{ext}(t), \\ V_0 = \phi \in C, \end{cases}$$
(2)

Where

$$\begin{cases} L_1: C \to F, \\ \phi \to \int_{\Omega} J(., \bar{r}) \phi(\bar{r}, -\tau(., \bar{r})) d\bar{r} \end{cases}$$

Is the linear continuous operator satisfying $\|L_1\| \le \|J\|_{L^2(\Omega^2, R^{p \times p})}$. Notice that most of the papers on this subject assume Ω infinite, hence requiring $\tau_m = \infty$.

Proposition 1.0 If the following assumptions are satisfied.

- 1. $J \in L^2(\Omega^2, \mathbb{R}^{p \times p}),$
- 2. The external current $I^{ext} \in C^0(R, F)$,

3.
$$\tau \in C^0(\overline{\Omega^2}, R^{p \times p}_+), \sup_{\overline{\Omega^2}} \tau \leq \tau_m.$$

Then for any $\phi \in C$, there exists a unique solution

$$V \in C^{1}([0,\infty), F) \cap C^{0}([-\tau_{m},\infty, F) \text{ to } (3)$$

Notice that this result gives existence on R_+ , finitetime explosion is impossible for this delayed differential equation. Nevertheless, a particular solution could grow indefinitely, we now prove that this cannot happen.

B. Boundedness of Solutions

A valid model of neural networks should only feature bounded packet node potentials.

Theorem 1.0 All the trajectories are ultimately bounded by the same constant R if $I \equiv \max_{t \in R^+} \|I^{ext}(t)\|_F < \infty$.

Proof :Let us defined
$$f: R \times C \to R^+$$
 as

$$f(t,V_t) \stackrel{\text{def}}{=} \left\langle -L_0 V_t(0) + L_1 S(V_t) + I^{ext}(t), V(t) \right\rangle_F = \frac{1}{2} \frac{d \left\| V \right\|_F^2}{dt}$$

We note $l = \min_{i=1,\dots,p} l_i$

$$f(t, V_t) \le -l \|V(t)\|_F^2 + (\sqrt{p|\Omega|} \|J\|_F + I) \|V(t)\|_F$$

Thus, if

$$\|V(t)\|_{F} \geq 2 \frac{\sqrt{p|\Omega|} \|J\|_{F} + I}{l} \stackrel{def}{=} R, f(t, V_{t}) \leq -\frac{lR^{2}}{2} \stackrel{def}{=} -\delta < 0$$

Let us show that the open route of F of center 0 and radius R, B_R , is stable under the dynamics of equation. We know that V(t) is defined for all $t \ge 0s$ and that f < 0 on ∂B_R , the boundary of B_R . We consider three cases for the initial condition V_0 . If $\left\|V_0\right\|_C < R$ and set $T = \sup\{t \mid \forall s \in [0, t], V(s) \in \overline{B_p}\}.$ Suppose that $T \in R$, then V(T) is defined and belongs to $\overline{B_R}$, the closure of B_R , because $\overline{B_R}$ is closed, in to ∂B_R , we also effect have $\frac{d}{dt} \|V\|_{F}^{2}|_{t=T} = f(T, V_{T}) \le -\delta < 0$ because $V(T) \in \partial B_R$. Thus we deduce that for $\mathcal{E} > 0$ and small enough, $V(T+\varepsilon) \in \overline{B_R}$ which contradicts the definition of T. Thus $T \notin R$ and $\overline{B_R}$ is stable. Because f<0 on $\partial B_R, V(0) \in \partial B_R$ implies that $\forall t > 0, V(t) \in B_R$. Finally we consider the $V(0) \in C\overline{B_R}$. Suppose case that $\forall t > 0, V(t) \notin \overline{B_p}$. then

 $\forall t > 0, \frac{d}{dt} \|V\|_F^2 \le -2\delta$, thus $\|V(t)\|_F$ is monotonically decreasing and reaches the value of R in finite time when V(t) reaches ∂B_R . This contradicts our assumption. Thus

 $\exists T > 0 \,|\, V(T) \in B_R.$

Proposition 1.1 : Let *s* and *t* be measured simple functions on X. for $E \in M$, define

$$\phi(E) = \int_{E} s \, d\mu \qquad (1)$$

Then ϕ is a measure on M .
$$\int_{X} (s+t) d\mu = \int_{X} s \, d\mu + \int_{X} t d\mu \qquad (2)$$

Proof: If s and if $E_1, E_2, ...$ are disjoint members of M whose union is E, the countable additivity of μ shows that

$$\phi(E) = \sum_{i=1}^{n} \alpha_i \mu(A_i \cap E) = \sum_{i=1}^{n} \alpha_i \sum_{r=1}^{\infty} \mu(A_i \cap E_r)$$
$$= \sum_{r=1}^{\infty} \sum_{i=1}^{n} \alpha_i \mu(A_i \cap E_r) = \sum_{r=1}^{\infty} \phi(E_r)$$

Also, $\varphi(\phi) = 0$, so that φ is not identically ∞ . Next, let s be as before, let $\beta_1, ..., \beta_m$ be the distinct values of t, and let $B_j = \{x : t(x) = \beta_j\}$ If $E_{ij} = A_i \cap B_j$, the $\int_{E_{ij}} (s+t)d\mu = (\alpha_i + \beta_j)\mu(E_{ij})$ and $\int_{E_{ij}} sd\mu + \int_{E_{ij}} td\mu = \alpha_i\mu(E_{ij}) + \beta_j\mu(E_{ij})$ Thus (2) holds with E_{ij} in place of X. Since X is

the disjoint union of the sets E_{ij} $(1 \le i \le n, 1 \le j \le m)$, the first half of our proposition implies that (2) holds.

Theorem 1.1: If K is a compact set in the plane whose complement is connected, if f is a continuous complex function on K which is holomorphic in the interior of , and if $\varepsilon > 0$, then there exists a polynomial P such that $|f(z) = P(z)| < \varepsilon$ for all $z \in K$ If the interior of K is empty, then part of the hypothesis is vacuously satisfied, and the conclusion holds for every $f \in C(K)$. Note that K need to be connected. *Proof:* By Tietze's theorem, f can be extended to a continuous function in the plane, with compact support. We fix one such extension and denote it again by f. For any $\delta > 0$, let $\omega(\delta)$ be the supremum of the numbers $|f(z_2) - f(z_1)|$ Where z_1 and z_2 are subject to the condition $|z_2 - z_1| \le \delta$. Since f is uniformly continous, we have $\lim \omega(\delta) = 0$ (1) From now on, δ will be fixed. We shall prove that there is a polynomial P such that

$$|f(z) - P(z)| < 10,000 \ \omega(\delta) \quad (z \in K)$$

By (1), this proves the theorem. Our first objective is the construction of a function $\Phi \varepsilon C'_{c}(R^{2})$, such that for all z

$$\begin{split} \left| f(z) - \Phi(z) \right| &\leq \omega(\delta), \quad (3) \\ \left| (\partial \Phi)(z) \right| &< \frac{2\omega(\delta)}{s}, \quad (4) \end{split}$$

δ

And

$$\Phi(z) = -\frac{1}{\pi} \iint_{X} \frac{(\partial \Phi)(\zeta)}{\zeta - z} d\zeta d\eta \qquad (\zeta = \xi + i\eta), \qquad (5)$$

Where X is the set of all points in the support of Φ whose distance from the complement of K does not δ . (Thus X contains no point which is "far within" K.) We construct Φ as the convolution of f with a smoothing function A. Put a(r) = 0 if $r > \delta$, put

$$a(r) = \frac{3}{\pi \delta^2} (1 - \frac{r^2}{\delta^2})^2 \qquad (0 \le r \le \delta), \quad (6)$$

And define
$$A(z) = a(|z|) \qquad (7)$$

For all complex z. It is clear that $A \varepsilon C'_{c}(R^{2})$. We claim that

$$\iint_{R^{3}} A = 1, \qquad (8)$$

$$\iint_{R^{2}} \partial A = 0, \qquad (9)$$

$$\iint_{R^{3}} \left| \partial A \right| = \frac{24}{15\delta} < \frac{2}{\delta}, \qquad (10)$$

The constants are so adjusted in (6) that (8)holds. (Compute the integral in polar coordinates), (9) holds simply because A has compact support. To compute (10), express ∂A in polar coordinates, and note that $\partial A / \partial \theta = 0$,

$$\partial A/\partial r = -a',$$

Now define

$$\Phi(z) = \iint_{R^2} f(z-\zeta) A d\xi d\eta = \iint_{R^2} A(z-\zeta) f(\zeta) d\xi d\eta \qquad (11)$$

Since f and A have compact support, so does Φ . Since

$$\Phi(z) - f(z)$$

$$= \iint_{R^2} [f(z - \zeta) - f(z)] A(\xi) d\xi d\eta \quad (12)$$

And $A(\zeta) = 0$ if $|\zeta| > \delta$, (3) follows from (8). The difference quotients of A converge boundedly to the corresponding partial derivatives, since $A \varepsilon C_c(R^2)$. Hence the last expression in (11) may be differentiated under the integral sign, and we obtain

$$(\partial \Phi)(z) = \iint_{R^2} (\overline{\partial A})(z - \zeta) f(\zeta) d\xi d\eta$$

$$= \iint_{R^2} f(z - \zeta)(\partial A)(\zeta) d\xi d\eta$$

$$= \iint_{R^2} [f(z - \zeta) - f(z)](\partial A)(\zeta) d\xi d\eta \qquad (13)$$

The last equality depends on (9). Now (10) and (13) give (4). If we write (13) with Φ_x and Φ_{ν} in place of $\partial \Phi$, we see that Φ has continuous partial derivatives, if we can show that $\partial \Phi = 0$ in G, where G is the set of all $z \in K$ whose distance from the complement of K exceeds δ . We shall do this by showing that

$$\Phi(z) = f(z) \quad (z \in G); \quad (14)$$

Note that $\partial f = 0$ in G, since f is holomorphic

there. Now if $z \in G$, then $z - \zeta$ is in the interior of K for all ζ with $|\zeta| < \delta$. The mean value property for harmonic functions therefore gives, by the first equation in (11),

$$\Phi(z) = \int_0^\delta a(r) r dr \int_0^{2\pi} f(z - re^{i\theta}) d\theta$$
$$= 2\pi f(z) \int_0^\delta a(r) r dr = f(z) \iint_{R^2} A = f(z)$$
(15)

For all $z \in G$, we have now proved (3), (4), and (5) The definition of X shows that X is compact and that X can be covered by finitely many open discs $D_1, ..., D_n$, of radius 2δ , whose centers are not in K. Since $S^2 - K$ is connected, the center of each D_i can be joined to ∞ by a polygonal path in $S^2 - K$. It follows that each D_i contains a compact connected set E_i , of diameter at least 2δ , so that $S^2 - E_j$ is connected and so that $K \cap E_i = \phi$. with $r = 2\delta$. There are functions

 $g_j \mathcal{E} H(S^2 - E_j)$ and constants b_j so that the inequalities.

$$\left| \mathcal{Q}_{j}(\zeta, z) \right| < \frac{50}{\delta}, \qquad (16)$$

$$\left| \mathcal{Q}_{j}(\zeta, z) - \frac{1}{z - \zeta} \right| < \frac{4,000\delta^{2}}{\left| z - \zeta \right|^{2}} \qquad (17)$$

Hold for $z \notin E_i$ and $\zeta \in D_i$, if

_ _

$$Q_{j}(\zeta, z) = g_{j}(z) + (\zeta - b_{j})g_{j}^{2}(z)$$
(18)

Let Ω be the complement of $E_1 \cup ... \cup E_n$. Then Ω is an open set which contains K. Put

$$X_1 = X \cap D_1 \qquad \text{and} \qquad$$

$$X_{j} = (X \cap D_{j}) - (X_{1} \cup \dots \cup X_{j-1}), \qquad \text{for}$$

 $2 \le j \le n$, Define

$$R(\zeta, z) = Q_j(\zeta, z) \qquad (\zeta \varepsilon X_j, z \varepsilon \Omega) \tag{19}$$

And

$$F(z) = \frac{1}{\pi} \iint_{X} (\partial \Phi)(\zeta) R(\zeta, z) d\zeta d\eta \qquad (20)$$
$$(z \in \Omega)$$

Since,

$$F(z) = \sum_{j=1}^{\infty} \frac{1}{\pi} \iint_{X_i} (\partial \Phi)(\zeta) Q_j(\zeta, z) d\xi d\eta, \qquad (21)$$

(18) shows that F is a finite linear combination of the functions g_j and g_j^2 . Hence $F \varepsilon H(\Omega)$. By (20), (4), and (5) we have

$$\left|F(z) - \Phi(z)\right| < \frac{2\omega(\delta)}{\pi\delta} \iint_{X} |R(\zeta, z)| - \frac{1}{z - \zeta} |d\xi d\eta| \quad (z \in \Omega) \quad (22)$$

Observe that the inequalities (16) and (17) are valid with *R* in place of Q_j if $\zeta \in X$ and $z \in \Omega$. Now fix $z \in \Omega$, put $\zeta = z + \rho e^{i\theta}$, and estimate the integrand in (22) by (16) if $\rho < 4\delta$, by (17) if $4\delta \le \rho$. The integral in (22) is then seen to be less than the sum of

$$2\pi \int_{0}^{4\delta} \left(\frac{50}{\delta} + \frac{1}{\rho}\right) \rho d\rho = 808\pi\delta$$
(23)
And

 $2\pi \int_{4\delta}^{\infty} \frac{4,000\delta^2}{\rho^2} \rho d\rho = 2,000\pi\delta.$ (24)

$$|F(z) - \Phi(z)| < 6,000 \omega(\delta)$$
 (z $\varepsilon \Omega$) (25)

Since $F \varepsilon H(\Omega)$, $K \subset \Omega$, and $S^2 - K$ is connected, Runge's theorem shows that F can be uniformly approximated on K by polynomials. Hence (3) and (25) show that (2) can be satisfied. This completes the proof.

Lemma 1.0 : Suppose $f \varepsilon C'_c(R^2)$, the space of all continuously differentiable functions in the plane, with compact support. Put

$$\partial = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \tag{1}$$

Then the following "Cauchy formula" holds:

$$f(z) = -\frac{1}{\pi} \iint_{R^2} \frac{(\partial f)(\zeta)}{\zeta - z} d\xi d\eta$$
$$(\zeta = \xi + i\eta) \tag{2}$$

Proof: This may be deduced from Green's theorem. However, here is a simple direct proof:

Put $\varphi(r,\theta) = f(z+re^{i\theta}), r > 0, \theta$ real If $\zeta = z + re^{i\theta}$, the chain rule gives

$$(\partial f)(\zeta) = \frac{1}{2}e^{i\theta} \left[\frac{\partial}{\partial r} + \frac{i}{r}\frac{\partial}{\partial \theta}\right] \varphi(r,\theta)$$
(3)

The right side of (2) is therefore equal to the limit, as $\mathcal{E} \rightarrow 0$, of

$$-\frac{1}{2}\int_{\varepsilon}^{\infty}\int_{0}^{2\pi}\left(\frac{\partial\varphi}{\partial r}+\frac{i}{r}\frac{\partial\varphi}{\partial\theta}\right)d\theta dr \qquad (4)$$

For each $r > 0, \varphi$ is periodic in θ , with period 2π . The integral of $\partial \varphi / \partial \theta$ is therefore 0, and (4) becomes

$$-\frac{1}{2\pi}\int_{0}^{2\pi}d\theta\int_{\varepsilon}^{\infty}\frac{\partial\varphi}{\partial r}dr = \frac{1}{2\pi}\int_{0}^{2\pi}\varphi(\varepsilon,\theta)d\theta$$
(5)

As $\varepsilon \to 0$, $\varphi(\varepsilon, \theta) \to f(z)$ uniformly. This gives (2)

If $X^{\alpha} \in a$ and $X^{\beta} \in k[X_1,...X_n]$, then $X^{\alpha}X^{\beta} = X^{\alpha+\beta} \in a$, and so A satisfies the condition (*). Conversely, IJCER MATERIA REVENCE SCURVE International Jon Experimental Research

$$(\sum_{\alpha\in A} c_{\alpha} X^{\alpha}) (\sum_{\beta\in\mathbb{D}^{n}} d_{\beta} X^{\beta}) = \sum_{\alpha,\beta} c_{\alpha} d_{\beta} X^{\alpha+\beta}$$

and so if A satisfies (*), then the subspace generated by the monomials $X^{\alpha}, \alpha \in a$, is an ideal. The proposition gives a classification of the monomial ideals in $k[X_1,...X_n]$: they are in one to one correspondence with the subsets A of \Box^n satisfying (*). For example, the monomial ideals in k[X] are exactly the ideals $(X^n), n \ge 1$, and the zero ideal (corresponding to the empty set A). We write $\langle X^{\alpha} | \alpha \in A \rangle$ for the ideal corresponding to A (subspace generated by the $X^{\alpha}, \alpha \in a$).

LEMMA 1.1. Let S be a subset of \square^n . The the ideal a generated by $X^{\alpha}, \alpha \in S$ is the monomial ideal corresponding to

 $A = \left\{ \beta \in \square^n \mid \beta - \alpha \in \square^n, \quad some \ \alpha \in S \right\}$

Thus, a monomial is in a if and only if it is divisible by one of the $X^{\alpha}, \alpha \in S$

PROOF. Clearly *A* satisfies (*), and $a \subset \langle X^{\beta} | \beta \in A \rangle$. Conversely, if $\beta \in A$, then $\beta - \alpha \in \square^{n}$ for some $\alpha \in S$, and $X^{\beta} = X^{\alpha}X^{\beta-\alpha} \in a$. The last statement follows from the fact that $X^{\alpha} | X^{\beta} \Leftrightarrow \beta - \alpha \in \square^{n}$. Let $A \subset \square^{n}$ satisfy (*). From the geometry of *A*, it is clear that there is a finite set of elements $S = \{\alpha_{1}, ..., \alpha_{s}\}$ of *A* such that $A = \{\beta \in \square^{n} | \beta - \alpha_{i} \in \square^{2}, some \alpha_{i} \in S\}$

(The α_i 's are the corners of A) Moreover, $a \stackrel{df}{=} \langle X^{\alpha} | \alpha \in A \rangle$ is generated by the monomials $X^{\alpha_i}, \alpha_i \in S$.

DEFINITION 1.0. For a nonzero ideal a in $k[X_1,...,X_n]$, we let (LT(a)) be the ideal generated by

$$\left\{ LT(f) \,|\, f \in a \right\}$$

LEMMA 1.2 Let a be a nonzero ideal in $k[X_1,...,X_n]$; then (LT(a)) is a monomial

(*finite sums*))deal, and it equals $(LT(g_1),...,LT(g_n))$ for some $g_1,...,g_n \in a$.

PROOF. Since (LT(a)) can also be described as the ideal generated by the leading monomials (rather than the leading terms) of elements of a.

THEOREM 1.2. Every *ideal a* in $k[X_1,...,X_n]$ is finitely generated; more precisely, $a = (g_1,...,g_s)$ where $g_1,...,g_s$ are any elements of *a* whose leading terms generate LT(a)

PROOF. Let $f \in a$. On applying the division algorithm, we $f = a_1g_1 + \dots + a_sg_s + r, \qquad a_i, r \in k[X_1, \dots, X_n]$, where either r = 0 or no monomial occurring in it divisible by any $LT(g_i)$ is . But $r = f - \sum_{i} a_{i} g_{i} \in a$, and therefore $LT(r) \in LT(a) = (LT(g_1), ..., LT(g_s))$ implies that every monomial occurring in r is divisible by one in $LT(g_i)$. Thus r=0, and $g \in (g_1, ..., g_n)$.

DEFINITION 1.1. A finite subset $S = \{g_1, | ..., g_s\}$ of an ideal *a* is a standard ((*Grobner*) bases for *a* if $(LT(g_1), ..., LT(g_s)) = LT(a)$. In other words, S is a standard basis if the leading term of every element of *a* is divisible by at least one of the leading terms of the g_i .

THEOREM 1.3 The ring $k[X_1,...,X_n]$ is Noetherian i.e., every ideal is finitely generated.

PROOF. For n = 1, k[X] is a principal ideal domain, which means that every ideal is generated by single element. We shall prove the theorem by induction on n. Note that the obvious map $k[X_1,...X_{n-1}][X_n] \rightarrow k[X_1,...X_n]$ is an isomorphism – this simply says that every polynomial f in n variables $X_1,...X_n$ can be expressed uniquely as a polynomial in X_n with coefficients in $k[X_1,...,X_n]$:

$$f(X_1,...X_n) = a_0(X_1,...X_{n-1})X_n^r + ... + a_r(X_1,...X_{n-1})$$

Thus the next lemma will complete the proof

LEMMA 1.3. If A is Noetherian, then so also is A[X]PROOF. For a polynomial

$$f(X) = a_0 X^r + a_1 X^{r-1} + \dots + a_r, \qquad a_i \in A, \quad a_0 \neq 0,$$

r is called the degree of f, and a_0 is its leading coefficient. We call 0 the leading coefficient of the polynomial 0. Let *a* be an ideal in A[X]. The leading coefficients of the polynomials in *a* form an ideal *a* in *A*, and since *A* is Noetherian, *a* will be finitely generated. Let g_1, \ldots, g_m be elements of *a* whose leading coefficients generate *a*, and let *r* be the maximum degree of g_i . Now let $f \in a$, and suppose *f* has degree s > r, say, $f = aX^s + \ldots$ Then $a \in a'$, and so we can write $a = \sum b_i a_i$, $b_i \in A$,

 $a_i = leading \ coefficient \ of \ g_i$ Now

 $f - \sum_{i} b_i g_i X^{s-r_i}$, $r_i = \deg(g_i)$, has degree $< \deg(f)$. By continuing in this way, we find that $f \equiv f_t \mod(g_1, \dots, g_m)$ With f_t a polynomial of degree t < r. For each d < r, let a_d be the subset of A consisting of 0 and the leading coefficients of all polynomials in a of degree d; it is again an ideal in A. Let $g_{d,1}, ..., g_{d,m_d}$ be polynomials of degree d whose leading coefficients generate a_d . Then the same argument as above shows that any polynomial f_d in degree а of d can be written $mod(g_{d,1},...,g_{d,m_d})$ With f_{d-1} of $f_d \equiv f_{d-1}$ degree $\leq d - 1$. On applying this remark repeatedly find $f_t \in (g_{r-1,1}, \dots, g_{r-1,m_{r-1}}, \dots, g_{0,1}, \dots, g_{0,m_0})$ Hence

$$f_t \in (g_1, \dots, g_m g_{r-1,1}, \dots, g_{r-1,m_{r-1}}, \dots, g_{0,1}, \dots, g_{0,m_0})$$

and so the polynomials $g_1, ..., g_{0,m_0}$ generate a

One of the great successes of category theory in computer science has been the development of a "unified theory" of the constructions underlying denotational semantics. In the untyped λ -calculus, any term may appear in the function position of an application. This means that a model D of the λ -calculus must have the property that given a term t whose interpretation is $d \in D$, Also, the interpretation of a functional abstraction like $\lambda x \cdot x$ is most conveniently defined as a function from DtoD, which must then be element regarded as an of D. Let $\psi: [D \to D] \to D$ be the function that picks out elements of D to represent elements of $[D \rightarrow D]$ and $\phi: D \rightarrow [D \rightarrow D]$ be the function that maps elements of D to functions of D. Since $\psi(f)$ is intended to represent the function f as an element of D, it makes sense to require that $\phi(\psi(f)) = f$, that is, $\psi o \psi = i d_{[D \to D]}$ Furthermore, we often want to view every element of D as representing some function from D to D and require that elements representing the same function be equal - that is $\psi(\varphi(d)) = d$

or

 $\psi o \phi = id_D$

The latter condition is called extensionality. These conditions together imply that ϕ and ψ are inverses--- that is, D is isomorphic to the space of functions from D to D that can be the interpretations of functional abstractions: $D \cong |D \to D|$. Let us suppose we are working with the untyped λ -calculus, we need a solution of the equation $D \cong A + [D \rightarrow D],$ where А is some predetermined domain containing interpretations for elements of C. Each element of D corresponds to either an element of A or an element of $|D \rightarrow D|$, with a tag. This equation can be solved by finding least fixed points of the function $F(X) = A + |X \rightarrow X|$ from domains to domains --- that is, finding domains X such that $X \cong A + [X \rightarrow X]$, and such that for any domain Y also satisfying this equation, there is an embedding of X to Y --- a pair of maps

$$X \bigsqcup_{f^{R}} Y$$

Such that
$$f^{R} \circ f = id_{y}$$
$$f \circ f^{R} \subseteq id_{y}$$

CALINE PEER REVIEWED JOURNAL International Journal of Computational Engeneering Research

Where
$$f \subseteq g$$
 means that

f approximates g in some ordering representing their information content. The key shift of perspective from the domain-theoretic to the more general category-theoretic approach lies in considering F not as a function on domains, but as a *functor* on a category of domains. Instead of a least fixed point of the function, F.

Definition 1.3: Let K be a category and $F: K \to K$ as a functor. A fixed point of F is a pair (A,a), where A is a *K-object* and $a: F(A) \to A$ is an isomorphism. A prefixed point of F is a pair (A,a), where A is a *K-object* and a is any arrow from F(A) to A

Definition 1.4: An ω -chain in a category **K** is a diagram of the following form:

$$\Delta = D_o \xrightarrow{f_o} D_1 \xrightarrow{f_1} D_2 \xrightarrow{f_2} \dots$$

Recall that a cocone μ of an ω -chain Δ is a *K*-object *X* and a collection of K -arrows $\{\mu_i : D_i \to X \mid i \ge 0\}$ such that $\mu_i = \mu_{i+1}o f_i$ for all $i \ge 0$. We sometimes write $\mu : \Delta \to X$ as a reminder of the arrangement of μ 's components Similarly, a colimit $\mu : \Delta \to X$ is a cocone with the property that if $\nu : \Delta \to X$ is also a cocone then there exists a unique mediating arrow $k : X \to X'$ such that for all $i \ge 0$, $\nu_i = k o \mu_i$. Colimits of ω -chains are sometimes referred to as ω -colimits. Dually, an ω^{op} -chain in **K** is a diagram of the following form:

$$\Delta = D_o \underbrace{\not{}_{f_o}}_{f_o} D_1 \underbrace{\not{}_{f_1}}_{f_1} D_2 \underbrace{\not{}_{f_2}}_{f_2} \dots A \quad \text{cone}$$

 $\mu: X \to \Delta \text{ of an } \omega^{op} - chain \ \Delta \text{ is a } \mathbf{K}\text{-object } X$ and a collection of $\mathbf{K}\text{-arrows } \{\mu_i: D_i \mid i \ge 0\}$ such that for all $i \ge 0$, $\mu_i = f_i \ o \ \mu_{i+1}$. An ω^{op} -limit of an $\omega^{op} - chain \ \Delta$ is a cone $\mu: X \to \Delta$ with the property that if $\mathcal{V}: X' \to \Delta$ is also a cone, then there exists a unique mediating arrow $k: X' \to X$ such that for all $i \ge 0$, $\mu_i \ o \ k = V_i$. We write \bot_k (or just \bot) for the distinguish initial object of \mathbf{K} , when it has one, and $\bot \to A$ for the unique arrow from \bot to each \mathbf{K} -object A. It is also convenient to write $\Delta^- = D_1 \xrightarrow{f_1} D_2 \xrightarrow{f_2} \dots$ to denote all of Δ except D_o and f_0 . By analogy, μ^- is $\{\mu_i \mid i \ge 1\}$.

For the images of
$$\Delta$$
 and μ under F we write
 $F(f_o)$ $F(f_1)$ $F(f_2)$

$$F(\Delta) = F(D_o) \longrightarrow F(D_1) \longrightarrow F(D_2) \longrightarrow \cdots$$

and $F(\mu) = \{F(\mu_i) | i \ge 0\}$

We write F^{i} for the *i*-fold iterated composition of F- that is,

 $F^{o}(f) = f, F^{1}(f) = F(f), F^{2}(f) = F(F(f))$, etc. With these definitions we can state that every monitonic function on a complete lattice has a least fixed point:

Lemma 1.4. Let *K* be a category with initial object \bot and let $F: K \to K$ be a functor. Define the $\omega - chain \Delta$ by

$$\Delta = \bot \xrightarrow{F(\bot)} F(\bot) \xrightarrow{F(!\bot \to F(\bot))} F^2(\bot) \xrightarrow{F^2(!\bot \to F(\bot))} F^2(\bot)$$

If both $\mu : \Delta \to D$ and $F(\mu) : F(\Delta) \to F(D)$
are colimits, then (D,d) is an initial F-algebra, where
 $d : F(D) \to D$ is the mediating arrow from
 $F(\mu)$ to the cocone μ^-

Theorem 1.4 Let a DAG G given in which each node is a random variable, and let a discrete conditional probability distribution of each node given values of its parents in G be specified. Then the product of these conditional distributions yields a joint probability distribution P of the variables, and (G,P) satisfies the Markov condition.

Proof. Order the nodes according to an ancestral ordering. Let X_1, X_2, \dots, X_n be the resultant ordering. Next define.

$$P(x_1, x_2, \dots, x_n) = P(x_n | pa_n) P(x_{n-1} | Pa_{n-1}) \dots$$

...P(x_1 | pa_2) P(x_1 | pa_1),

Where PA_i is the set of parents of X_i of in G and $P(x_i \mid pa_i)$ is the specified conditional probability distribution. First we show this does indeed yield a probability distribution. joint Clearly, $0 \le P(x_1, x_2, \dots, x_n) \le 1$ for all values of the variables. Therefore, to show we have a joint distribution, as the variables range through all their possible values, is equal to one. To that end, Specified conditional distributions are the conditional distributions they notationally represent in the joint distribution. Finally, we show the Markov condition is satisfied. To do this, we need show for $1 \le k \le n$ that

whenever $P(pa_k) \neq 0$, if $P(nd_k | pa_k) \neq 0$ and $P(x_k | pa_k) \neq 0$ then $P(x_k | nd_k, pa_k) = P(x_k | pa_k)$, Where ND_k is the set of nondescendents of X_k of in G. Since $PA_k \subseteq ND_k$, we need only show $P(x_k | nd_k) = P(x_k | pa_k)$. First for a given k, order the nodes so that all and only nondescendents of X_k precede X_k in the ordering. Note that this

ordering depends on
$$k$$
, whereas the ordering in the first part of the proof does not. Clearly then

$$ND_{k} = \{X_{1}, X_{2}, \dots, X_{k-1}\}$$

$$Let$$

$$D_{k} = \{X_{k+1}, X_{k+2}, \dots, X_{n}\}$$
follows
$$\sum_{d_{k}}$$

We define the m^{th} cyclotomic field to be the field $Q[x]/(\Phi_m(x))$ Where $\Phi_m(x)$ is the m^{th} cyclotomic polynomial. $Q[x]/(\Phi_m(x)) \Phi_m(x)$ has degree $\varphi(m)$ over Q since $\Phi_m(x)$ has degree $\varphi(m)$. The roots of $\Phi_m(x)$ are just the primitive m^{th} roots of unity, so the complex embeddings of $Q[x]/(\Phi_m(x))$ are simply the $\varphi(m)$ maps $\sigma_k : Q[x]/(\Phi_m(x)) \mapsto C,$ $1 \le k \prec m, (k, m) = 1$, where $\sigma_k(x) = \xi_m^k,$

 ξ_m being our fixed choice of primitive m^{th} root of unity. Note that $\xi_m^k \in Q(\xi_m)$ for every k; it follows that $Q(\xi_m) = Q(\xi_m^k)$ for all k relatively prime to m. In particular, the images of the σ_i coincide, so $Q[x]/(\Phi_m(x))$ is Galois over Q. This means that we can write $Q(\xi_m)$ for $Q[x]/(\Phi_m(x))$ without much fear of ambiguity; we will do so from now on, the identification being $\xi_m \mapsto x$. One advantage of this is that one can easily talk about cyclotomic fields being extensions of one another, or intersections or compositums; all of these things take place considering them as subfield of C. We now investigate some basic properties of cyclotomic fields. The first issue is whether or not they are all distinct; to determine this, we need to know which roots of unity lie in $Q(\xi_m)$. Note, for example, that if *m* is odd, then $-\xi_m$ is a $2m^{th}$ root of unity. We will show that this is the only way in which one can obtain any non- m^{th} roots of unity.

LEMMA 1.5 If *m* divides *n*, then $Q(\xi_m)$ is contained in $Q(\xi_n)$ PROOF. Since $\xi^{n/m} = \xi_m$, we have $\xi_m \in Q(\xi_n)$, so the result is clear

LEMMA 1.6 If m and *n* are relatively prime, then $Q(\xi_m, \xi_n) = Q(\xi_{nm})$

and

$$Q(\xi_m) \cap Q(\xi_n) = Q$$

(Recall the $Q(\xi_m,\xi_n)$ is the compositum of $Q(\xi_m)$ and $Q(\xi_n)$)

PROOF. One checks easily that $\xi_m \xi_n$ is a primitive mn^{th} root of unity, so that $Q(\xi_{mn}) \subseteq Q(\xi_m, \xi_n)$ $[Q(\xi_m, \xi_n): Q] \leq [Q(\xi_m): Q][Q(\xi_n: Q]]$ $= \varphi(m)\varphi(n) = \varphi(mn);$ Since $[Q(\xi_{mn}): Q] = \varphi(mn);$ this implies that $Q(\xi_m, \xi_n) = Q(\xi_{nm})$ We know that $Q(\xi_m, \xi_n)$ has degree $\varphi(mn)$ over Q, so we must have

 $\left[Q(\xi_m,\xi_n):Q(\xi_m)\right] = \varphi(n)$

and

$$\left[Q(\xi_m,\xi_n):Q(\xi_m)\right]=\varphi(m)$$

$$\left[Q(\xi_m):Q(\xi_m)\cap Q(\xi_n)\right] \ge \varphi(m)$$

And thus that $Q(\xi_m)\cap Q(\xi_n)=Q$

PROPOSITION 1.2 For any m and n

$$Q(\xi_m, \xi_n) = Q(\xi_{[m,n]})$$

And
$$Q(\xi_m) \cap Q(\xi_n) = Q(\xi_{(m,n)})$$

here [m, n] and (m, n) denote the least common multiple and the greatest common divisor of m and n, respectively.

PROOF. Write $m = p_1^{e_1} \dots p_k^{e_k}$ and $p_1^{f_1} \dots p_k^{f_k}$ where the p_i are distinct primes. (We allow $e_i \text{ or } f_i$ to be zero) $Q(\xi_m) = Q(\xi_{p_1^{e_1}})Q(\xi_{p_2^{e_2}})\dots Q(\xi_{p_k^{e_k}})$ and $Q(\xi_n) = Q(\xi_{p_1^{f_1}})Q(\xi_{p_2^{f_2}})\dots Q(\xi_{p_k^{f_k}})$ Thus $Q(\xi_m, \xi_n) = Q(\xi_{p_1^{e_1}})\dots Q(\xi_{p_2^{e_k}})Q(\xi_{p_1^{f_1}})\dots Q(\xi_{p_k^{f_k}})$ $= Q(\xi_{p_1^{e_1}})Q(\xi_{p_1^{f_1}})\dots Q(\xi_{p_k^{e_k}})Q(\xi_{p_k^{f_k}})$ $= Q(\xi_{p_1^{e_1}})\dots Q(\xi_{p_1^{e_k}})Q(\xi_{p_1^{e_k}})$ $= Q(\xi_{p_1^{\max(e_{i,f_1})}})\dots Q(\xi_{p_1^{\max(e_{k,f_k})}})$ $= Q(\xi_{p_1^{\max(e_{i,f_1})}})$

An entirely similar computation shows that $Q(\xi_m) \cap Q(\xi_n) = Q(\xi_{(m,n)})$

Mutual information measures the information transferred when x_i is sent and y_i is received, and is defined as

$$I(x_i, y_i) = \log_2 \frac{P(\frac{x_i}{y_i})}{P(x_i)} bits \qquad (1)$$

In a noise-free channel, **each** y_i is uniquely connected to the corresponding x_i , and so they constitute an input –output pair (x_i, y_i) for which

$$P(\overset{x_i}{y_j}) = 1 \text{ and } I(x_i, y_j) = \log_2 \frac{1}{P(x_i)}$$
 bits;

that is, the transferred information is equal to the self-information that corresponds to the input x_i In a very noisy channel, the output y_i and input x_i would be completely uncorrelated, and so $P(\frac{x_i}{y_j}) = P(x_i)$ and also $I(x_i, y_j) = 0$; that is, there is no transference of information. In general, a

given channel will operate between these two extremes. The mutual information is defined between the input and the output of a given channel. An average of the calculation of the mutual information for all input-output pairs of a given channel is the average mutual information:

$$I(X,Y) = \sum_{i,j} P(x_i, y_j) I(x_i, y_j) = \sum_{i,j} P(x_i, y_j) \log_2 \left[\frac{P(\frac{x_i}{y_j})}{P(x_i)} \right]$$

bits per symbol . This calculation is done over the input and output alphabets. The average mutual information. The following expressions are useful for modifying the mutual information expression:

$$P(x_{i}, y_{j}) = P(\frac{x_{i}}{y_{j}})P(y_{j}) = P(\frac{y_{j}}{x_{i}})P(x_{i})$$

$$P(y_{j}) = \sum_{i} P(\frac{y_{j}}{x_{i}})P(x_{i})$$

$$P(x_{i}) = \sum_{i} P(\frac{x_{i}}{y_{j}})P(y_{j})$$
Then
$$I(X, Y) = \sum_{i,j} P(x_{i}, y_{j})\log_{2}\left[\frac{1}{P(x_{i})}\right]$$

$$-\sum_{i,j} P(x_{i}, y_{j})\log_{2}\left[\frac{1}{P(\frac{x_{i}}{y_{j}})}\right]$$

$$\sum_{i,j} P(x_{i}, y_{j})\log_{2}\left[\frac{1}{P(x_{i})}\right]$$

$$= \sum_{i} \left[P(\frac{x_{i}}{y_{j}})P(y_{j})\right]\log_{2}\frac{1}{P(x_{i})}$$

$$\sum_{i} P(x_{i})\log_{2}\frac{1}{P(x_{i})} = H(X)$$

$$I(X,Y) = H(X) - H(X/Y)$$

Where $H(X/Y) = \sum_{i,j} P(x_i, y_j) \log_2 \frac{1}{P(X_i/y_j)}$

17 /

is usually called the equivocation. In a sense, the equivocation can be seen as the information lost in the noisy channel, and is a function of the backward conditional probability. The observation of an output

symbol y_j provides H(X) - H(X/Y) bits of information. This difference is the mutual information of the channel. *Mutual Information: Properties* Since

$$P(\frac{x_i}{y_j})P(y_j) = P(\frac{y_j}{x_i})P(x_i)$$

The mutual information fits the condition I(X, Y) = I(Y, X)

And by interchanging input and output it is also true that

$$I(X,Y) = H(Y) - H(\frac{Y}{X})$$

Where

$$H(Y) = \sum_{j} P(y_{j}) \log_{2} \frac{1}{P(y_{j})}$$

This last entropy is usually called the noise entropy. Thus, the information transferred through the channel is the difference between the output entropy and the noise entropy. Alternatively, it can be said that the channel mutual information is the difference between the number of bits needed for determining a given input symbol before knowing the corresponding output symbol, and the number of bits needed for determining a given input symbol after corresponding knowing the output symbol

$$I(X,Y) = H(X) - H(X/Y)$$

As the channel mutual information expression is a difference between two quantities, it seems that this parameter can adopt negative values. However, and is spite of the fact that for some y_j , $H(X / y_j)$ can be larger than H(X), this is not possible for the average value calculated over all the outputs:

$$\sum_{i,j} P(x_i, y_j) \log_2 \frac{\frac{P(x_i/y_j)}{p(x_i)}}{P(x_i)} = \sum_{i,j} P(x_i, y_j) \log_2 \frac{P(x_i, y_j)}{P(x_i)P(y_j)}$$

Then

$$-I(X,Y) = \sum_{i,j} P(x_i, y_j) \frac{P(x_i)P(y_j)}{P(x_i, y_j)} \le 0$$

Because this expression is of the form

$$\sum_{i=1}^{M} P_i \log_2(\frac{Q_i}{P_i}) \le 0$$

The above expression can be applied due to the factor $P(x_i)P(y_j)$, which is the product of two

probabilities, so that it behaves as the quantity Q_i , which in this expression is a dummy variable that fits the condition $\sum_i Q_i \leq 1$. It can be concluded that the average mutual information is a nonnegative number. It can also be equal to zero, when the input and the output are independent of each other. A related entropy called the joint entropy is defined as

$$H(X,Y) = \sum_{i,j} P(x_i, y_j) \log_2 \frac{1}{P(x_i, y_j)}$$
$$= \sum_{i,j} P(x_i, y_j) \log_2 \frac{P(x_i)P(y_j)}{P(x_i, y_j)}$$
$$+ \sum_{i,j} P(x_i, y_j) \log_2 \frac{1}{P(x_i)P(y_j)}$$

Theorem 1.5: Entropies of the binary erasure channel (BEC) The BEC is defined with an alphabet of two inputs and three outputs, with symbol probabilities.

 $P(x_1) = \alpha$ and $P(x_2) = 1 - \alpha$, and transition probabilities

$$P(\frac{y_3}{x_2}) = 1 - p \text{ and } P(\frac{y_2}{x_1}) = 0,$$

and $P(\frac{y_3}{x_1}) = 0$
and $P(\frac{y_1}{x_2}) = p$
and $P(\frac{y_1}{x_2}) = 1 - p$

Lemma 1.7. Given an arbitrary restricted timediscrete, amplitude-continuous channel whose restrictions are determined by sets F_n and whose density functions exhibit no dependence on the state s, let n be a fixed positive integer, and p(x) an arbitrary probability density function on Euclidean n-space. p(y|x) for the density $p_n(y_1,...,y_n | x_1,...x_n)$ and F for F_n . For any real number a, let

$$A = \left\{ (x, y) : \log \frac{p(y \mid x)}{p(y)} > a \right\}$$
(1)

Then for each positive integer u, there is a code (u, n, λ) such that

$$\lambda \le u e^{-a} + P\{(X,Y) \notin A\} + P\{X \notin F\}$$
(2)

Where

 $P\{(X,Y) \in A\} = \int_A \dots \int p(x,y) dx dy, \qquad p(x,y) = p(x)p(y \mid x)$ and

$$P\left\{X \in F\right\} = \int_{F} \dots \int p(x) dx$$

Proof: A sequence $x^{(1)} \in F$ such that $P\left\{Y \in A_{x^1} \mid X = x^{(1)}\right\} \ge 1 - \varepsilon$ where $A_x = \left\{y : (x, y) \in A\right\};$

Choose the decoding set B_1 to be $A_{x^{(1)}}$. Having chosen $x^{(1)}, \ldots, x^{(k-1)}$ and B_1, \ldots, B_{k-1} , select $x^k \in F$ such that $P\left\{Y \in A_{x^{(k)}} - \bigcup_{i=1}^{k-1} B_i \mid X = x^{(k)}\right\} \ge 1 - \varepsilon;$

Set $B_k = A_{x^{(k)}} - \bigcup_{i=1}^{k-1} B_i$, If the process does not terminate in a finite number of steps, then the sequences $x^{(i)}$ and decoding sets B_i , i = 1, 2, ..., u,

form the desired code. Thus assume that the process terminates after *t* steps. (Conceivably t = 0). We will show $t \ge u$ by showing that $\varepsilon \le te^{-a} + P\{(X, Y) \notin A\} + P\{X \notin F\}$. We proceed as follows.

Let

$$B = \bigcup_{j=1}^{t} B_j. \quad (If \ t = 0, \ take \ B = \phi). \ Then$$
$$P\{(X, Y) \in A\} = \int_{(x, y) \in A} p(x, y) dx \, dy$$

$$= \int_{x} p(x) \int_{y \in A_x} p(y \mid x) dy dx$$
$$= \int_{x} p(x) \int_{y \in B \cap A_x} p(y \mid x) dy dx + \int_{x} p(x)$$

C. Algorithms

Ideals. Let A be a ring. Recall that an *ideal a* in A is a subset such that a is subgroup of A regarded as a group under addition;

 $a \in a, r \in A \Longrightarrow ra \in A$

The ideal generated by a subset S of A is the intersection of all ideals A containing a ----- it is easy to verify that this is in fact an ideal, and that it consist of all finite sums of the form $\sum r_i s_i$ with $r_i \in A, s_i \in S$. When $S = \{s_1, \dots, s_m\}$, we shall write (s_1, \ldots, s_m) for the ideal it generates. Let a and b be ideals in A. The set $\{a+b \mid a \in a, b \in b\}$ is an ideal, denoted by a+b. The ideal generated by $\{ab \mid a \in a, b \in b\}$ is denoted by ab. Note that $ab \subset a \cap b$. Clearly *ab* consists of all finite sums $\sum a_i b_i$ with $a_i \in a$ and $b_i \in b$, and if $a = (a_1, ..., a_m)$ and $b = (b_1, ..., b_n)$ then $ab = (a_1b_1, \dots, a_ib_i, \dots, a_mb_n)$.Let *a* be an ideal of A. The set of cosets of a in A forms a ring A/aand $a \mapsto a + a$ is a homomorphism $\phi: A \mapsto A/a$. The map $b \mapsto \phi^{-1}(b)$ is a one to one correspondence between the ideals of A/a and the ideals of A containing a An ideal p if prime if $p \neq A$ and $ab \in p \Longrightarrow a \in p$ or $b \in p$. Thus p is prime if and only if A / p is nonzero and has the property that ab = 0, $b \neq 0 \Longrightarrow a = 0$, i.e., A/p is an integral domain. An ideal *m* is *maximal* if $m \neq A$ and there does not exist an ideal n contained strictly between m and A. Thus m is maximal if and only if A/m has no proper nonzero ideals, and so is a field. Note that m maximal \Rightarrow m prime. The ideals of $A \times B$ are all of the form $a \times b$, with a and b ideals in A and B. To see this, note that if c is an ideal in $A \times B$ and $(a,b) \in c$, then $(a,0) = (a,b)(1,0) \in c$ and $(0,b) = (a,b)(0,1) \in c$. This shows that $c = a \times b$ with $a = \{a \mid (a,b) \in c \text{ some } b \in b\}$ and

$$b = \{b \mid (a,b) \in c \text{ some } a \in a\}$$

Let A be a ring. An A-algebra is a ring B together a homomorphism $i_B: A \to B$. A with homomorphism of A -algebra $B \rightarrow C$ is a homomorphism of rings $\varphi: B \to C$ such that $\varphi(i_B(a)) = i_C(a)$ for all $a \in A$. An A-algebra *B* is said to be *finitely generated* (or of *finite-type* over A) if there exist elements $x_1, ..., x_n \in B$ such that every element of B can be expressed as a polynomial in the x_i with coefficients in i(A), i.e., such that the homomorphism $A[X_1,...,X_n] \rightarrow B$ sending X_i to x_i is surjective. A ring homomorphism $A \rightarrow B$ is *finite*, and B is finitely generated as an A-module. Let k be a field, and let A be a k -algebra. If $1 \neq 0$ in A, then the map $k \rightarrow A$ is injective, we can identify k with its image, i.e., we can regard k as a subring of A. If 1=0 in a ring R, the R is the zero ring, i.e., $R = \{0\}$. Polynomial rings. Let k be a field. A monomial in $X_1, ..., X_n$ is an expression of the form $X_1^{a_1}...X_n^{a_n}, \qquad a_j \in N$. The *total degree* of the monomial is $\sum a_i$. We sometimes abbreviate it by $X^{\alpha}, \alpha = (a_1, ..., a_n) \in \square^n$ The elements of the polynomial ring $k[X_1,...,X_n]$ are finite sums $\sum c_{a_1...a_n} X_1^{a_1} ... X_n^{a_n}, \qquad c_{a_1...a_n} \in k, \quad a_j \in \Box$ With the obvious notions of equality, addition and multiplication. Thus the monomials from basis for $k[X_1,...,X_n]$ as a k -vector space. The ring $k[X_1, ..., X_n]$ is an integral domain, and the only units in it are the nonzero constant polynomials. A polynomial $f(X_1,...,X_n)$ is *irreducible* if it is nonconstant and has only the obvious factorizations,

i.e., $f = gh \Rightarrow g$ or h is constant. Division in k[X]. The division algorithm allows us to divide a nonzero polynomial into another: let f and g be polynomials in k[X] with $g \neq 0$; then there exist unique polynomials $q, r \in k[X]$ such that f = qg + r with either r = 0 or deg $r < \deg g$. Moreover, there is an algorithm for deciding whether $f \in (g)$, namely, find r and check whether it is zero. Moreover, the Euclidean algorithm allows to pass from finite set of generators for an ideal in k[X] to a single generator by successively replacing each pair of generators with their greatest common divisor.

(*Pure*) **lexicographic** ordering (lex). Here monomials are ordered by lexicographic(dictionary) order. More precisely, let $\alpha = (a_1, ..., a_n)$ and $\beta = (b_1, ..., b_n)$ be two elements of \Box^n ; then $\alpha > \beta$ and $X^{\alpha} > X^{\beta}$ (lexicographic ordering) if, in the vector difference $\alpha - \beta \in \Box$, the left most nonzero entry is positive. For example,

 $XY^2 > Y^3Z^4$; $X^3Y^2Z^4 > X^3Y^2Z$. Note that this isn't quite how the dictionary would order them: it would put *XXXYYZZZZ* after *XXXYYZ*. *Graded reverse lexicographic order (grevlex)*. Here monomials are ordered by total degree, with ties broken by reverse lexicographic ordering. Thus, $\alpha > \beta$ if $\sum a_i > \sum b_i$, or $\sum a_i = \sum b_i$ and in $\alpha - \beta$ the right most nonzero entry is negative. For example:

$$X^{4}Y^{4}Z^{7} > X^{5}Y^{5}Z^{4} \text{ (total degree greater)}$$
$$XY^{5}Z^{2} > X^{4}YZ^{3}, \qquad X^{5}YZ > X^{4}YZ^{2}$$

Orderings on $k[X_1,...X_n]$. Fix an ordering on the monomials in $k[X_1,...X_n]$. Then we can write an element f of $k[X_1,...X_n]$ in a canonical fashion, by re-ordering its elements in decreasing order. For example, we would write

$$f = 4XY^{2}Z + 4Z^{2} - 5X^{3} + 7X^{2}Z^{2}$$

as
$$f = -5X^{3} + 7X^{2}Z^{2} + 4XY^{2}Z + 4Z^{2} \quad (lex)$$

or
$$f = 4XY^{2}Z + 7X^{2}Z^{2} - 5X^{3} + 4Z^{2} \quad (grevlex)$$

Let $\sum a_{\alpha} X^{\alpha} \in k[X_1, ..., X_n]$, in decreasing order: $f = a_{\alpha_0} X^{\alpha_0} +_{\alpha_1} X^{\alpha_1} + ..., \qquad \alpha_0 > \alpha_1 > ..., \quad \alpha_0 \neq 0$

Then we define.

• The multidegree of f to be multdeg(f)= α_0 ;

• The leading coefficient of
$$f$$
 to be $LC(f) = a_{\alpha_0}$;

- The leading monomial of f to be $LM(f) = X^{\alpha_0}$;
- The leading term of f to be LT(f) = $a_{\alpha_0} X^{\alpha_0}$

For the polynomial $f = 4XY^2Z + ...,$ the multidegree is (1,2,1), the leading coefficient is 4, the leading monomial is XY^2Z , and the leading term is $4XY^2Z$. The division algorithm in $k[X_1,...,X_n]$. Fix a monomial ordering in \square^2 . Suppose given a polynomial f and an ordered set (g_1, \dots, g_s) of polynomials; the division algorithm then constructs polynomials a_1, \dots, a_s and r such that $f = a_1g_1 + \dots + a_sg_s + r$ Where either r = 0 or no monomial in r is divisible by any of $LT(g_1), \dots, LT(g_s)$ Step 1: If $LT(g_1)|LT(f)$, divide g_1 into f to get $f = a_1g_1 + h, \quad a_1 = \frac{LT(f)}{LT(g_1)} \in k[X_1, ..., X_n]$ If $LT(g_1) | LT(h)$, repeat the process until $f = a_1g_1 + f_1$ (different a_1) with $LT(f_1)$ not divisible by $LT(g_1)$. Now divide g_2 into f_1 , and so on, until $f = a_1g_1 + ... + a_sg_s + r_1$ With $LT(r_1)$ not divisible by any $LT(g_1), ..., LT(g_s)$ **Step 2:** Rewrite $r_1 = LT(r_1) + r_2$, and repeat Step 1 with r_{2} for f $f = a_1g_1 + \dots + a_sg_s + LT(r_1) + r_3$ (different a_i 's) Monomial ideals. In general, an ideal awill contain a polynomial without containing the individual terms of the polynomial; for example, the ideal $a = (Y^2 - X^3)$ contains $Y^2 - X^3$ but not Y^2 or X^3 .

DEFINITION 1.5. An ideal *a* is monomial if $\sum c_{\alpha} X^{\alpha} \in a \Longrightarrow X^{\alpha} \in a$ all α with $c_{\alpha} \neq 0$.

PROPOSITION 1.3. Let *a* be a *monomial ideal*, and let $A = \{ \alpha \mid X^{\alpha} \in a \}$. Then *A* satisfies the condition $\alpha \in A$, $\beta \in \square^n \Rightarrow \alpha + \beta \in$ (*) And *a* is the *k*-subspace of $k[X_1,...,X_n]$ generated by the $X^{\alpha}, \alpha \in A$. Conversely, of *A* is a subset of \square^n satisfying (*), then the k-subspace *a* of $k[X_1,...,X_n]$ generated by $\{X^{\alpha} \mid \alpha \in A\}$ is a monomial ideal.

PROOF. It is clear from its definition that a monomial ideal a is the k-subspace of $k[X_1,...,X_n]$

generated by the set of monomials it contains. If $X^{\alpha} \in a_{\text{and}} X^{\beta} \in k[X_1,...,X_n]$.

If a permutation is chosen uniformly and at random from the n! possible permutations in S_n , then the counts $C_j^{(n)}$ of cycles of length j are dependent random variables. The joint distribution of $C^{(n)} = (C_1^{(n)}, ..., C_n^{(n)})$ follows from Cauchy's formula, and is given by

$$P[C^{(n)} = c] = \frac{1}{n!} N(n, c) = 1 \left\{ \sum_{j=1}^{n} jc_j = n \right\} \prod_{j=1}^{n} \left(\frac{1}{j}\right)^{c_j} \frac{1}{c_j!}, \quad (1.1)$$

for $c \in \square_{+}^{n}$.

Lemma1.7 For nonnegative integers $m_{1,\dots}, m_n$,

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = \left(\prod_{j=1}^{n} \left(\frac{1}{j}\right)^{m_{j}}\right) 1\left\{\sum_{j=1}^{n} jm_{j} \le n\right\}$$
(1.4)

Proof. This can be established directly by exploiting cancellation of the form $c_j^{[m_j]}/c_j^! = 1/(c_j - m_j)!$ when $c_j \ge m_j$, which occurs between the ingredients in Cauchy's formula and the falling factorials in the moments. Write $m = \sum jm_j$. Then, with the first sum indexed by $c = (c_1, ..., c_n) \in \square_+^n$ and the last sum indexed by $d = (d_1, ..., d_n) \in \square_+^n$ via the correspondence $d_j = c_j - m_j$, we have

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = \sum_{c} P[C^{(n)} = c] \prod_{j=1}^{n} (c_{j})^{[m_{j}]}$$
$$= \sum_{cc_{j} \ge m_{j} \text{ for all } j} \left\{\sum_{j=1}^{n} jc_{j} = n\right\} \prod_{j=1}^{n} \frac{(c_{j})^{[m_{j}]}}{j^{c_{j}}c_{j}!}$$
$$= \prod_{j=1}^{n} \frac{1}{j^{m_{j}}} \sum_{d} \left\{\sum_{j=1}^{n} jd_{j} = n - m\right\} \prod_{j=1}^{n} \frac{1}{j^{d_{j}}(d_{j})!}$$

This last sum simplifies to the indicator $1(m \le n)$, corresponding to the fact that if $n-m \ge 0$, then $d_j = 0$ for j > n-m, and a random permutation in S_{n-m} must have some cycle structure $(d_1, ..., d_{n-m})$. The moments of $C_j^{(n)}$ follow immediately as

$$E(C_{j}^{(n)})^{[r]} = j^{-r} \mathbb{1}\{jr \le n\}$$
(1.2)

We note for future reference that (1.4) can also be written in the form

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = E\left(\prod_{j=1}^{n} Z_{j}^{[m_{j}]}\right) \mathbb{1}\left\{\sum_{j=1}^{n} jm_{j} \le n\right\},$$
(1.3)

Where the Z_j are independent Poisson-distribution random variables that satisfy $E(Z_j) = 1/j$

The marginal distribution of cycle counts provides a formula for the joint distribution of the cycle counts C_j^n , we find the distribution of C_j^n using a combinatorial approach combined with the inclusion-exclusion formula.

Lemma 1.8. For
$$1 \le j \le n$$
,

$$P[C_j^{(n)} = k] = \frac{j^{-k}}{k!} \sum_{l=0}^{\lfloor n/j \rfloor - k} (-1)^l \frac{j^{-l}}{l!}$$
(1.1)

Consider the set I of all possible cycles of Proof. length j, formed with elements chosen from $\{1, 2, \dots n\}$, so that $|I| = n^{\lfloor j \rfloor / j}$. For each $\alpha \in I$, consider the "property" G_{α} of having α ; that is, G_{α} is the set of permutations $\pi \in S_n$ such that α is one of the cycles of π . We then have $|G_{\alpha}| = (n-j)!$, since the elements of $\{1, 2, ..., n\}$ not in α must be permuted among themselves. To use the inclusion-exclusion formula we need to calculate the term S_r , which is the sum of the probabilities of the r-fold intersection of properties, summing over all sets of r distinct properties. There are two cases to consider. If the r properties are indexed by r cycles having no elements in common, then the intersection specifies how rj elements are

moved by the permutation, and there are $(n-rj)!!(rj \le n)$ permutations in the intersection. There are $n^{[rj]}/(j^r r!)$ such intersections. For the other case, some two distinct properties name some element in common, so no permutation can have both these properties, and the *r*-fold intersection is empty. Thus

$$S_{r} = (n - rj)! 1(rj \le n)$$

 $\times \frac{n^{[rj]}}{j^{r}r!} \frac{1}{n!} = 1(rj \le n) \frac{1}{j^{r}r!}$

Finally, the inclusion-exclusion series for the number of permutations having exactly k properties is

$$\sum_{l\geq 0} (-1)^l \binom{k+l}{l} S_{k+l,}$$

 $\mathbf{D}\mathbf{\Gamma} \left(\mathbf{G}(n) \right)$

Which simplifies to (1.1) Returning to the original hat-check problem, we substitute j=1 in (1.1) to obtain the distribution of the number of fixed points of a random permutation. For k = 0, 1, ..., n,

$$P[C_1^{(n)} = k] = \frac{1}{k!} \sum_{l=0}^{n-k} (-1)^l \frac{1}{l!},$$
 (1.2)

and the moments of $C_1^{(n)}$ follow from (1.2) with j=1. In particular, for $n \ge 2$, the mean and variance of $C_1^{(n)}$ are both equal to 1. The joint distribution of $(C_1^{(n)},...,C_b^{(n)})$ for any $1\le b\le n$ has an expression similar to (1.7); this too can be derived by inclusion-exclusion. For any $c = (c_1,...,c_b) \in \square_+^b$ with $m = \sum ic_i$,

$$P[(C_1^{(u)},...,C_b^{(u)}) = c]$$

$$= \left\{ \prod_{i=1}^{b} \left(\frac{1}{i}\right)^{c_i} \frac{1}{c_i!} \right\} \sum_{\substack{l \ge 0 \text{ with} \\ \sum l_i \le n-m}} (-1)^{l_1 + ... + l_b} \prod_{i=1}^{b} \left(\frac{1}{i}\right)^{l_i} \frac{1}{l_i!} \qquad (1.3)$$

The joint moments of the first *b* counts $C_1^{(n)}, ..., C_b^{(n)}$ can be obtained directly from (1.2) and (1.3) by setting $m_{b+1} = ... = m_n = 0$

The limit distribution of cycle counts

It follows immediately from Lemma 1.2 that for each fixed j, as $n \rightarrow \infty$,

$$P[C_j^{(n)} = k] \to \frac{j^{-k}}{k!} e^{-1/j}, \quad k = 0, 1, 2, ...,$$

So that $C_j^{(n)}$ converges in distribution to a random variable Z_j having a Poisson distribution with mean 1/j; we use the notation $C_j^{(n)} \rightarrow_d Z_j$

where $Z_j \square P_o(1/j)$ to describe this. Infact, the limit random variables are independent.

Theorem 1.6 The process of cycle counts converges in distribution to a Poisson process of \Box with intensity j^{-1} . That is, as $n \to \infty$,

$$(C_1^{(n)}, C_2^{(n)}, ...) \to_d (Z_1, Z_2, ...)$$
 (1.1)

Where the Z_j , j = 1, 2, ..., are independent Poisson-distributed random variables with

$$E(Z_j) = \frac{1}{j}$$

Proof. To establish the converges in distribution one shows that for each fixed $b \ge 1$, as $n \rightarrow \infty$,

$$P[(C_1^{(n)},...,C_b^{(n)})=c] \to P[(Z_1,...,Z_b)=c]$$

Error rates

The proof of Theorem says nothing about the rate of convergence. Elementary analysis can be used to estimate this rate when b=1. Using properties of alternating series with decreasing terms, for k=0,1,...,n,

$$\begin{aligned} &\frac{1}{k!} (\frac{1}{(n-k+1)!} - \frac{1}{(n-k+2)!}) \le \left| P[C_1^{(n)} = k] - P[Z_1 = k] \right| \\ \le &\frac{1}{k!(n-k+1)!} \end{aligned}$$

It follows that

$$\frac{2^{n+1}}{(n+1)!} \frac{n}{n+2} \le \sum_{k=0}^{n} \left| P[C_1^{(n)} = k] - P[Z_1 = k] \right| \le \frac{2^{n+1}-1}{(n+1)!} \quad (1.11)$$

Since

$$P[Z_1 > n] = \frac{e^{-1}}{(n+1)!} (1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots) < \frac{1}{(n+1)!},$$

We see from (1.11) that the total variation distance between the distribution $L(C_1^{(n)})$ of $C_1^{(n)}$ and the distribution $L(Z_1)$ of Z_1

Establish the asymptotics of $P[A_n(C^{(n)})]$ under conditions (A_0) and (B_{01}) , where

$$A_{n}(C^{(n)}) = \bigcap_{1 \le i \le n} \bigcap_{i_{i}^{\prime} + 1 \le j \le r_{i}^{\prime}} \{C_{ij}^{(n)} = 0\},\$$

and $\zeta_i = (r_i / r_{id}) - 1 = O(i^{-g})$ as $i \to \infty$, for some g' > 0. We start with the expression

$$P[A_{n}(C^{(n)})] = \frac{P[T_{0m}(Z) = n]}{P[T_{0m}(Z) = n]}$$

$$\prod_{\substack{1 \le i \le n \\ r_{i}^{i} + 1 \le j \le r_{i}}} \left\{ 1 - \frac{\theta}{ir_{i}} (1 + E_{i0}) \right\} \quad (1.1)$$

$$P[T_{0n}(Z') = n]$$

$$= \frac{\theta d}{n} \exp\left\{ \sum_{i \ge 1} [\log(1 + i^{-1}\theta d) - i^{-1}\theta d] \right\}$$

$$\left\{ 1 + O(n^{-1}\varphi_{\{1,2,7\}}^{i}(n)) \right\} \quad (1.2)$$
and
$$P[T_{0n}(Z') = n]$$

$$= \frac{\theta d}{n} \exp\left\{ \sum_{i \ge 1} [\log(1 + i^{-1}\theta d) - i^{-1}\theta d] \right\}$$

$$\left\{ 1 + O(n^{-1}\varphi_{\{1,2,7\}}^{i}(n)) \right\} \quad (1.3)$$

Where $\varphi_{\{1,2,7\}}(n)$ refers to the quantity derived from Z. It thus follows that $P[A_n(C^{(n)})] \square Kn^{-\theta(1-d)}$ for a constant K, depending on Z and the r_i and computable explicitly from (1.1) - (1.3), if Conditions (A_0) and (B_{01}) are satisfied and if $\zeta_i^* = O(i^{-g})$ from some g > 0, since, under these circumstances, both $n^{-1}\varphi_{\{1,2,7\}}(n)$ and $n^{-1}\varphi_{\{1,2,7\}}(n)$ tend to zero as $n \to \infty$. In particular, for polynomials and square free polynomials, the relative error in this asymptotic approximation is of order n^{-1} if g > 1.

For
$$0 \le b \le n/8$$
 and $n \ge n_0$, with n_0
 $d_{TV}(L(C[1,b]), L(Z[1,b]))$
 $\le d_{TV}(L(C[1,b]), L(Z[1,b]))$
 $\le \varepsilon_{\{7,7\}}(n,b),$

Where $\mathcal{E}_{\{7,7\}}(n,b) = O(b/n)$ under Conditions $(A_0), (D_1)$ and (B_{11}) Since, by the Conditioning Relation,

$$L(C[1,b] | T_{0b}(C) = l) = L(Z[1,b] | T_{0b}(Z) = l),$$

It follows by direct calculation that

$$d_{TV}(L(C[1,b]), L(Z[1,b])) = d_{TV}(L(T_{0b}(C)), L(T_{0b}(Z))) = \max_{A} \sum_{r \in A} P[T_{0b}(Z) = r]$$

$$\left\{ 1 - \frac{P[T_{bn}(Z) = n - r]}{P[T_{0n}(Z) = n]} \right\}$$
(1.4)

Suppressing the argument Z from now on, we thus obtain

$$d_{TV}(L(\overline{C}[1,b]), L(\overline{Z}[1,b]))$$

$$= \sum_{r \ge 0} P[T_{0b} = r] \left\{ 1 - \frac{P[T_{bn} = n - r]}{P[T_{0n} = n]} \right\}_{+}$$

$$\leq \sum_{r > n/2} P[T_{0b} = r] + \sum_{r=0}^{[n/2]} \frac{P[T_{0b} = r]}{P[T_{0b} = n]}$$

$$\times \left\{ \sum_{s=0}^{n} P[T_{0b} = s](P[T_{bn} = n - s] - P[T_{bn} = n - r]) \right\}_{+}$$

$$\leq \sum_{s=0}^{n} P[T_{n} = r] + \sum_{r=0}^{[n/2]} P[T_{n} = r]$$

$$\leq \sum_{r>n/2} P[T_{0b} = r] + \sum_{r=0}^{n} P[T_{0b} = r]$$

$$\times \sum_{s=0}^{\lfloor n/2 \rfloor} P[T_{0b} = s] \frac{\{P[T_{bn} = n - s] - P[T_{bn} = n - r]\}}{P[T_{0n} = n]}$$

$$+ \sum_{s=0}^{\lfloor n/2 \rfloor} P[T_{0b} = r] \sum_{s=\lfloor n/2 \rfloor+1}^{n} P[T = s] P[T_{bn} = n - s] / P[T_{0n} = n]$$

The first sum is at most $2n^{-1}ET_{0b}$; the third is bound by

$$\begin{aligned} &(\max_{n/2 < s \le n} P[T_{0b} = s]) / P[T_{0n} = n] \\ &\leq \frac{2\varepsilon_{\{10.5(1)\}}(n/2, b)}{n} \frac{3n}{\theta P_{\theta}[0, 1]}, \\ &\frac{3n}{\theta P_{\theta}[0, 1]} 4n^{-2} \phi_{\{10.8\}}^{*}(n) \sum_{r=0}^{[n/2]} P[T_{0b} = r] \sum_{s=0}^{[n/2]} P[T_{0b} = s] \frac{1}{2} |r-s| \\ &\leq \frac{12\phi_{\{10.8\}}^{*}(n)}{\theta P_{\theta}[0, 1]} \frac{ET_{0b}}{n} \end{aligned}$$

Hence we may take

$$\varepsilon_{\{7,7\}}(n,b) = 2n^{-1}ET_{0b}(Z) \left\{ 1 + \frac{6\phi_{\{10,8\}}^*(n)}{\theta P_{\theta}[0,1]} \right\} P$$
$$+ \frac{6}{\theta P_{\theta}[0,1]} \varepsilon_{\{10.5(1)\}}(n/2,b) \qquad (1.5)$$

Required order under Conditions $(A_0), (D_1)$ and (B_{11}) , if $S(\infty) < \infty$. If not, $\phi_{(10.8)}^*(n)$ can be replaced by $\phi^*_{_{\{10,11\}}}(n)$ in the above, which has the required order, without the restriction on the r_i implied by $S(\infty) < \infty$. Examining the Conditions $(A_0), (D_1)$ and (B_{11}) , it is perhaps surprising to find that (B_{11}) is required instead of just (B_{01}) ; that is, that we should need $\sum_{l>2} l \varepsilon_{il} = O(i^{-a_1})$ to hold for some $a_1 > 1$. A first observation is that a similar problem arises with the rate of decay of \mathcal{E}_{i1} as well. For this reason, n_1 is replaced by n_1 . This makes it possible to replace condition (A_1) by the weaker pair of conditions (A_0) and (D_1) in the eventual assumptions needed for $\mathcal{E}_{\{7,7\}}(n,b)$ to be of order O(b/n); the decay rate requirement of order $i^{-1-\gamma}$ is shifted from \mathcal{E}_{i1} itself to its first difference. This is needed to obtain the right approximation error for the random mappings example. However, since all the classical applications make far more stringent assumptions about the \mathcal{E}_{i1} , $l \geq 2$, than are made in (B_{11}) . The critical point of the proof is seen where the initial estimate the difference of $P[T_{bn}^{(m)} = s] - P[T_{bn}^{(m)} = s+1] \quad .$ The factor $\mathcal{E}_{\{10,10\}}(n)$, which should be small, contains a far tail element from n_1 of the form $\phi_1^{\theta}(n) + u_1^*(n)$, which is only small if $a_1 > 1$, being otherwise of order $O(n^{1-a_1+\delta})$ for any $\delta > 0$, since $a_2 > 1$ is in any case assumed. For $s \ge n/2$, this gives rise to a contribution of order $O(n^{-1-a_1+\delta})$ in the estimate of the difference $P[T_{bn} = s] - P[T_{bn} = s+1],$ which, in the remainder of the proof, is translated into a contribution of order $O(tn^{-1-a_1+\delta})$ for differences of the form $P[T_{bn} = s] - P[T_{bn} = s+1]$, finally leading to a contribution of order $bn^{-a_1+\delta}$ for any $\delta > 0$ in $\mathcal{E}_{(7,7)}(n,b)$. Some improvement would seem to be possible, defining the function g by $g(w) = 1_{\{w=s\}} - 1_{\{w=s+t\}}$, differences that are of the form $P[T_{bn} = s] - P[T_{bn} = s + t]$ can be directly estimated, at a cost of only a single contribution of the form $\phi_1^{\theta}(n) + u_1^*(n)$. Then, iterating the cycle, in which one estimate of a difference in point probabilities is improved to an estimate of smaller order, a bound of the form

$$\begin{split} & \left| P[T_{bn} = s] - P[T_{bn} = s + t] \right| = O(n^{-2}t + n^{-1-a_1 + \delta}) \\ & \text{for any } \delta > 0 \text{ could perhaps be attained, leading to} \\ & \text{a final error estimate in order } O(bn^{-1} + n^{-a_1 + \delta}) \text{ for} \\ & \text{any } \delta > 0 \text{, to replace } \varepsilon_{\{7.7\}}(n, b). \text{ This would be} \\ & \text{of the ideal order } O(b / n) \text{ for large enough } b \text{, but} \\ & \text{would still be coarser for small } b. \end{split}$$

With b and n as in the previous section, we wish to show that

$$\begin{split} & \left| d_{TV}(L(C[1,b]), L(Z[1,b])) - \frac{1}{2}(n+1)^{-1} \left| 1 - \theta \right| E \left| T_{0b} - ET_{0b} \right| \\ & \leq \varepsilon_{[7,8]}(n,b), \end{split} \right.$$

Where $\varepsilon_{\{7.8\}}(n,b) = O(n^{-1}b[n^{-1}b + n^{-\beta_{12}+\delta}])$ for any $\delta > 0$ under Conditions $(A_0), (D_1)$ and (B_{12}) , with β_{12} . The proof uses sharper estimates. As before, we begin with the formula

$$d_{TV}(L(\bar{C}[1,b]), L(\bar{Z}[1,b]))$$

= $\sum_{r \ge 0} P[T_{0b} = r] \left\{ 1 - \frac{P[T_{bn} = n - r]}{P[T_{0n} = n]} \right\}_{+}$

Now we observe that

$$\begin{split} &\left|\sum_{r\geq 0} P[T_{0b}=r] \left\{ 1 - \frac{P[T_{bn}=n-r]}{P[T_{0n}=n]} \right\}_{+} - \sum_{r=0}^{[n/2]} \frac{P[T_{0b}=r]}{P[T_{0n}=n]} \\ &\times \left|\sum_{s=[n/2]+1}^{n} P[T_{0b}=s](P[T_{bn}=n-s] - P[T_{bn}=n-r])\right| \\ &\leq 4n^{-2} E T_{0b}^{2} + (\max_{n/2 < s \leq n} P[T_{0b}=s]) / P[T_{0n}=n] \\ &+ P[T_{0b} > n/2] \\ &\leq 8n^{-2} E T_{0b}^{2} + \frac{3\varepsilon_{\{10.5(2)\}}(n/2,b)}{\theta P_{\theta}[0,1]}, \end{split}$$
(1.1)

We have

International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7

$$\left|\sum_{r=0}^{[n/2]} \frac{P[T_{0b} = r]}{P[T_{0n} = n]} + \frac{d_{TV}(L(C[1,b]), L(Z[1,b]))}{-(n+1)^{-1}\sum_{r\geq0} P[T_{0b} = r] \left\{\sum_{s\geq0} P[T_{0b} = s](s-r)(1-\theta)\right\}_{+}} + \frac{(\sum_{s=0}^{[n/2]} P[T_{0b} = s](P[T_{bn} = n-s] - P[T_{bn} = n-r] \right\}_{+}^{2} \mathcal{E}_{\{7.8\}}(n,b)}{-\left\{\sum_{s=0}^{[n/2]} P[T_{0b} = s]\frac{(s-r)(1-\theta)}{n+1} P[T_{0n} = n]\right\}_{+}} + \frac{3}{\theta P_{\theta}[0,1]} \left\{\varepsilon_{\{10.5(2)\}}(n/2,b) + 2n^{-1}ET_{0b}\varepsilon_{\{10.14\}}(n,b)\right\} + 2n^{-2}ET_{0b}^{2} \left\{4+3\left|1-\theta\right| + \frac{24\left|1-\theta\right|\phi_{\{10.8\}}^{*}(n)\right|}{\theta P_{\theta}[0,1]}\right\}}$$
(1.5)

$$\leq \frac{1}{n^{2}P[T_{0n} = n]} \sum_{r \geq 0} P[T_{0b} = r] \sum_{s \geq 0} P[T_{0b} = s] |s - r|$$

$$\times \left\{ \varepsilon_{\{10.14\}}(n, b) + 2(r \lor s) |1 - \theta| n^{-1} \left\{ K_{0}\theta + 4\phi_{\{10.8\}}^{*}(n) \right\} \right\}$$

$$\leq \frac{6}{\theta n P_{\theta}[0, 1]} ET_{0b} \varepsilon_{\{10.14\}}(n, b)$$

$$+ 4 |1 - \theta| n^{-2} ET_{0b}^{2} \left\{ K_{0}\theta + 4\phi_{\{10.8\}}^{*}(n) \right\}$$

$$\left(\frac{3}{\theta n P_{\theta}[0, 1]}\right) \left\}, \qquad (1.2)$$

The approximation in (1.2) is further simplified by noting that

$$\sum_{r=0}^{\lfloor n/2 \rfloor} P[T_{0b} = r] \left\{ \sum_{s=0}^{\lfloor n/2 \rfloor} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1} \right\}_{+}$$

$$-\left\{\sum_{s=0} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1}\right\}_{+} |$$

$$\leq \sum_{r=0}^{[n/2]} P[T_{0b} = r] \sum_{s>[n/2]} P[T_{0b} = s] \frac{(s-r)|1-\theta|}{n+1} |$$

$$\leq |1-\theta| n^{-1} E(T_{0b} 1\{T_{0b} > n/2\}) \leq 2 |1-\theta| n^{-2} ET_{0b}^{2}, \qquad (1.3)$$

and then by observing that

$$\sum_{r>[n/2]} P[T_{0b} = r] \left\{ \sum_{s\geq 0} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1} \right\}$$

$$\leq n^{-1} |1-\theta| (ET_{0b}P[T_{0b} > n/2] + E(T_{0b}1\{T_{0b} > n/2\}))$$

$$\leq 4 |1-\theta| n^{-2} ET_{0b}^{2}$$
(1.4)

Combining the contributions of (1.2) –(1.3), we thus find tha

The quantity $\mathcal{E}_{\{7,8\}}(n,b)$ is seen to be of the order $\{n\}_{i=1}^{k}$ claimed under Conditions $(A_0), (D_1)$ and (B_{12}) , provided that $S(\infty) < \infty$; this supplementary condition can be removed if $\phi_{\{10,8\}}^*(n)$ is replaced by $\phi_{\{10,11\}}^*(n)$ in the definition of $\mathcal{E}_{\{7,8\}}(n,b)$, has the required order without the restriction on the r_i implied by assuming that $S(\infty) < \infty$. Finally, a direct calculation now shows that

$$\sum_{r \ge 0} P[T_{0b} = r] \left\{ \sum_{s \ge 0} P[T_{0b} = s](s - r)(1 - \theta) \right\}_{+}$$
$$= \frac{1}{2} |1 - \theta| E |T_{0b} - ET_{0b}|$$

Example 1.0. Consider the point $O = (0, ..., 0) \in \square^n$. For an arbitrary vector r, the coordinates of the point x = O + r are equal to the respective coordinates of the vector $r: x = (x^1, ..., x^n)$ and $r = (x^1, ..., x^n)$. The vector r such as in the example is called the position vector or the radius vector of the point x. (Or, in greater detail: r is the radius-vector of x w.r.t an origin O). Points are frequently specified by their radiusvectors. This presupposes the choice of O as the "standard origin". Let us summarize. We have considered \square^n and interpreted its elements in two ways: as points and as vectors. Hence we may say that we leading with the two copies of \Box^n : $\Box^n =$ {points}, $\square^n = \{\text{vectors}\}$

Operations with vectors: multiplication by a number, addition. Operations with points and vectors: adding a vector to a point (giving a point), subtracting two points (giving a vector). \Box^n treated in this way is called an *n*-dimensional affine space. (An "abstract" affine space is a pair of sets, the set of points and the set of vectors so that the operations as above are defined axiomatically). Notice that vectors in an affine space are also known as "free

vectors". Intuitively, they are not fixed at points and "float freely" in space. From \Box^n considered as an affine space we can precede in two opposite directions: \Box^n as an Euclidean space $\Leftarrow \Box^n$ as an affine space $\Longrightarrow \Box^n$ as a manifold.Going to the left means introducing some extra structure which will make the geometry richer. Going to the right means forgetting about part of the affine structure; going further in this direction will lead us to the so-called "smooth (or differentiable) manifolds". The theory of differential forms does not require any extra geometry. So our natural direction is to the right. The Euclidean structure, however, is useful for examples and applications. So let us say a few words about it:

Remark 1.0. Euclidean geometry. In \square^n considered as an affine space we can already do a good deal of geometry. For example, we can consider lines and planes, and quadric surfaces like an ellipsoid. However, we cannot discuss such things as "lengths", "angles" or "areas" and "volumes". To be able to do so, we have to introduce some more definitions, making \square^n a Euclidean space. Namely, we define the length of a vector

$$a = (a^{1}, ..., a^{n})$$
 to be
 $|a| := \sqrt{(a^{1})^{2} + ... + (a^{n})^{2}}$ (1)

After that we can also define distances between points as follows:

$$d(A,B) := \left| \overrightarrow{AB} \right| \tag{2}$$

One can check that the distance so defined possesses natural properties that we expect: is it always nonnegative and equals zero only for coinciding points; the distance from A to B is the same as that from B to A (symmetry); also, for three points, A, B and C, we have $d(A,B) \leq d(A,C) + d(C,B)$ (the "triangle inequality"). To define angles, we first introduce the scalar product of two vectors

$$(a,b) \coloneqq a^1 b^1 + \dots + a^n b^n \tag{3}$$

Thus $|a| = \sqrt{(a,a)}$. The scalar product is also denote by dot: a.b = (a,b), and hence is often referred to as the "dot product". Now, for nonzero vectors, we define the angle between them by the equality

$$\cos \alpha \coloneqq \frac{(a,b)}{|a||b|} \tag{4}$$

The angle itself is defined up to an integral multiple of 2π . For this definition to be consistent we have to ensure that the r.h.s. of (4) does not exceed 1 by the absolute value. This follows from the inequality $(a,b)^2 \le |a|^2 |b|^2$ (5) known as the Cauchy–Bunyakovsky–Schwarz inequality (various combinations of these three names are applied in different books). One of the ways of proving (5) is to consider the scalar square of the linear combination a + tb, where $t \in R$. As $(a+tb, a+tb) \ge 0$ is a quadratic polynomial in twhich is never negative, its discriminant must be less or equal zero. Writing this explicitly yields (5). The triangle inequality for distances also follows from the inequality (5).

Example 1.1. Consider the function $f(x) = x^{i}$ (the i-th coordinate). The linear function dx^{i} (the differential of x^{i}) applied to an arbitrary vector h is simply h^{i} . From these examples follows that we can rewrite df as

$$df = \frac{\partial f}{\partial x^1} dx^1 + \dots + \frac{\partial f}{\partial x^n} dx^n, \qquad (1)$$

which is the standard form. Once again: the partial derivatives in (1) are just the coefficients (depending on x); $dx^1, dx^2, ...$ are linear functions giving on an arbitrary vector h its coordinates $h^1, h^2, ...,$ respectively. Hence

$$df(x)(h) = \partial_{hf(x)} = \frac{\partial f}{\partial x^{1}}h^{1} + \dots + \frac{\partial f}{\partial x^{n}}h^{n}, \quad (2)$$

Theorem 1.7. Suppose we have a parametrized curve $t \mapsto x(t)$ passing through $x_0 \in \square^n$ at $t = t_0$ and with the velocity vector $x(t_0) = \upsilon$ Then $\frac{df(x(t))}{dt}(t_0) = \partial_{\upsilon} f(x_0) = df(x_0)(\upsilon)$ (1)

Proof. Indeed, consider a small increment of the parameter $t: t_0 \mapsto t_0 + \Delta t$, Where $\Delta t \mapsto 0$. On the other hand, we have $f(x_0 + h) - f(x_0) = df(x_0)(h) + \beta(h)|h|$ for an arbitrary vector h, where $\beta(h) \rightarrow 0$ when $h \rightarrow 0$. Combining it together, for the increment of f(x(t)) we obtain

$$f(x(t_0 + \Delta t) - f(x_0))$$

= $df(x_0)(\upsilon.\Delta t + \alpha(\Delta t)\Delta t)$
+ $\beta(\upsilon.\Delta t + \alpha(\Delta t)\Delta t).|\upsilon\Delta t + \alpha(\Delta t)\Delta t|$
= $df(x_0)(\upsilon).\Delta t + \gamma(\Delta t)\Delta t$

For a certain $\gamma(\Delta t)$ such that $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$ (we used the linearity of $df(x_0)$). By the definition, this means that the derivative of f(x(t)) at $t = t_0$ is exactly $df(x_0)(\upsilon)$. The statement of the theorem can be expressed by a simple formula:

$$\frac{df(x(t))}{dt} = \frac{\partial f}{\partial x^1} x^1 + \dots + \frac{\partial f}{\partial x^n} x^n$$
(2)

To calculate the value Of df at a point x_0 on a given vector v one can take an arbitrary curve passing Through x_0 at t_0 with v as the velocity vector at t_0 and calculate the usual derivative of f(x(t)) at $t = t_0$.

Theorem 1.8. For functions $f, g: U \to \Box$, $U \subset \Box^n$,

$$d(f+g) = df + dg$$
(1)
$$d(fg) = df \cdot g + f \cdot dg$$
(2)

Proof. Consider an arbitrary point x_0 and an arbitrary vector v stretching from it. Let a curve x(t) be such that $x(t_0) = x_0$ and $x(t_0) = v$. Hence

$$d(f+g)(x_0)(\upsilon) = \frac{d}{dt}(f(x(t)) + g(x(t)))$$

at $t = t_0$ and

$$d(fg)(x_0)(\upsilon) = \frac{d}{dt}(f(x(t))g(x(t)))$$

at $t = t_0$ Formulae (1) and (2) then immediately follow from the corresponding formulae for the usual derivative Now, almost without change the theory generalizes to functions taking values in \square^m instead of \square . The only difference is that now the differential of a map $F: U \to \square^m$ at a point xwill be a linear function taking vectors in \square^n to vectors in \square^m (instead of \square). For an arbitrary vector $h \in |\square^n$,

$$F(x+h) = F(x) + dF(x)(h)$$

+ $\beta(h)|h|$ (3)
Where $\beta(h) \to 0$ when $h \to 0$. We have
 $dF = (dF^1, ..., dF^m)$ and
 $dF = \frac{\partial F}{\partial x^1} dx^1 + ... + \frac{\partial F}{\partial x^n} dx^n$
$$= \begin{pmatrix} \frac{\partial F^1}{\partial x^1} \cdots \frac{\partial F^1}{\partial x^n} \\ \cdots & \cdots \\ \frac{\partial F^m}{\partial x^1} \cdots \frac{\partial F^m}{\partial x^n} \end{pmatrix} \begin{pmatrix} dx^1 \\ \cdots \\ dx^n \end{pmatrix}$$
 (4)

In this matrix notation we have to write vectors as vector-columns.

Theorem 1.9. For an arbitrary parametrized curve x(t) in \Box^n , the differential of a map $F: U \to \Box^m$ (where $U \subset \Box^n$) maps the velocity vector x(t) to the velocity vector of the curve F(x(t)) in \Box^m :

$$\frac{dF(x(t))}{dt} = dF(x(t))(x(t)) \tag{1}$$

Proof. By the definition of the velocity vector,

$$x(t + \Delta t) = x(t) + x(t).\Delta t + \alpha(\Delta t)\Delta t$$
(2)

Where $\alpha(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$. By the definition of the differential,

$$F(x+h) = F(x) + dF(x)(h) + \beta(h) |h \qquad (3)|$$

Where $\beta(h) \to 0$ when $h \to 0$, we obtain

$$F(x(t + \Delta t)) = F(x + \underbrace{x(t) \Delta t + \alpha(\Delta t)\Delta t}_{h})$$

= $F(x) + dF(x)(x(t)\Delta t + \alpha(\Delta t)\Delta t) +$
 $\beta(x(t)\Delta t + \alpha(\Delta t)\Delta t) \cdot \left| x(t)\Delta t + \alpha(\Delta t)\Delta t \right|$
= $F(x) + dF(x)(x(t)\Delta t + \gamma(\Delta t)\Delta t)$

For some $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$. This precisely means that dF(x)x(t) is the velocity vector of F(x). As every vector attached to a point can be viewed as the velocity vector of some curve passing through this point, this theorem gives a clear geometric picture of dF as a linear map on vectors.

Theorem 1.10 Suppose we have two maps $F: U \to V$ and $G: V \to W$, where $U \subset \square^n, V \subset \square^m, W \subset \square^p$ (open domains). Let $F: x \mapsto y = F(x)$. Then the differential of the composite map $GoF: U \to W$ is the composition of the differentials of F and G:d(GoF)(x) = dG(y)odF(x) (4)

Proof. We can use the description of the

differential .Consider a curve x(t) in \Box^n with the velocity vector x. Basically, we need to know to which vector in \Box^p it is taken by d(GoF). the curve (GoF)(x(t) = G(F(x(t))). By the same theorem, it equals the image under dG of the Anycast Flow vector to the curve F(x(t)) in \Box^m . Applying the theorem once again, we see that the velocity vector to the curve F(x(t)) is the image under dF of the vector x(t). Hence

d(GoF)(x) = dG(dF(x)) for an arbitrary vector x.

Corollary 1.0. If we denote coordinates in \Box^n by $(x^1,...,x^n)$ and in \Box^m by $(y^1,...,y^m)$, and write

$$dF = \frac{\partial F}{\partial x^1} dx^1 + \dots + \frac{\partial F}{\partial x^n} dx^n \tag{1}$$

$$dG = \frac{\partial G}{\partial y^1} dy^1 + \dots + \frac{\partial G}{\partial y^n} dy^n, \qquad (2)$$

Then the chain rule can be expressed as follows:

$$d(GoF) = \frac{\partial G}{\partial y^1} dF^1 + \dots + \frac{\partial G}{\partial y^m} dF^m,$$
 (3)

Where dF^i are taken from (1). In other words, to get d(GoF) we have to substitute into (2) the expression for $dy^i = dF^i$ from (3). This can also be expressed by the following matrix formula:

$$d(GoF) = \begin{pmatrix} \frac{\partial G^{1}}{\partial y^{1}} \dots \frac{\partial G^{1}}{\partial y^{m}} \\ \dots & \dots & \dots \\ \frac{\partial G^{p}}{\partial y^{1}} \dots \frac{\partial G^{p}}{\partial y^{m}} \end{pmatrix} \begin{pmatrix} \frac{\partial F^{1}}{\partial x^{1}} \dots \frac{\partial F^{1}}{\partial x^{n}} \\ \dots & \dots & \dots \\ \frac{\partial F^{m}}{\partial x^{1}} \dots \frac{\partial F^{m}}{\partial x^{n}} \end{pmatrix} \begin{pmatrix} dx^{1} \\ \dots \\ dx^{n} \end{pmatrix}$$
(4)

i.e., if dG and dF are expressed by matrices of partial derivatives, then d(GoF) is expressed by the product of these matrices. This is often written as

$$\begin{pmatrix} \frac{\partial z^{1}}{\partial x^{1}} \cdots \frac{\partial z^{1}}{\partial x^{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial z^{p}}{\partial x^{1}} \cdots \frac{\partial z^{p}}{\partial x^{n}} \end{pmatrix} = \begin{pmatrix} \frac{\partial z^{1}}{\partial y^{1}} \cdots \frac{\partial z^{1}}{\partial y^{m}} \\ \cdots & \cdots & \cdots \\ \frac{\partial z^{p}}{\partial y^{1}} \cdots \frac{\partial z^{p}}{\partial x^{m}} \\ \frac{\partial y^{1}}{\partial x^{1}} \cdots \frac{\partial y^{1}}{\partial x^{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial y^{m}}{\partial x^{1}} \cdots \frac{\partial y^{m}}{\partial x^{n}} \end{pmatrix}, \quad (5)$$

 $\frac{\partial z^{\mu}}{\partial x^{a}} = \sum_{i=1}^{m} \frac{\partial z^{\mu}}{\partial y^{i}} \frac{\partial y^{i}}{\partial x^{a}},$ (6)

Where it is assumed that the dependence of $y \in \square^m$ on $x \in \square^n$ is given by the map F, the dependence of $z \in \square^p$ on $y \in \square^m$ is given by the map G, and the dependence of $z \in \square^p$ on $x \in \square^n$ is given by the composition GoF.

Definition 1.6. Consider an open domain $U \subset \square^n$. Consider also another copy of \square^n , denoted for distinction \square_y^n , with the standard coordinates $(y^1...y^n)$. A system of coordinates in the open domain U is given by a map $F: V \to U$, where $V \subset \square_y^n$ is an open domain of \square_y^n , such that the following three conditions are satisfied :

- (1) F is smooth;
- (2) F is invertible;
- (3) $F^{-1}: U \to V$ is also smooth

The coordinates of a point $x \in U$ in this system are the standard coordinates of $F^{-1}(x) \in \square_y^n$ In other words,

$$F:(y^{1}...,y^{n}) \mapsto x = x(y^{1}...,y^{n})$$
(1)

Here the variables $(y^1..., y^n)$ are the "new" coordinates of the point x

Example 1.2. Consider a curve in \square^2 specified in polar coordinates as

Issn 2250-3005(online)	November 2012	Page 545

.

 $\begin{aligned} x(t): r &= r(t), \varphi = \varphi(t) \\ \text{We can simply use the chain rule. The map} \\ t &\mapsto x(t) \text{ can be considered as the composition of} \\ \text{the maps} \quad t \mapsto (r(t), \varphi(t)), (r, \varphi) \mapsto x(r, \varphi) \\ \text{Then, by the chain rule, we have} \end{aligned}$

$$\dot{x} = \frac{dx}{dt} = \frac{\partial x}{\partial r}\frac{dr}{dt} + \frac{\partial x}{\partial \varphi}\frac{d\varphi}{dt} = \frac{\partial x}{\partial r}r + \frac{\partial x}{\partial \varphi}\dot{\varphi} \qquad (2$$

Here *r* and φ are scalar coefficients depending on *t*, whence the partial derivatives $\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi}$ are

vectors depending on point in \Box^2 . We can compare this with the formula in the "standard" coordinates:

$$x = e_1 x + e_2 y consider the vectors
\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi}. Explicitly we have
\frac{\partial x}{\partial r} = (\cos \varphi, \sin \varphi) (3)
\frac{\partial x}{\partial \varphi} = (-r \sin \varphi, r \cos \varphi) (4)$$

From where it follows that these vectors make a basis at all points except for the origin (where r = 0). It is instructive to sketch a picture, drawing vectors corresponding to a point as starting from that point. Notice that $\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi}$ are, respectively, the velocity vectors for the curves $r \mapsto x(r, \varphi)$ $(\varphi = \varphi_0 \ fixed)$ and

 $\varphi \mapsto x(r, \varphi) \ (r = r_0 \ fixed)$. We can conclude that for an arbitrary curve given in polar coordinates

the velocity vector will have components (r, φ) if as a basis we take $e_r := \frac{\partial x}{\partial r}, e_{\varphi} := \frac{\partial x}{\partial \varphi}$:

$$x = e_r r + e_{\varphi} \varphi \tag{5}$$

A characteristic feature of the basis e_r, e_{φ} is that it is not "constant" but depends on point. Vectors "stuck to points" when we consider curvilinear coordinates.

Proposition 1.3. The velocity vector has the same appearance in all coordinate systems.

Proof. Follows directly from the chain rule and the transformation law for the basis e_i . In particular, the elements of the basis $e_i = \frac{\partial x}{\partial x^i}$ (originally, a formal notation) can be understood directly as the velocity vectors of the coordinate lines

 $x^i \mapsto x(x^1, ..., x^n)$ (all coordinates but x^i are fixed). Since we now know how to handle velocities in arbitrary coordinates, the best way to treat the differential of a map $F : \square^n \to \square^m$ is by its action on the velocity vectors. By definition, we set

$$dF(x_0): \frac{dx(t)}{dt}(t_0) \mapsto \frac{dF(x(t))}{dt}(t_0)$$
(1)

Now $dF(x_0)$ is a linear map that takes vectors attached to a point $x_0 \in \square^n$ to vectors attached to the point $F(x) \in \square^m$

$$dF = \frac{\partial F}{\partial x^{1}} dx^{1} + \dots + \frac{\partial F}{\partial x^{n}} dx^{n}$$

$$(e_{1}, \dots, e_{m}) \begin{pmatrix} \frac{\partial F^{1}}{\partial x^{1}} \dots \frac{\partial F^{1}}{\partial x^{n}} \\ \dots & \dots & \dots \\ \frac{\partial F^{m}}{\partial x^{1}} \dots \frac{\partial F^{m}}{\partial x^{n}} \end{pmatrix} \begin{pmatrix} dx^{1} \\ \dots \\ dx^{n} \end{pmatrix}, \qquad (2)$$

In particular, for the differential of a function we always have

$$df = \frac{\partial f}{\partial x^1} dx^1 + \dots + \frac{\partial f}{\partial x^n} dx^n, \qquad (3)$$

Where x^{i} are arbitrary coordinates. The form of the differential does not change when we perform a change of coordinates.

Example 1.3 Consider a 1-form in \square^2 given in the standard coordinates:

A = -ydx + xdy In the polar coordinates we will have $x = r \cos \varphi$, $y = r \sin \varphi$, hence $dx = \cos \varphi dr - r \sin \varphi d\varphi$ $dy = \sin \varphi dr + r \cos \varphi d\varphi$ Substituting into A, we get $A = -r \sin \varphi (\cos \varphi dr - r \sin \varphi d\varphi)$ $+r \cos \varphi (\sin \varphi dr + r \cos \varphi d\varphi)$ $= r^2 (\sin^2 \varphi + \cos^2 \varphi) d\varphi = r^2 d\varphi$ Hence $A = r^2 d\varphi$ is the formula for A in the polar coordinates. In particular, we see that this is again a 1-form, a linear combination of the

differentials of coordinates with functions as coefficients. Secondly, in a more conceptual way, we can define a 1-form in a domain U as a linear function on vectors at every point of U: $\omega(\upsilon) = \omega_1 \upsilon^1 + ... + \omega_n \upsilon^n$, (1)

If $\upsilon = \sum e_i \upsilon^i$, where $e_i = \frac{\partial x}{\partial x^i}$. Recall that the differentials of functions were defined as linear functions on vectors (at every point), and $dx^i(e_j) = dx^i \left(\frac{\partial x}{\partial x^j}\right) = \delta_j^i$ (2) at

every point x.

Theorem 1.9. For arbitrary 1-form ω and path γ , the integral $\int_{\gamma} \omega$ does not change if we change parametrization of γ provide the orientation remains the same.

Proof: Consider
$$\left\langle \omega(x(t)), \frac{dx}{dt} \right\rangle$$
 and $\left\langle \omega(x(t(t'))), \frac{dx}{dt'} \right\rangle$ As $\left\langle \omega(x(t(t'))), \frac{dx}{dt'} \right\rangle = \left| \left\langle \omega(x(t(t'))), \frac{dx}{dt'} \right\rangle \cdot \frac{dt}{dt'},$

Let p be a rational prime and let $K = \Box (\zeta_p)$. We write ζ for ζ_p or this section. Recall that K has degree $\varphi(p) = p - 1$ over \Box . We wish to show that $O_K = \Box [\zeta]$. Note that ζ is a root of $x^p - 1$, and thus is an algebraic integer; since O_K is a ring we have that $\Box [\zeta] \subseteq O_K$. We give a proof without assuming unique factorization of ideals. We begin with some norm and trace computations. Let j be an integer. If j is not divisible by p, then ζ^j is a primitive p^{th} root of unity, and thus its conjugates are $\zeta, \zeta^2, ..., \zeta^{p-1}$. Therefore

$$Tr_{K/2}(\zeta^{j}) = \zeta + \zeta^{2} + \dots + \zeta^{p-1} = \Phi_{p}(\zeta) - 1 = -1$$

If *p* does divide *j*, then $\zeta^{j} = 1$, so it has only the one conjugate 1, and $Tr_{K/\Box}(\zeta^{j}) = p-1$ By linearity of the trace, we find that

$$Tr_{K/\Box} (1-\zeta^{p}) = Tr_{K/\Box} (1-\zeta^{2}) = .$$

= $Tr_{K/\Box} (1-\zeta^{p-1}) = p$

We also need to compute the norm of $1-\zeta$. For this, we use the factorization

$$x^{p-1} + x^{p-2} + \dots + 1 = \Phi_p(x)$$

= $(x - \zeta)(x - \zeta^2) \dots (x - \zeta^{p-1});$
Plugging in $x = 1$ shows that

 $p = (1 - \zeta)(1 - \zeta^2)...(1 - \zeta^{p-1})$

Since the $(1-\zeta^{j})$ are the conjugates of $(1-\zeta)$, this shows that $N_{K/\Box}(1-\zeta) = p$ The key result for determining the ring of integers O_{K} is the following.

LEMMA 1.9

$$(1-\zeta)O_K \cap \Box = p\Box$$

Proof. We saw above that p is a multiple of $(1-\zeta)$ in O_{κ} , so the inclusion $(1-\zeta)O_{\kappa} \cap \Box \supseteq p\Box$ is immediate. Suppose now that the inclusion is strict. Since $(1-\zeta)O_{\kappa}\cap\square$ is an ideal of \square containing $p\square$ and $p\Box$ is a maximal ideal of \Box , we must have $(1-\zeta)O_{\kappa}\cap\Box=\Box$ Thus we can write $1 = \alpha(1 - \zeta)$

For some $\alpha \in O_K$. That is, $1-\zeta$ is a unit in O_K .

COROLLARY 1.1 For any
$$\alpha \in O_K$$
,
 $Tr_{K/\Box} ((1-\zeta)\alpha) \in p \Box$
PROOF. We have

$$Tr_{K/\Box} ((1-\zeta)\alpha) = \sigma_{1}((1-\zeta)\alpha) + ... + \sigma_{p-1}((1-\zeta)\alpha)$$
$$= \sigma_{1}(1-\zeta)\sigma_{1}(\alpha) + ... + \sigma_{p-1}(1-\zeta)\sigma_{p-1}(\alpha)$$
$$= (1-\zeta)\sigma_{1}(\alpha) + ... + (1-\zeta^{p-1})\sigma_{p-1}(\alpha)$$

Where the σ_i are the complex embeddings of K (which we are really viewing as automorphisms of K) with the usual ordering. Furthermore, $1-\zeta^j$ is a multiple of $1-\zeta$ in O_K for every $j \neq 0$. Thus $Tr_{K/\Box} (\alpha(1-\zeta)) \in (1-\zeta)O_K$ Since the trace is also a rational integer.

PROPOSITION 1.4 Let p be a prime number and let $K = |\Box (\zeta_p)$ be the p^{th} cyclotomic field. Then $O_K = \Box [\zeta_p] \cong \Box [x] / (\Phi_p(x));$ Thus $1, \zeta_p, ..., \zeta_p^{p-2}$ is an integral basis for O_K . PROOF. Let $\alpha \in O_K$ and write $\alpha = a_0 + a_1 \zeta + \dots + a_{p-2} \zeta^{p-2}$ Then

$$\alpha(1-\zeta) = a_0(1-\zeta) + a_1(\zeta-\zeta^2) + \dots + a_{p-2}(\zeta^{p-2}-\zeta^{p-1})$$

With $a_i \in \square$.

By the linearity of the trace and our above calculations we find that $Tr_{K/\Box} (\alpha(1-\zeta)) = pa_0$ We also have

 $Tr_{K/\Box} (\alpha(1-\zeta)) \in p\Box$, so $a_0 \in \Box$ Next consider the algebraic integer

 $(\alpha - a_0)\zeta^{-1} = a_1 + a_2\zeta + ... + a_{p-2}\zeta^{p-3}$; This is an algebraic integer since $\zeta^{-1} = \zeta^{p-1}$ is. The same argument as above shows that $a_1 \in \Box$, and continuing in this way we find that all of the a_i are in \Box . This completes the proof.

Example 1.4 Let $K = \Box$, then the local ring $\Box_{(n)}$ is simply the subring of \Box of rational numbers with denominator relatively prime to p. Note that this ring $\square_{(p)}$ is not the ring \square_p of p -adic integers; to get \square_{n} one must complete $\square_{(n)}$. The usefulness of $O_{K,n}$ comes from the fact that it has a particularly simple ideal structure. Let a be any proper ideal of $O_{K,p}$ and consider the ideal $a \cap O_K$ of O_K . We claim that $a = (a \cap O_K)O_{K,p}$; That is, that a is generated by the elements of a in $a \cap O_{\kappa}$. It is clear from the definition of an ideal that $a \supseteq (a \cap O_K) O_{K,p}$. To prove the other inclusion, let α be any element of a. Then we can write $\alpha = \beta / \gamma$ where $\beta \in O_K$ and $\gamma \notin p$. In particular, $\beta \in a$ (since $\beta / \gamma \in a$ and a is an ideal), so $\beta \in O_{\kappa}$ and $\gamma \notin p$. so $\beta \in a \cap O_{\kappa}$. $1/\gamma \in O_{K,p}$, this implies Since that $\alpha = \beta / \gamma \in (a \cap O_K)O_{K,p}$, as claimed. We can use this fact to determine all of the ideals of O_{K_n} . Let *a* be any ideal of $O_{K,p}$ and consider the ideal factorization of $a \cap O_K$ in O_K , write it as $a \cap O_{\kappa} = p^{n}b$ For some *n* and some ideal *b*, relatively prime to p. we claim first that $bO_{K,p} = O_{K,p}$. We now find that

 $a = (a \cap O_K)O_{K,p} = p^n bO_{K,p} = p^n O_{K,p}$ Since $bO_{K,p}$. Thus every ideal of $O_{K,p}$ has the form $p^n O_{K_n}$ for some *n*; it follows immediately that O_{K_n} is noetherian. It is also now clear that $p^n O_{K,p}$ is the unique non-zero prime ideal in $O_{K,p}$. Furthermore, the inclusion $O_K \mapsto O_{K,p} / pO_{K,p}$ Since $pO_{K,p} \cap O_K = p$, this map is also surjection, since the residue class of $\alpha / \beta \in O_{K_n}$ (with $\alpha \in O_{\kappa}$ and $\beta \notin p$) is the image of $\alpha \beta^{-1}$ in $O_{K/p}$, which makes sense since β is invertible in $O_{K/p}$. Thus the map is an isomorphism. In particular, it is now abundantly clear that every nonzero prime ideal of $O_{K,p}$ is maximal. To show that O_{K_n} is a Dedekind domain, it remains to show that it is integrally closed in K. So let $\gamma \in K$ be a root of a polynomial with coefficients in $O_{K,p};$ write polynomial this as $x^{m} + \frac{\alpha_{m-1}}{\beta_{m-1}} x^{m-1} + \dots + \frac{\alpha_{0}}{\beta_{0}} \quad \text{With} \quad \alpha_{i} \in O_{K}$ and $\beta_i \in O_{K-p}$. Set $\beta = \beta_0 \beta_1 \dots \beta_{m-1}$. Multiplying by β^m we find that $\beta\gamma$ is the root of a monic polynomial with coefficients in O_{κ} . Thus $\beta \gamma \in O_{\kappa};$ since $\beta \notin p$, we have $\beta \gamma / \beta = \gamma \in O_{K,p}$. Thus $O_{K,p}$ is integrally close in KCOROLLARY 1.2. Let K be a number field of degree *n* and let α be in O_{κ} then $N_{K/\Box}(\alpha O_{K}) = |N_{K/\Box}(\alpha)|$

PROOF. We assume a bit more Galois theory than usual for this proof. Assume first that K/\Box is Galois. Let σ be an element of $Gal(K/\Box)$. It is that $\sigma(O_{K}) / \sigma(\alpha) \cong O_{K/\alpha};$ clear since $\sigma(O_{\kappa}) = O_{\kappa},$ this shows that $N_{K/\Box}^{'}(\sigma(\alpha)O_{K}) = N_{K/\Box}^{'}(\alpha O_{K})$. Taking the product over all $\sigma \in Gal(K/\Box)$, we have $N_{K/\Gamma}(N_{K/\Gamma}(\alpha)O_{K}) = N_{K/\Gamma}(\alpha O_{K})^{n}$ Since $N_{_{K/\!\square}}(lpha)$ is a rational integer and $O_{_K}$ is a free \square module of rank n,

 $O_{_{K}} / N_{_{K/\square}}(\alpha) O_{_{K}}$ Will have order $N_{_{K/\square}}(\alpha)^{^{n}}$; therefore

$$N_{K/\Box} (N_{K/\Box} (\alpha) O_K) = N_{K/\Box} (\alpha O_K)^n$$

This completes the proof. In the general case, let L be the Galois closure of K and set [L:K] = m.

D. PV Microgrid

Currently the relatively low penetration levels of renewable systems cause few problems. As penetration becomes greater the availability of sun becomes a greater problem requiring central generation to provide the power backup. Such systems are intermittent and can cause similar stability problems found with intermittent loads such as rolling mills and arc furnaces. Central generation or DER units are required to smooth out power fluctuations from these renewable sources. In any case there is a need for reserves when there is no sun. An obvious solution includes DER units on the distribution system. Without storage and/or local generation there is a technical limit to the amount of PV generation on the distribution system. Systems with high levels of PV penetration need to be supplemented with local Bdispatchable[resources such as storage and local generation to fill-in for temporary loss of solar energy. PV microgrids can be designed for high export of PV energy without the short-term problems associated with intermittent power fluctuations. The DER units in a PV microgrid can have multi-roles such as control of real and reactive power flow between the microgrid and distribution system, power fill-in when intermittent generation is not available and local load support during islanding. Typically a PV micorgrid has photovoltaic energy for export, local generation and/or storage. The generation and storage provide the fill-in energy required to smooth out or shape the power provided to the distribution system. The inverter based AC storage allows the generation to be connected directly to the microgrid without an inverter. If storage is not used the generation need the fast response provided through an inverter interface. Islanding a PV microgrid has special issues. For example a PV microgrid may have PV power levels greater than the loading when islanded. This requires either high storage capacity to absorb the extra energy or have methods of reducing the power output of the solar panel. The power vs. frequency droop controller provides an elegant method of backing off the solar output during low load islanding. An island with excess generation will experience an increase in frequency which autonomously reduces the output of generation, moves storage to a charging mode and smoothly backs off the PV output as necessary

E. Customer Driven Microgrid

Electric power microgrids are self-contained subsets of an area electric power system with access

to distribution system assets for serving local loads using distributed energy sources that can function in one of two modes, viz., grid-tied and islanded [11], [13]. Microgrids are credited with supplying local loads with high reliability of supply and panoply of ancillary services including voltage and frequency regulation, on-demand power quality, and provision of reserves [11], [15], [16], [17]. In contemporary systems, electric power microgrids are classified as either utility microgrids, or industrial/commercial microgrids, or remote microgrids depending on ownership, service requirements, and types and ratings of load served [17]. Utility microgrids serve central urban downtown loads such as business districts: industrial microgrids serve large industrial loads with high power quality and reliability requirements; and remote microgrids serve loads in rural regions that may not be suitable for laying dedicated cables and feeders [11], [18]. A new paradigm of electric power microgrids known as the customer-driven microgrid is currently being investigated as a solution for introducing the advantages of microgrid deployments to the distribution customer. In this emerging paradigm, the customer (residential or commercial) possesses the key to the functionalities of the microgrid within economic, technical, and social constraints. In times when high penetration of renewables like installations is expected in photovoltaic the distribution realm [19], the customer-driven microgrid is projected to play a significant role in the management and utilization of electric energy at the distribution end. While the proliferation of renewable energy sources in the distribution side of the grid may occur in a disordered manner, the concept of customer-driven microgrid- governed by common rules for integration and engagement between the distribution utility and the customers- may help in reducing the impact of largely uncoordinated generation sources on the distribution end [11]. The customer-driven microgrid, like the other paradigms of microgrid, can work in one of two modes: gridtied or islanded. The difference between the customer-driven paradigm from the other microgrids is that the customer-driven microgrid mode of operation is decided based on a set of community rules that govern the functionalities of its components, much like the rules of a condominium or a home owners association in the US. In the gridtied mode, the customer-driven microgrid will participate as a single entity in its interactions with the grid while a central entity within the customer driven microgrid performs the functions of arbitration and generating reference points for the constituents loads and generation committed to scheduling. In the islanded mode, the central entity of the customerdriven microgrid determines the optimum mix of loads and generation for maintaining a certain level of reliability within the microgrid and issues signals to the constituents to perform load shedding and/or

generation services. Those constituents unwilling to participate within the microgrid- in either mode- are removed from the purview of the central entity. Such distributed generation sources and their loads can interact independently with the grid or serve their own electrical demands in the grid isolated mode. Some of the aspects of the customer-driven microgrid include: pervasive installations of renewable energy sources with small ratings; schedulable loads; distributed control [20]; a secure communication network such as home area network enabled using smart meters [21]; advanced power electronic interfaces for efficient and seamless interconnection to and disconnection from the grid [22]; and an enduser energy management scheme for economic incentives [23], [24]. Many of enabling technologies for the above mentioned attributes of a customerdriven microgrid were presented in detail in a panel at the 2009 IEEE Power & Energy Society's General Meeting in Calgary, Canada [11], [17], [20], [22], [23], [24]. An interesting component of the customerdriven microgrid is distributed storage (DS). The following section describes the use of distributed storage and its applications in the microgrid milieu.

F. Microgrid Controllers

According to the selected architecture of MG and the communication network devices, the MG controllers can be defined as follows: the AP is placed at the MGCC, there is one ED in each LC and MC and, if necessary, these EDs could also act as REs. Microgrid Central Controller/Access Point The MGCC, as the most important device of the management system, incorporates the AP. Physically, in the proposed architecture, the MGCC is a microcontroller based system. It must process the information received via radio from LCs and MCs in order to calculate the power balance in the MG, and the measures of the PCC voltage to detect the islanding. Afterwards, the MGCC sends the commands to the corresponding LC or MC in order to connect/disconnect a load (according with the programmed priority) or to increase/decrease the generation. Fig. 4 shows the block diagram of the MGCC/AP set.

G. Survival Topology Design for SMGN

In any EPS, reliable service is the primary concern because electrical services are not tolerant to interruption. Reliability and survivability have been extensively studied in telecommunication networks; therefore, we first revisit the solutions that have been proposed for survivable design of telecommunication networks [10]. Survivability schemes can be grouped into two classes, proactive or reactive, where the former corresponds to protection and the latter to restoration. Protection stands for configuring the network beforehand in such a way that it can stay in working condition in case of a failure; in restoration, the network is restored after a failure. Restoration is not in the scope of our article, so we only focus on protection approaches in the backbone and metroaccess networks. Survivability for backbone networks can be realized in various ways, such as dedicated protection, shared protection, shared segment protection, and preconfigured protection cycles (p-cycles). In dedicated protection, a link disjoint backup path is designated to protect the working path. In the context of an SMGN, a failure will correspond to the case when the DERs of an SMG are not capable of supporting the load on the same SMG. Therefore, dedicated path protection corresponds to having fully charged batteries of capacities equal to the maximum load in each SMG. In practice, dedicated protection is not feasible since large-scale storage technologies are costly and occupy a large physical space. On the other hand, shared path protection reserves one link/node disjoint backup path for several working paths. Shared path protection corresponds to having an idle storage capacity that can accommodate the maximum load of the SMGs. This protection is not practical as well, since the need for capacity will correspond to the same timeframe in all SMGs (i.e., peak hours), whereas in telecom networks, having a large number of simultaneous failures is not common. In a shared segment protection scheme, the primary path is divided into a number of segments, and each segment is protected by a separate backup subpath. This approach suffers from the same problem as shared path protection. Furthermore, it reserves more backup resources than shared path protection does, and hence may lead to more blocking in a resource-constrained environment and under uncertainty of the future demands. P-cycles form a cycle over the underlying physical topology where oncycle and straddling spans of the working path are protected in different ways. The p-cycle approach appears promising for SMGNs; however, it introduces the scalability problem. In fact, most of the survivability schemes proposed for the backbone aim to protect the traffic against any failure between source and destination nodes. However, in the SMGN concept, a failure refers to insufficient energy generation. Hence, backbone survivability schemes are unlikely to form a basis for the reliable overlay topology design of SMGNs. Another survivability approach proposed for metro-access networks is based on forming survivable clusters of access networks [11]. In [11], the authors consider a number of fiberwireless (Fi-Wi) access networks where each optical back-end segment consists of a passive optical network (PON) technology with a number of ONUs that are connected to an optical line terminal (OLT). The Fi-Wi access networks are grouped into clusters in order to allow some of the lightly loaded OLTs to sleep and save power. The PON segments in each cluster are connected through fiber links forming a ring topology (i.e., survivable multiple disconnected rings). Developing an analogy between a single PON

segment in the Fi-Wi network and an SMG, this approach seems to be promising for SMGNs since it can provision renewable resources effectively, and hence is survivable. In the next section, we present our reliable overlay topology design approach for the SMGN which inherits the multiple disconnected ring concepts from [11].

H. A Reliable Overalay Topology Design for the SMGN

The overlay topology of the SMGN can be represented as a dynamic graph, $G(t) = \{V, E(t)\},\$ where V is the set of SMGs and E(t) is the set of logical links among SMGs. The number of SMGs do not vary within the timescale considered in this article and |V| = N. We assume that the overlay topology is recalculated in periodic cycles based on the predicted loads and generation. A link between two SMGs, $(u, v) \in E(t)$, means that SMGs u and v can share the stored capacity on their storage banks. Once again, the storage banks denote the total distributed storage units within an SMG, and they are used to store the excess energy produced from renewable resources. Energy produced by nonrenewable generators (e.g. diesel generators, engine generators) is stored only for regulation purposes, and in negligibly small amounts. To design a reliable overlay topology for the SMGN, we propose to cluster the SMGs such that the total capacity of the storage banks in cluster i will be equal or larger than the total load: \Box Ki=1 SBi where K \leq N. We assume the generation varies slightly since wind generation can be dominant during night and solar generation during the day, and we can assume that their total output, Gi, does not vary significantly. Load basically follows natural consumer activity: it increases in the downtown area during the day, and during evenings it increases in residential and campus areas. Since load varies in time, it will impact the formation of the clusters. Load of SMGi is denoted by Li(t). We consider a physical area of mXm where N SMGs operate, and the SMGs are divided into three classes based on the type of the area they cover: downtown, campus, and residential SMGs. The number of downtown, campus, and residential SMGs are denoted D, C, and R, respectively. Our clustering method consists of two steps. The first step formulates an integer linear programming (ILP) model in order to cluster the SMGs. The objective function of the optimization model is shown in Eq. 1. In the objective function $\Box j$ i denotes a binary variable, which is one if and only if the two SMGs, SMGi and SMGj are on the same cluster. Hence, the objective function aims to minimize the number of SMGs on each cluster. This corresponds to increasing the manageability of the clusters where the constraints of the ILP enforce that the members of the clusters are selected such that the renewable energy generation in one SMG is consumed in another SMG, and hence not wasted. (1) The ILP

formulation starts with an overestimated number of clusters. It uses binary variables to denote whether SMGi is located on cluster $r (\Box r i)$, whether two SMGs coexist in the same cluster, and whether two SMGs coexist in a specific cluster. First, for each SMG, the total unutilized energy on the cluster where the SMG is located is constrained to be larger than the usage of the corresponding SMGs. Hence, energy supply and survivability are guaranteed at the same time. Total unutilized energy denotes the difference between the total energy generated and consumed by the other SMGs in the same cluster. This constraint is formulated by Eq. 2.

I. Authors and Affiliations

Dr Akash Singh is working with IBM Corporation as an IT Architect and has been designing Mission Critical System and Service Solutions; He has published papers in IEEE and other International Conferences and Journals.

He joined IBM in Jul 2003 as a IT Architect which conducts research and design of High Performance Smart Grid Services and Systems and design mission critical architecture for High Performance Computing Platform and Computational Intelligence and High Speed Communication systems. He is a member of IEEE (Institute for Electrical and Electronics Engineers), the AAAI (Association for the Advancement of Artificial Intelligence) and the AACR (American Association for Cancer Research). He is the recipient of numerous awards from World Congress in Computer Science, Computer Engineering and Applied Computing 2010, 2011, and IP Multimedia System 2008 and Billing and Roaming 2008. He is active research in the field of Artificial Intelligence and advancement in Medical Systems. He is in Industry for 18 Years where he performed various role to provide the Leadership in Information Technology and Cutting edge Technology.

REFERENCES

- Dynamics and Control of Large Electric Power Systems. Ilic, M. and Zaborszky, J. John Wiley & Sons, Inc. © 2000, p. 756.
- [2] Modeling and Evaluation of Intrusion Tolerant Systems Based on Dynamic Diversity Backups. Meng, K. et al. Proceedings of the 2009 International Symposium on Information Processing (ISIP'09). Huangshan, P. R. China, August 21-23, 2009, pp. 101–104
- [3] Characterizing Intrusion Tolerant Systems Using A State Transition Model. Gong, F. et al., April 24, 2010.
- [4] Energy Assurance Daily, September 27, 2007. U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, Infrastructure Security and Energy Restoration Division. April 25, 2010.

- [5] CENTIBOTS Large Scale Robot Teams. Konoledge, Kurt et al. Artificial Intelligence Center, SRI International, Menlo Park, CA 2003.
- [6] Handling Communication Restrictions and Team Formation in Congestion Games, Agogino, A. and Tumer, K. Journal of Autonomous Agents and Multi Agent Systems, 13(1):97–115, 2006.
- [7] Robotics and Autonomous Systems Research, School of Mechanical, Industrial and Manufacturing Engineering, College of Engineering, Oregon State University
- [8] D. Dietrich, D. Bruckner, G. Zucker, and P. Palensky, "Communication and computation in buildings: A short introduction and overview," *IEEE Trans. Ind. Electron.*, vol. 57, no. 11, pp. 3577– 3584, Nov. 2010.
- [9] V. C. Gungor and F. C. Lambert, "A survey on communication networks for electric system automation," *Comput. Networks*, vol. 50, pp. 877–897, May 2006.
- [10] S. Paudyal, C. Canizares, and K. Bhattacharya, "Optimal operation of distribution feeders in smart grids," *IEEE Trans. Ind. Electron.*, vol. 58, no. 10, pp. 4495–4503, Oct. 2011.
- [11] D. M. Laverty, D. J. Morrow, R. Best, and P. A. Crossley, "Telecommunications for smart grid: Backhaul solutions for the distribution network," in *Proc. IEEE Power* and Energy Society General Meeting, Jul. 25–29, 2010, pp. 1–6.
- [12] L. Wenpeng, D. Sharp, and S. Lancashire, "Smart grid communication network capacity planning for power utilities," in *Proc. IEEE PES, Transmission Distrib. Conf. Expo.*, Apr. 19–22, 2010, pp. 1–4.
- [13] Y. Peizhong, A. Iwayemi, and C. Zhou, "Developing ZigBee deployment guideline under WiFi interference for smart grid applications," *IEEE Trans. Smart Grid*, vol. 2, no. 1, pp. 110–120, Mar. 2011.
- [14] C. Gezer and C. Buratti, "A ZigBee smart energy implementation for energy efficient buildings," in *Proc. IEEE 73rd Veh. Technol. Conf. (VTC Spring)*, May 15–18, 2011, pp. 1–5.
- [15] R. P. Lewis, P. Igic, and Z. Zhongfu, "Assessment of communication methods for smart electricity metering in the U.K.," in *Proc. IEEE PES/IAS Conf. Sustainable Alternative Energy (SAE)*, Sep. 2009, pp. 1–4.
- [16] A. Yarali, "Wireless mesh networking technology for commercial and industrial customers," in *Proc. Elect. Comput. Eng.*, *CCECE*, May 1–4, 2008, pp. 000047– 000052.

- [17] M. Y. Zhai, "Transmission characteristics of low-voltage distribution networks in China under the smart grids environment," *IEEE Trans. Power Delivery*, vol. 26, no. 1, pp. 173–180, Jan. 2011.
- [18] V. Paruchuri, A. Durresi, and M. Ramesh, "Securing powerline communications," in *Proc. IEEE Int. Symp. Power Line Commun. Appl.*, (ISPLC), Apr. 2–4, 2008, pp. 64–69.
- [19] Q.Yang, J. A. Barria, and T. C. Green, "Communication infrastructures for distributed control of power distribution networks," *IEEE Trans. Ind. Inform.*, vol. 7, no. 2, pp. 316–327, May 2011.
- [20] T. Sauter and M. Lobashov, "End-to-end communication architecture for smart grids," *IEEE Trans. Ind. Electron.*, vol. 58, no. 4, pp. 1218–1228, Apr. 2011.
- [21] K. Moslehi and R. Kumar, "Smart grid—A reliability perspective," *Innovative Smart Grid Technologies (ISGT)*, pp. 1–8, Jan. 19–21, 2010.
- [22] Southern Company Services, Inc., "Comments request for information on smart grid communications requirements," Jul. 2010
- [23] R. Bo and F. Li, "Probabilistic LMP forecasting considering load uncertainty," *IEEE Trans. Power Syst.*, vol. 24, pp. 1279–1289, Aug. 2009.
- [24] Power Line Communications, H. Ferreira, L. Lampe, J. Newbury, and T. Swart (Editors), Eds. New York: Wiley, 2010.
- [25] G. Bumiller, "Single frequency network technology for fast ad hoc communication networks over power lines," WiKu-Wissenschaftsverlag Dr. Stein 2010.
- [31] G. Bumiller, L. Lampe, and H. Hrasnica, "Power line communications for large-scale control and automation systems," *IEEE Commun. Mag.*, vol. 48, no. 4, pp. 106– 113, Apr. 2010.
- [32] M. Biagi and L. Lampe, "Location assisted routing techniques for power line communication in smart grids," in *Proc. IEEE Int. Conf. Smart Grid Commun.*, 2010, pp. 274–278.
- [33] J. Sanchez, P. Ruiz, and R. Marin-Perez, "Beacon-less geographic routing made partical: Challenges, design guidelines and protocols," *IEEE Commun. Mag.*, vol. 47, no. 8, pp. 85–91, Aug. 2009.
- [34] N. Bressan, L. Bazzaco, N. Bui, P. Casari, L. Vangelista, and M. Zorzi, "The deployment of a smart monitoring system using wireless sensors and actuators networks," in *Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm)*, 2010, pp. 49–54.

- [35] S. Dawson-Haggerty, A. Tavakoli, and D. Culler, "Hydro: A hybrid routing protocol for low-power and lossy networks," in *Proc. IEEE Int. Conf. Smart Grid Commun.* (*SmartGridComm*), 2010, pp. 268–273.
- [36] S. Goldfisher and S. J. Tanabe, "IEEE 1901 access system: An overview of its

uniqueness and motivation," *IEEE Commun. Mag.*, vol. 48, no. 10, pp. 150–157, Oct. 2010.

[37] V. C. Gungor, D. Sahin, T. Kocak, and S. Ergüt, "Smart grid communications and networking," Türk Telekom, Tech. Rep. 11316-01, Apr 2011.