

Prostate Cancer Detection and Localization

Akash K Singh, PhD IBM Corporation Sacramento, California, USA

Abstract

Diffusion-weighted imaging (DWI) of the human with 1.5T MRI gives the insight of Prostate Cancer Tissue details. DWI is now used also for other Liver, Kidney, and Heart Imaging than the brain, and especially focused on detection of Cancer Tissues in prostate.1H-MR spectroscopy technique is used to detect and localize prostate cancer. One difficult sight of 1.5T prostate spectroscopy is the use of a special, endorectal coil, it is a thin wire covered with a latex balloon and inserted inside the tail end of the large bowel which is rectum. We detected and identified the prostate cancer by DWI and 3D 1H-MRS with a external phase arrayed multicoils, this is optimal tumor invasion through bowel wall and adjacent organs.

Keywords- Prostate Cancer, MRI and DWI

I. INTRODUCTION

The Magnetic resonance imaging (MRI) is the most common in imaging the patient with Prostate Cancer, Imaging provides the Localization of Tumor, this used to be known as magnetic resonance tomography (MRT) or, in chemistry nuclear magnetic resonance (NMR), it is a noninvasive method used to render images of the Tissues. It is primarily used in medical imaging to demonstrate Tissue function and anatomy details, pathological or other physiological changes of living tissues. MRI also has uses outside of the medical field, such as detecting minute cracks in High Energy Instruments and Industrial Engineering. Medical MRI is based on the relaxation properties of excited hydrogen nuclei in water and lipids. When the patient to be imaged is exposed to highly uniform magnetic field, the spins of atomic nuclei with a resulting non-zero spin have to arrange in a specific orientation with the applied magnetic field. The Nuclei of hydrogen atoms (= protons) have a simple spin 1/2 and therefore align either parallel or anti-parallel to the applied magnetic field strength. The most common magnetic field strengths range from 0.3 to 3.5 T, although field strengths as high as 10 T/ 40 T are used for Ultra High Energy Systems and Anti gravity projects. Commercial suppliers are investing in 7 T platforms that can be used for Human body scanning, some of the hospitals are using for detection of Brain Cancer and guidance for Surgery. We on earth experience magnetic field that averages around 50 pT, that is less than 1/100,000 times the field strength of a typical MRI machines.

Nuclei Spin polarization determines the basic MRI signal strength that is applied on the subject. Specific to associated protons, it refers to the population difference of the energy states that are associated with the parallel and antiparallel alignment of the proton spins in the magnetic field and governed Boltzmann's statistics attributes applied to generate the magnetic field. An applied 1.5 T magnetic field refers to only about one in a million nuclei and the thermal energy far exceeds the energy difference between the parallel and antiparallel states of the particles. High number of nuclei in a small volume sum to produce a detectable change in magnetic field that is applied to generate then image of an organ. The Most basic explanations of MRI will say that the nuclei align parallel or antiparallel with the static magnetic field, because of quantum mechanical reasons, the individual nuclei are actually set off at an angle from the direction of the static magnetic field produced by the phased arrayed coils. Collection of nuclei can be partitioned into a set whose sum spin are aligned parallel and a set whose sum spin are anti-parallel, and could create magnetic field that is safe. Magnetic dipole moment of the nuclei then precesses around the axial field of the grid coils. The proportion is nearly equal, slightly more are oriented at the low energy angle and the frequency with which the dipole moments precess is called the Larmor frequency. Human tissue is then exposed to pulses of electromagnetic energy (RF pulses) in a plane perpendicular to the magnetic field, causing some of the magnetically aligned hydrogen nuclei to assume a temporary nonaligned high-energy. The steady state equilibrium established in the static magnetic field that becomes perturbed and the population difference of the two energy levels is changed. The frequency of the pulses is governed by the Larmor equation to match the required energy difference between the two spin states. The hydrogen (1^AH) atom inside body possess "spin" in the absence of external magnetic field, the spin directions of all atoms are random and cancel each other. When placed in an external magnetic field, the spins align with the external field by applying an rotating magnetic field in the direction orthogonal to the static field, the spins can be pulled away from the z-axis with an angle \alpha, the bulk magnetization vector rotates around z at the Larmor frequency (precess). The precession relaxes gradually, with the xy-component reduces in time, zcomponent increases. The xy component of the

magnetization vector produces a voltage signal, which is the NMR signal.

The magnetic moment (μ) and the spin angular momentum vector (S)

 $\mu = \gamma S$ (1)

where the gyromagnetic ratio $\gamma = 2.675*108$ rad s-1 T-1

 $\gamma = \gamma/2\pi = 42.58$ MHz T-1. T is the *Tesla* unit of magnetic field.)

the net torque (N) on any current distribution is

 $N = \mu x B$

The system's total angular momentum from spin only must change according to (3)

(2)

dS/dt = N

Equations reduces to the general Bloch equation: $d\mu/dt = \gamma \mu \times B$ (4)

 $d\mu/dt$ is perpendicular to both μ and B, then in the event that μ and B are not aligned (e.g. after energy input into the system which drives the magnetised spin system into a state of resonance), μ must move in a circular path. This is precession.

Fig 1.0 Magnetized Spin System

 $|d\mu| = \mu \sin\theta |d\phi|$ (5)

 $d\mu = \gamma |\mu \mathbf{x} \mathbf{B}| dt = \gamma \mu B \sin\theta dt$ (6)

 $\gamma B dt = d\varphi$ with $B \equiv |\mathbf{B}|$ (7)

Rate of change of φ is the angular precessional frequency $\omega = -\gamma B$

(8)

$$\varphi = -\omega_0 t + \varphi_0,$$

where φ_0 is the initial angle, and since $\omega = -d\varphi/dt = -(-\omega_0)$ (9)Larmor equation (10) $\Box_0 = \Box B_0$ $(\gamma = \gamma/2\pi)$: $f_0 = \gamma B_0$ (11)

In order to appropriately image different image voxels of the subject, orthogonal magnetic gradients are applied to the patient. It is relatively common to apply gradients in the principal axes of a patient (so that the patient is imaged in x, y, and z from head to toe), MRI allows completely flexible orientations for images that are captured serially. Spatial encoding is obtained by applying magnetic field gradients which encode position within the phase of the signal distribution. With one dimension, a linear phase with respect to position can be obtained by collecting data in the presence of a magnetic field gradient produced by phased array coils. With 3D Imaging, a plane is defined by "slice selection", in which an RF pulse of defined bandwidth is applied in the presence of a magnetic field gradient in order to reduce spatial encoding to two dimensions (2D) Imaging. The Spatial encoding can then be applied in 2D after slice selection, or in 3D without slice selection that is performed in the stack images of 2D /3D images of the prostate cancer. The Spatially-encoded phases are recorded in a 2D or 3D matrix or we can use High Dimensional matrix with large set of data; this data represents the spatial frequencies of the image object that was imaged. The Images can be created from the matrix using the discrete Fourier transform (DFT) or other optimal Transform techniques. The medical resolution is about 1 mm³, while research models can exceed 0.0001 mm³. The Whole body MRI system is used for clinical imaging and Surgical Navigation. The clinical site with the MRI system uses 1.5T magnetic field, because it is safe but still studies have been done that talks about getting cancer from MRI Imaging 1 in 100,000 populations. Policies are developed by the IEC, FDA to provide safety but there is no qualification listed in Article for the people who operate the MRI Machines, many patients got the higher dose of radiation that is cause of their death. With the field strength, up to 3T is allowed in the guideline and most the clinics goes with low range MRI machines. The high strength magnetic field gives MRI to high Signal-Noise Ratio (SNR) which is good for Image segmentation and Registration and helps he surgeon to pin point the localization of Tumor. Chemical shift is twice lager than 1.5T's shift. The effect is good for MR spectroscopy (MRS) Imaging. 3T MRS is a well established clinical technique. MR Spectroscopy with brain region is established that can provide chemical properties of Tissues. MRS with body/abdomen/pelvis areas are not established, especially 3T. 3T-MRS study establishing in prostate region is mainly the theme of this work. On the other hand, new MRI technique is spreading widely and is useful in providing better images. MRI is using gradient magnet for imaging and Fast imaging, for example EPI, needs strong power gradient magnet coil. With the use of high power gradient coil the EPI imaging quality is better, the Diffusion-weighted imaging (DWI) of the human

Issn 2250-3005(online)

brain is well established with 1.5T MRI and DWI is now used also for other regions than the brain, and especially focused on prostate cancer detection as a promising tool. The 1H-MR spectroscopy of the human prostate has been used also for detection and localization of prostate cancer but one disadvantage of 1.5T prostate spectroscopy is the use of a special, endorectal coil and this research detected and identified the prostate cancer by DWI and 3D IH-MRS with a 3.0T MRI machine with a set of body arrayed coils and without an endorectal coil grids.

II. METHOD

Patients were examined prior to transrectal ultrasonography (TRUS) biopsy or radical prostatectomy. Patient went through DWI and 3D-MRS or MRSI (chemical-shift imaging) with a 3T MRI machine. The DWI was with a double refocused diffusion sequence and the Diffusion weighted image's parameters as follows; FOV: 400 mm, slice thickness: 2 mm, b-value: 0, 100, 300, 500, and 1000 and after the measurement, the apparent diffusion coefficient (ADC) was calculated. Prostate spectroscopy sequence is CSI Spin-Echo (= PRESS) sequence. CSI sequence was a 3D double spin echo sequence with outer volume saturation (OVS) for 5 portions in maximum. This is a hybrid CSI sequence, and it allows 3D VOI selection with phase encoding in three directions x, y and z axis. Selected volume can be freely angulated exactly as in the product CSI sequence. Slice selective 180- rf pulses are optimized sine pulses [1]. With many features of the sequence resemble a similar sequence available on 1.5T systems [2]. Suppressing lipid signals, the sequence offers outer volume suppression (OVS) and lipid -water spectral suppression pulses. OVS functionality was familiar from the regional saturation pulses used in prostate cancer imaging. The spectral saturation method, transverse magnetization was selectively de-phased before and after the second spin-echo pulse. Defining de-phasing only affects the lipid signals from approximately 0.5 to 1 mm³., or also the water resonance profile of our numerically optimized pulses: The Magnetization components of $m_{xy} = -1$ are de-phased, components of $m_{xy} = 1$ are rephased. Method of spectral suppression has been described. The double BASING pulses were used in suppressing water and lipids. 3D MRSI parameters were: TE: 90-145 ms; TR: 750-2000 ms. FOV, matrix size and averages were those for the prostate size. MRI uses coil systems that are a set of 12element body arrayed coils.

We consider the following anycast field equations defined over an open bounded piece of network and /or feature space $\Omega \subset \mathbb{R}^d$. They describe the dynamics of the mean anycast of each of p node populations.

$$\begin{aligned} (\frac{d}{dt} + l_i)V_i(t,r) &= \sum_{j=1}^p \int_{\Omega} J_{ij}(r,\bar{r})S[(V_j(t - \tau_{ij}(r,\bar{r}),\bar{r}) - h_{|j})]d\bar{r} \\ &+ I_i^{ext}(r,t), \quad t \ge 0, 1 \le i \le p, \\ V_i(t,r) &= \phi_i(t,r) \quad t \in [-T,0] \end{aligned}$$

(1)

We give an interpretation of the various parameters and functions that appear in (1), Ω is finite piece of nodes and/or feature space and is represented as an open bounded set of \mathbb{R}^d . The vector r and \bar{r} represent points in Ω . The function $S: \mathbb{R} \to (0,1)$ is the normalized sigmoid function:

$$S(z) = \frac{1}{1 + e^{-z}}$$
(2)

It describes the relation between the input rate V_i of population *i* as a function of the packets potential, for example, $V_i = v_i = S[\sigma_i(V_i - h_i)]$. We note V the p- dimensional vector (V_1, \dots, V_p) . The *p* function $\phi_i, i = 1, \dots, p$, represent the initial conditions, see below. We note ϕ the p-dimensional vector $(\phi_1, ..., \phi_n)$. The p function I_i^{ext} , i = 1, ..., p, represent external factors from other network areas. We note I^{ext} the p - dimensional vector $(I_1^{ext},...,I_p^{ext})$. The $p \times p$ matrix of functions $J = \{J_{ii}\}_{i, i=1,...,p}$ represents the connectivity between populations i and j, see below. The *p* real values h_i , i = 1, ..., p, determine the threshold of activity for each population, that is, the value of the nodes potential corresponding to 50% of the maximal activity. The p real positive values σ_i , i = 1, ..., p, determine the slopes of the sigmoids at the origin. Finally the p real positive values l_i , i = 1, ..., p, determine the speed at which each anycast node potential decreases exponentially toward its real value. We also introduce the function $S: \mathbb{R}^p \to \mathbb{R}^p$, defined $S(x) = [S(\sigma_1(x_1 - h_1)), ..., S(\sigma_p - h_p))],$ by diagonal and the $p \times p$ matrix $L_0 = diag(l_1, ..., l_p)$. Is the intrinsic dynamics of the population given by the linear response of data transfer. $(\frac{d}{dt} + l_i)$ is replaced by $(\frac{d}{dt} + l_i)^2$ to use the alpha function response. We use $(\frac{d}{dt} + l_i)$ for

simplicity although our analysis applies to more general intrinsic dynamics. For the sake, of generality, the propagation delays are not assumed to be identical for all populations, hence they are described by a matrix $\tau(r, r)$ whose element $\tau_{ii}(r,r)$ is the propagation delay between population j at r and population i at r. The reason for this assumption is that it is still unclear from anycast if propagation delays are independent of the populations. We assume for technical reasons that τ is continuous, that is $\tau \in C^0(\overline{\Omega}^2, R_{\perp}^{p \times p})$. Moreover packet data indicate that τ is not a symmetric function i.e., $\tau_{ii}(r,r) \neq \tau_{ii}(r,r)$, thus no assumption is made about this symmetry unless otherwise stated. In order to compute the righthand side of (1), we need to know the node potential factor V on interval [-T, 0]. The value of T is obtained by considering the maximal delay:

$$\tau_m = \max_{i,j(r,\bar{r}\in\overline{\Omega\times\Omega})} \tau_{i,j}(r,\bar{r})$$
(3)

Hence we choose $T = \tau_m$

🕼 IJCER

A. Mathematical Framework

A convenient functional setting for the nondelayed packet field equations is to use the space $F = L^2(\Omega, \mathbb{R}^p)$ which is a Hilbert space endowed with the usual inner product:

$$\left\langle V, U \right\rangle_F = \sum_{i=1}^p \int_{\Omega} V_i(r) U_i(r) dr$$
 (1)

To give a meaning to (1), we defined the history space $C = C^0([-\tau_m, 0], F)$ with $\|\phi\| = \sup_{t \in [-\tau_m, 0]} \|\phi(t)\| F$, which is the Banach phase space associated with equation (3). Using the notation $V_t(\theta) = V(t + \theta), \theta \in [-\tau_m, 0]$, we write (1) as

$$\begin{cases} V(t) = -L_0 V(t) + L_1 S(V_t) + I^{ext}(t), \\ V_0 = \phi \in C, \end{cases}$$
(2)

Where

$$\begin{cases} L_1: C \to F, \\ \phi \to \int_{\Omega} J(., \bar{r}) \phi(\bar{r}, -\tau(., \bar{r})) d\bar{r} \end{cases}$$

Is the linear continuous operator satisfying $\|L_1\| \leq \|J\|_{L^2(\Omega^2, R^{p \times p})}$. Notice that most of the

papers on this subject assume Ω infinite, hence requiring $\tau_m = \infty$.

Proposition 1.0 If the following assumptions are satisfied.

1.
$$J \in L^2(\Omega^2, \mathbb{R}^{p \times p}),$$

2. The external current $I^{ext} \in C^0(R, F)$,

3.
$$\tau \in C^0(\Omega^2, R^{p \times p}_+), \sup_{\overline{\Omega^2}} \tau \le \tau_m.$$

Then for any $\phi \in C$, there exists a unique solution $V \in C^1([0,\infty), F) \cap C^0([-\tau_m,\infty,F) \text{ to } (3)$

Notice that this result gives existence on R_+ , finite-time explosion is impossible for this delayed differential equation. Nevertheless, a particular solution could grow indefinitely, we now prove that this cannot happen.

B. Boundedness of Solutions

A valid model of neural networks should only feature bounded packet node potentials.

Theorem 1.0 All the trajectories are ultimately bounded by the same constant R if $I \equiv \max_{t \in R^+} \left\| I^{ext}(t) \right\|_F < \infty$. *Proof* :Let us defined $f : R \times C \to R^+$ as $f(t,V_t) \stackrel{def}{=} \left\langle -L_0 V_t(0) + L_1 S(V_t) + I^{ext}(t), V(t) \right\rangle_F = \frac{1}{2} \frac{d \left\| V \right\|_F^2}{dt}$

We note $l = \min_{i=1,\dots,p} l_i$

$$f(t, V_t) \le -l \|V(t)\|_F^2 + (\sqrt{p|\Omega|} \|J\|_F + I) \|V(t)\|_F$$

Thus, if

$$\|V(t)\|_{F} \ge 2\frac{\sqrt{p|\Omega|} \|J\|_{F} + I}{l} \stackrel{def}{=} R, f(t,V_{t}) \le -\frac{lR^{2}}{2} \stackrel{def}{=} -\delta < 0$$

Let us show that the open route of F of center 0 and radius R, B_R , is stable under the dynamics of equation. We know that V(t) is defined for all $t \ge 0s$ and that f < 0 on ∂B_R , the boundary of B_R . We consider three cases for the initial condition V_0 . If $||V_0||_C < R$ and set $T = \sup\{t \mid \forall s \in [0, t], V(s) \in \overline{B_R}\}$. Suppose that $T \in R$, then V(T) is defined and belongs to $\overline{B_R}$, the closure of B_R , because $\overline{B_R}$ is closed, in

 ∂B_{R} , effect to we also have $\frac{d}{dt} \|V\|_{F}^{2}|_{t=T} = f(T, V_{T}) \le -\delta < 0$ because $V(T) \in \partial B_R$. Thus we deduce that for $\mathcal{E} > 0$ and small enough, $V(T + \varepsilon) \in \overline{B_R}$ which contradicts the definition of T. Thus $T \notin R$ and $\overline{B_R}$ is stable. Because f<0 on $\partial B_R, V(0) \in \partial B_R$ implies that $\forall t > 0, V(t) \in B_R$. Finally we consider the case $V(0) \in \overline{CB_R}$. Suppose that $\forall t > 0, V(t) \notin \overline{B_R}$, then $\forall t > 0, \frac{d}{dt} \|V\|_F^2 \le -2\delta$, thus $\|V(t)\|_F$ is monotonically decreasing and reaches the value of R in finite time when V(t) reaches ∂B_R . This contradicts assumption. our Thus $\exists T > 0 \,|\, V(T) \in B_R.$

🕼 IJCER

Proposition 1.1 : Let *s* and *t* be measured simple functions on *X*. for $E \in M$, define

$$\phi(E) = \int_{E} s \, d\mu \qquad (1)$$

Then ϕ is a measure on M .
$$\int_{X} (s+t) d\mu = \int_{X} s \, d\mu + \int_{X} t d\mu \qquad (2)$$

Proof: If s and if $E_1, E_2, ...$ are disjoint members of M whose union is E, the countable additivity of μ shows that

$$\phi(E) = \sum_{i=1}^{n} \alpha_i \mu(A_i \cap E) = \sum_{i=1}^{n} \alpha_i \sum_{r=1}^{\infty} \mu(A_i \cap E_r)$$
$$= \sum_{r=1}^{\infty} \sum_{i=1}^{n} \alpha_i \mu(A_i \cap E_r) = \sum_{r=1}^{\infty} \phi(E_r)$$

Also, $\varphi(\phi) = 0$, so that φ is not identically ∞ . Next, let *s* be as before, let $\beta_1, ..., \beta_m$ be the distinct values of t, and let $B_j = \{x : t(x) = \beta_j\}$ If $E_{ij} = A_i \cap B_j$, the $\int_{-\infty}^{\infty} (x+t) d\mu = (\alpha + \beta_j)\mu(E_j)$

$$\int_{E_{ij}} (s+i) \alpha \mu = (\alpha_i + \beta_j) \mu(L_{ij})$$

and
$$\int_{E_{ij}} sd\mu + \int_{E_{ij}} td\mu = \alpha_i \mu(E_{ij}) + \beta_j \mu(E_{ij})$$

Thus (2) holds with E_{ij} in place of X. Since X is the disjoint union of the sets E_{ij} $(1 \le i \le n, 1 \le j \le m)$, the first half of our proposition implies that (2) holds. **Theorem 1.1:** If *K* is a compact set in the plane whose complement is connected, if *f* is a continuous complex function on *K* which is holomorphic in the interior of , and if $\varepsilon > 0$, then there exists a polynomial *P* such that $|f(z) = P(z)| < \varepsilon$ for all $z \varepsilon K$. If the interior of *K* is empty, then part of the hypothesis is vacuously satisfied, and the conclusion holds for every $f \varepsilon C(K)$. Note that *K* need to be connected.

Proof: By Tietze's theorem, f can be extended to a continuous function in the plane, with compact support. We fix one such extension and denote it again by f. For any $\delta > 0$, let $\omega(\delta)$ be the supremum of the numbers $|f(z_2) - f(z_1)|$ Where z_1 and z_2 are subject to the condition $|z_2 - z_1| \le \delta$. Since f is uniformly continous, we have $\lim_{\delta \to 0} \omega(\delta) = 0$ (1) From now on, δ will be fixed. We shall prove that there is a polynomial P such that

$$|f(z) - P(z)| < 10,000 \ \omega(\delta) \ (z \in K)$$
 (2)
By (1), this proves the theorem. Our first objective
is the construction of a function $\Phi \in C_c(R^2)$, such
that for all z

$$|f(z) - \Phi(z)| \le \omega(\delta), \qquad (3)$$
$$|(\partial \Phi)(z)| < \frac{2\omega(\delta)}{\delta}, \qquad (4)$$

And

$$\Phi(z) = -\frac{1}{\pi} \iint_{X} \frac{(\partial \Phi)(\zeta)}{\zeta - z} d\zeta d\eta \qquad (\zeta = \xi + i\eta), \tag{5}$$

Where X is the set of all points in the support of Φ whose distance from the complement of K does not δ . (Thus X contains no point which is "far within" K.) We construct Φ as the convolution of f with a smoothing function A. Put a(r) = 0 if $r > \delta$, put

$$a(r) = \frac{3}{\pi\delta^2} (1 - \frac{r^2}{\delta^2})^2 \qquad (0 \le r \le \delta), \quad (6)$$

And define

$$A(z) = a(|z|) \tag{7}$$

For all complex z. It is clear that $A \varepsilon C_c(R^2)$. We claim that

Issn 2250-3005(online)

$$\iint_{R^{3}} A = 1, \qquad (8)$$

$$\iint_{R^{2}} \partial A = 0, \qquad (9)$$

$$\iint_{R^{3}} \left| \partial A \right| = \frac{24}{15\delta} < \frac{2}{\delta}, \qquad (10)$$

The constants are so adjusted in (6) that (8) holds. (Compute the integral in polar coordinates), (9) holds simply because A has compact support. To compute (10), express ∂A in polar coordinates, and note that $\partial A/_{20} = 0$,

I note that
$$\partial A / \partial \theta = 0$$
,
 $\partial A / \partial r = -a'$,
w define

Now define

$$\Phi(z) = \iint_{R^2} f(z-\zeta) A d\xi d\eta = \iint_{R^2} A(z-\zeta) f(\zeta) d\xi d\eta$$
(11)

Since f and A have compact support, so does Φ . Since

$$\Phi(z) - f(z)$$

=
$$\iint_{R^2} [f(z - \zeta) - f(z)] A(\xi) d\xi d\eta \quad (12)$$

And $A(\zeta) = 0$ if $|\zeta| > \delta$, (3) follows from (8). The difference quotients of A converge boundedly to the corresponding partial derivatives, since $A \varepsilon C'_c(R^2)$. Hence the last expression in (11) may be differentiated under the integral sign, and we obtain

$$(\partial \Phi)(z) = \iint_{R^2} (\overline{\partial A})(z - \zeta) f(\zeta) d\xi d\eta$$

$$= \iint_{R^2} f(z - \zeta) (\partial A)(\zeta) d\xi d\eta$$

$$= \iint_{R^2} [f(z - \zeta) - f(z)](\partial A)(\zeta) d\xi d\eta \qquad (13)$$

The last equality depends on (9). Now (10) and (13) give (4). If we write (13) with Φ_x and Φ_y in place of $\partial \Phi$, we see that Φ has continuous partial derivatives, if we can show that $\partial \Phi = 0$ in *G*, where *G* is the set of all $z \in K$ whose distance from the complement of *K* exceeds δ . We shall do this by showing that

$$\Phi(z) = f(z) \qquad (z \varepsilon G); \qquad (14)$$

Note that $\partial f = 0$ in G, since f is holomorphic there. Now if $z \in G$, then $z - \zeta$ is in the interior of

K for all ζ with $|\zeta| < \delta$. The mean value property for harmonic functions therefore gives, by the first equation in (11),

$$\Phi(z) = \int_{0}^{\delta} a(r) r dr \int_{0}^{2\pi} f(z - re^{i\theta}) d\theta$$

= $2\pi f(z) \int_{0}^{\delta} a(r) r dr = f(z) \iint_{R^{2}} A = f(z)$ (15)

For all $z \in G$, we have now proved (3), (4), and (5) The definition of X shows that X is compact and that X can be covered by finitely many open discs $D_1, ..., D_n$, of radius 2δ , whose centers are not in K. Since $S^2 - K$ is connected, the center of each D_j can be joined to ∞ by a polygonal path in $S^2 - K$. It follows that each D_j contains a compact connected set E_j , of diameter at least 2δ , so that $S^2 - E_j$ is connected and so that $K \cap E_j = \phi$. with $r = 2\delta$. There are functions $g_j \in H(S^2 - E_j)$ and constants b_j so that the inequalities.

$$\left|Q_{j}(\zeta,z)\right| < \frac{50}{\delta}, \qquad (16)$$

$$\left|Q_{j}(\zeta,z) - \frac{1}{z-\zeta}\right| < \frac{4,000\delta^{2}}{\left|z-\zeta\right|^{2}} \qquad (17)$$

Hold for $z \notin E_i$ and $\zeta \in D_i$, if

$$Q_{j}(\zeta, z) = g_{j}(z) + (\zeta - b_{j})g_{j}^{2}(z)$$
(18)

Let Ω be the complement of $E_1 \cup ... \cup E_n$. Then Ω is an open set which contains K. Put $X_1 = X \cap D_1$ and

$$X_{j} = (X \cap D_{j}) - (X_{1} \cup \dots \cup X_{j-1}), \quad \text{for}$$

$$2 \le j \le n,$$

– – J Define

$$R(\zeta, z) = Q_j(\zeta, z) \qquad (\zeta \varepsilon X_j, z \varepsilon \Omega) \tag{19}$$

And

$$F(z) = \frac{1}{\pi} \iint_{X} (\partial \Phi)(\zeta) R(\zeta, z) d\zeta d\eta \qquad (20)$$
$$(z \in \Omega)$$

Since,

$$F(z) = \sum_{j=1}^{\infty} \frac{1}{\pi} \iint_{X_i} (\partial \Phi)(\zeta) Q_j(\zeta, z) d\xi d\eta, \qquad (21)$$

(18) shows that F is a finite linear combination of the functions g_j and g_j^2 . Hence $F \varepsilon H(\Omega)$. By (20), (4), and (5) we have

$$\left|F(z) - \Phi(z)\right| < \frac{2\omega(\delta)}{\pi\delta} \iint_{X} |R(\zeta, z)|$$
$$-\frac{1}{z - \zeta} |d\xi d\eta \quad (z \in \Omega) \quad (22)$$

Observe that the inequalities (16) and (17) are valid with *R* in place of Q_j if $\zeta \in X$ and $z \in \Omega$. Now fix $z \in \Omega$., put $\zeta = z + \rho e^{i\theta}$, and estimate the integrand in (22) by (16) if $\rho < 4\delta$, by (17) if $4\delta \le \rho$. The integral in (22) is then seen to be less than the sum of

$$2\pi \int_{0}^{4\delta} \left(\frac{50}{\delta} + \frac{1}{\rho}\right) \rho d\rho = 808\pi\delta$$
 (23)

And

$$2\pi \int_{4\delta}^{\infty} \frac{4,000\delta^2}{\rho^2} \rho d\rho = 2,000\pi\delta.$$
 (24)

Hence (22) yields $|F(z) - \Phi(z)| < 6,000 \omega(\delta)$ $(z \in \Omega)$ (25)

Since $F \in H(\Omega)$, $K \subset \Omega$, and $S^2 - K$ is connected, Runge's theorem shows that F can be uniformly approximated on K by polynomials. Hence (3) and (25) show that (2) can be satisfied. This completes the proof.

Lemma 1.0 : Suppose $f \varepsilon C'_c(R^2)$, the space of all continuously differentiable functions in the plane, with compact support. Put

$$\partial = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \tag{1}$$

Then the following "Cauchy formula" holds:

$$f(z) = -\frac{1}{\pi} \iint_{\mathbb{R}^2} \frac{(\partial f)(\zeta)}{\zeta - z} d\xi d\eta$$
$$(\zeta = \xi + i\eta) \qquad (2)$$

Proof: This may be deduced from Green's theorem. However, here is a simple direct proof:

Put
$$\varphi(r,\theta) = f(z+re^{i\theta}), r > 0, \theta$$
 real
If $\zeta = z + re^{i\theta}$, the chain rule gives
 $(\partial f)(\zeta) = \frac{1}{2}e^{i\theta}\left[\frac{\partial}{\partial r} + \frac{i}{r}\frac{\partial}{\partial \theta}\right]\varphi(r,\theta)$ (3)

The right side of (2) is therefore equal to the limit, as $\mathcal{E} \rightarrow 0$, of

$$-\frac{1}{2}\int_{\varepsilon}^{\infty}\int_{0}^{2\pi} \left(\frac{\partial\varphi}{\partial r} + \frac{i}{r}\frac{\partial\varphi}{\partial\theta}\right) d\theta dr \qquad (4)$$

For each $r > 0, \varphi$ is periodic in θ , with period 2π . The integral of $\partial \varphi / \partial \theta$ is therefore 0, and (4) becomes

$$-\frac{1}{2\pi}\int_{0}^{2\pi}d\theta\int_{\varepsilon}^{\infty}\frac{\partial\varphi}{\partial r}dr = \frac{1}{2\pi}\int_{0}^{2\pi}\varphi(\varepsilon,\theta)d\theta$$
(5)

As $\varepsilon \to 0$, $\varphi(\varepsilon, \theta) \to f(z)$ uniformly. This gives (2)

If $X^{\alpha} \in a$ and $X^{\beta} \in k[X_1,...X_n]$, then $X^{\alpha}X^{\beta} = X^{\alpha+\beta} \in a$, and so A satisfies the condition (*). Conversely,

$$(\sum_{\alpha\in A} c_{\alpha} X^{\alpha})(\sum_{\beta\in\mathbb{D}^{n}} d_{\beta} X^{\beta}) = \sum_{\alpha,\beta} c_{\alpha} d_{\beta} X^{\alpha+\beta} \qquad (finite sums),$$

and so if A satisfies (*), then the subspace generated by the monomials $X^{\alpha}, \alpha \in a$, is an ideal. The proposition gives a classification of the monomial ideals in $k[X_1,...X_n]$: they are in one to one correspondence with the subsets A of \Box^n satisfying (*). For example, the monomial ideals in k[X] are exactly the ideals $(X^n), n \ge 1$, and the zero ideal (corresponding to the empty set A). We write $\langle X^{\alpha} | \alpha \in A \rangle$ for the ideal corresponding to

A (subspace generated by the $X^{\alpha}, \alpha \in a$).

LEMMA 1.1. Let S be a subset of \Box^n . The the ideal a generated by $X^{\alpha}, \alpha \in S$ is the monomial ideal corresponding to

 $A \stackrel{df}{=} \left\{ \beta \in \square^{n} \mid \beta - \alpha \in \square^{n}, \text{ some } \alpha \in S \right\}$ Thus, a monomial is in α if and only if it is divisible by one of the $X^{\alpha}, \alpha \in S$

PROOF. Clearly A satisfies (*), and $a \subset \langle X^{\beta} | \beta \in A \rangle$. Conversely, if $\beta \in A$, then $\beta - \alpha \in \square^n$ for some $\alpha \in S$, and $X^{\beta} = X^{\alpha} X^{\beta - \alpha} \in a$. The last statement follows from the fact that $X^{\alpha} | X^{\beta} \Leftrightarrow \beta - \alpha \in \square^n$. Let $A \subset \square^n$ satisfy (*). From the geometry of A, it is clear that there is a finite set of elements

$$S = \{\alpha_1, \dots, \alpha_s\} \quad \text{of} \quad A \quad \text{such that} \\ A = \{\beta \in \square^n \mid \beta - \alpha_i \in \square^2, \text{ some } \alpha_i \in S\}$$

(The α_i 's are the corners of A) Moreover, $a \stackrel{df}{=} \langle X^{\alpha} | \alpha \in A \rangle$ is generated by the monomials $X^{\alpha_i}, \alpha_i \in S$.

DEFINITION 1.0. For a nonzero ideal a in $k[X_1,...,X_n]$, we let (LT(a)) be the ideal generated by $\{LT(f) | f \in a\}$

LEMMA 1.2 Let *a* be a nonzero ideal in $k[X_1,...,X_n]$; then (LT(a)) is a monomial ideal, and it equals $(LT(g_1),...,LT(g_n))$ for some $g_1,...,g_n \in a$.

PROOF. Since (LT(a)) can also be described as the ideal generated by the leading monomials (rather than the leading terms) of elements of a.

THEOREM 1.2. Every *ideal a* in $k[X_1,...,X_n]$ is finitely generated; more precisely, $a = (g_1,...,g_s)$ where $g_1,...,g_s$ are any elements of *a* whose leading terms generate LT(a)

PROOF. Let $f \in a$. On applying the division algorithm, we find $f = a_1g_1 + ... + a_sg_s + r$, $a_i, r \in k[X_1, ..., X_n]$, where either r = 0 or no monomial occurring in it is divisible by any $LT(g_i)$. But $r = f - \sum a_ig_i \in a$, and therefore $LT(r) \in LT(a) = (LT(g_1), ..., LT(g_s))$, implies that every monomial occurring in r is divisible by one in $LT(g_i)$. Thus r = 0, and

 $g \in (g_1, \dots, g_s)$.

DEFINITION 1.1. A finite subset $S = \{g_1, | ..., g_s\}$ of an ideal a is a standard ((*Grobner*) bases for a if $(LT(g_1), ..., LT(g_s)) = LT(a)$. In other words, S is a standard basis if the leading term of every element of a is divisible by at least one of the leading terms of the g_i . THEOREM 1.3 The ring $k[X_1,...,X_n]$ is Noetherian i.e., every ideal is finitely generated.

PROOF. For n = 1, k[X] is a principal ideal domain, which means that every ideal is generated by single element. We shall prove the theorem by induction on n. Note that the obvious map $k[X_1,...X_{n-1}][X_n] \rightarrow k[X_1,...X_n]$ is an isomorphism – this simply says that every polynomial f in n variables $X_1,...X_n$ can be expressed uniquely as a polynomial in X_n with coefficients in $k[X_1,...,X_n]$:

$$f(X_1,...X_n) = a_0(X_1,...X_{n-1})X_n^r + ... + a_r(X_1,...X_{n-1})$$

Thus the next lemma will complete the proof

LEMMA 1.3. If A is Noetherian, then so also is A[X]

PROOF. For a polynomial

$$f(X) = a_0 X^r + a_1 X^{r-1} + \dots + a_r, \qquad a_i \in A, \qquad a_0 \neq 0,$$

r is called the degree of f, and a_0 is its leading coefficient. We call 0 the leading coefficient of the polynomial 0. Let *a* be an ideal in A[X]. The leading coefficients of the polynomials in *a* form an ideal *a* in *A*, and since *A* is Noetherian, *a* will be finitely generated. Let $g_1, ..., g_m$ be elements of *a* whose leading coefficients generate *a*, and let *r* be the maximum degree of g_i . Now let $f \in a$, and suppose *f* has degree s > r, say, $f = aX^s + ...$ Then $a \in a'$, and so we can write $a = \sum b_i a_i, \qquad b_i \in A,$ $a_i = leading \ coefficient \ of \ g_i$ Now $f = \sum b_i a_i X^{s-r_i}, \qquad r = deg(a_i)$ has degree

 $f - \sum b_i g_i X^{s-r_i}$, $r_i = \deg(g_i)$, has degree $< \deg(f)$. By continuing in this way, we find that $f \equiv f_t \mod(g_1, \dots, g_m)$ With f_t a polynomial of degree t < r. For each d < r, let a_d be the subset of A consisting of 0 and the leading coefficients of all polynomials in a of degree d; it is again an ideal in A. Let $g_{d,1}, \dots, g_{d,m_d}$ be polynomials of degree d. Then the same

argument as above shows that any polynomial f_d in a of degree d can be written $f_d \equiv f_{d-1}$ $mod(g_{d,1},...,g_{d,m_d})$ With f_{d-1} of degree $\leq d-1$. On applying this remark repeatedly we find that $f_t \in (g_{r-1,1}, \dots, g_{r-1,m_{n-1}}, \dots, g_{0,1}, \dots, g_{0,m_0})$ Hence

$$f_t \in (g_1, \dots, g_m g_{r-1,1}, \dots, g_{r-1,m_{r-1}}, \dots, g_{0,1}, \dots, g_{0,m_0})$$

and so the polynomials $g_1, ..., g_{0,m_0}$ generate a

One of the great successes of category theory in computer science has been the development of a "unified theory" of the constructions underlying denotational semantics. In the untyped λ -calculus, any term may appear in the function position of an application. This means that a model D of the λ calculus must have the property that given a term twhose interpretation is $d \in D$, Also, the interpretation of a functional abstraction like $\lambda x \cdot x$ is most conveniently defined as a function from D to D , which must then be regarded as an element of D. Let $\psi: [D \to D] \to D$ be the function that picks out elements of D to represent elements of $[D \rightarrow D]$ and $\phi: D \rightarrow [D \rightarrow D]$ be the function that maps elements of D to functions of D. Since $\psi(f)$ is intended to represent the function f as an element of D, it makes sense to $\phi(\psi(f)) = f,$ require that that is, $\psi o \psi = id_{[D \to D]}$ Furthermore, we often want to view every element of D as representing some function from D to D and require that elements representing the same function be equal – that is

$$\psi(\varphi(d)) = d$$
or
$$\psi \circ \phi = id_{D}$$

The latter condition is called extensionality. These conditions together imply that ϕ and ψ are inverses--- that is, D is isomorphic to the space of functions from D to D that can be the interpretations of functional abstractions: $D \cong [D \rightarrow D]$. Let us suppose we are working with the untyped λ -calculus, we need a solution of the equation $D \cong A + [D \rightarrow D]$, where A is some predetermined domain containing interpretations for elements of C. Each element of D corresponds to either an element of *A* or an element of $[D \rightarrow D]$, with a tag. This equation can be solved by finding least fixed points of the function $F(X) = A + [X \rightarrow X]$ from domains to domains --- that is, finding domains *X* such that $X \cong A + [X \rightarrow X]$, and such that for any domain *Y* also satisfying this equation, there is an embedding of *X* to *Y* --- a pair of maps

$$X \square_{f^R} Y$$

Such that $f^R \circ f = id_X$ $f \circ f^R \subset id_Y$

Where $f \subseteq g$ means that f approximates g in some ordering representing their information content. The key shift of perspective from the domain-theoretic to the more general category-theoretic approach lies in considering F not as a function on domains, but as a *functor* on a category of domains. Instead of a least fixed point of the function, F.

Definition 1.3: Let K be a category and $F: K \to K$ as a functor. A fixed point of F is a pair (A,a), where A is a *K-object* and $a: F(A) \to A$ is an isomorphism. A prefixed point of F is a pair (A,a), where A is a *K-object* and a is any arrow from F(A) to A

Definition 1.4: An ω -chain in a category **K** is a diagram of the following form:

$$\Delta = D_o \xrightarrow{f_o} D_1 \xrightarrow{f_1} D_2 \xrightarrow{f_2} \dots$$

Recall that a cocone μ of an ω -chain Δ is a *K*-object *X* and a collection of K -arrows $\{\mu_i : D_i \to X \mid i \ge 0\}$ such that $\mu_i = \mu_{i+1}o f_i$ for all $i \ge 0$. We sometimes write $\mu : \Delta \to X$ as a reminder of the arrangement of μ 's components Similarly, a colimit $\mu : \Delta \to X$ is a cocone with the property that if $\nu : \Delta \to X'$ is also a cocone then there exists a unique mediating arrow $k : X \to X'$ such that for all $i \ge 0$, $\nu_i = k o \mu_i$. Colimits of ω -chains are sometimes referred to as ω -colimits. Dually, an ω^{op} -chain in **K** is a diagram of the following form:

$$\Delta = D_o \underbrace{\stackrel{f_o}{\longleftarrow} D_1 \underbrace{\stackrel{f_1}{\longleftarrow} D_2 \underbrace{\stackrel{f_2}{\longleftarrow} \dots \dots}_A \quad \text{cone}$$

 $\mu: X \to \Delta$ of an $\omega^{op} - chain \Delta$ is a **K**-object X

and a collection of **K**-arrows $\{\mu_i : D_i \mid i \ge 0\}$ such that for all $i \ge 0$, $\mu_i = f_i \circ \mu_{i+1}$. An ω^{op} -limit of an ω^{op} -chain Δ is a cone $\mu : X \to \Delta$ with the property that if $v : X' \to \Delta$ is also a cone, then there exists a unique mediating arrow $k : X' \to X$ such that for all $i \ge 0$, $\mu_i \circ k = v_i$. We write \bot_k (or just \bot) for the distinguish initial object of K, when it has one, and $\bot \to A$ for the unique arrow from \bot to each K-object A. It is also convenient to write $\Delta^- = D_1 \xrightarrow{f_1} D_2 \xrightarrow{f_2} \dots$ to denote all of Δ except D_o and f_0 . By analogy, μ^- is $\{\mu_i \mid i \ge 1\}$. For the images of Δ and μ under F we write $F(\Delta) = F(D_o) \xrightarrow{F(f_0)} F(D_1) \xrightarrow{F(f_2)} F(D_2) \xrightarrow{f(f_2)} \dots$ and $F(\mu) = \{F(\mu_i) \mid i \ge 0\}$

We write F^i for the *i*-fold iterated composition of F— that is, $F^o(f) = f, F^1(f) = F(f), F^2(f) = F(F(f))$,etc. With these definitions we can state that every monitonic function on a complete lattice has a least fixed point:

Lemma 1.4. Let *K* be a category with initial object \bot and let $F: K \to K$ be a functor. Define the $\omega - chain \Delta$ by

 $\Delta = \bot \xrightarrow{\mu \to F(\bot)} F(\bot) \xrightarrow{F(\amalg \to F(\bot))} F^2(\bot) \xrightarrow{F^2(\amalg \to F(\bot))} F^2(\bot)$ If both $\mu : \Delta \to D$ and $F(\mu) : F(\Delta) \to F(D)$ are colimits, then (D,d) is an initial F-algebra, where $d : F(D) \to D$ is the mediating arrow from $F(\mu)$ to the cocone μ^-

Theorem 1.4 Let a DAG G given in which each node is a random variable, and let a discrete conditional probability distribution of each node given values of its parents in G be specified. Then the product of these conditional distributions yields a joint probability distribution P of the variables, and (G,P) satisfies the Markov condition.

Proof. Order the nodes according to an ancestral ordering. Let X_1, X_2, \ldots, X_n be the resultant ordering. Next define.

$$P(x_1, x_2, \dots, x_n) = P(x_n | pa_n) P(x_{n-1} | Pa_{n-1}) \dots$$

...
$$P(x_2 | pa_2) P(x_1 | pa_1),$$

Where PA_i is the set of parents of X_i of in G and $P(x_i \mid pa_i)$ is the specified conditional probability distribution. First we show this does indeed yield a joint probability distribution. Clearly, $0 \le P(x_1, x_2, \dots, x_n) \le 1$ for all values of the variables. Therefore, to show we have a joint distribution, as the variables range through all their possible values, is equal to one. To that end, Specified conditional distributions are the conditional distributions they notationally represent in the joint distribution. Finally, we show the Markov condition is satisfied. To do this, we need show for $1 \le k \le n$ that whenever

$$P(pa_k) \neq 0, if \ P(nd_k \mid pa_k) \neq 0$$

and
$$P(x_k \mid pa_k) \neq 0$$

then
$$P(x_k \mid nd_k, pa_k) = P(x_k \mid pa_k),$$

Where ND_k is the set of nondescendents of X_k of in G. Since $PA_k \subseteq ND_k$, we need only show $P(x_k \mid nd_k) = P(x_k \mid pa_k)$. First for a given k, order the nodes so that all and only nondescendents of X_k precede X_k in the ordering. Note that this ordering depends on k, whereas the ordering in the first part of the proof does not. Clearly then

$$ND_{k} = \{X_{1}, X_{2}, ..., X_{k-1}\}$$
Let
$$D_{k} = \{X_{k+1}, X_{k+2}, ..., X_{n}\}$$
follows
$$\sum_{d_{k}}$$

We define the m^{th} cyclotomic field to be the field $Q[x]/(\Phi_m(x))$ Where $\Phi_m(x)$ is the m^{th} cyclotomic polynomial. $Q[x]/(\Phi_m(x)) \Phi_m(x)$ has degree $\varphi(m)$ over Q since $\Phi_m(x)$ has degree $\varphi(m)$. The roots of $\Phi_m(x)$ are just the primitive m^{th} roots of unity, so the complex embeddings of $Q[x]/(\Phi_m(x))$ are simply the $\varphi(m)$ maps $\sigma_k : Q[x]/(\Phi_m(x)) \mapsto C,$ $1 \le k \prec m, (k, m) = 1$, where $\sigma_k(x) = \xi_m^k,$

 ξ_m being our fixed choice of primitive m^{th} root of unity. Note that $\xi_m^k \in Q(\xi_m)$ for every k; it follows that $Q(\xi_m) = Q(\xi_m^k)$ for all k relatively prime to

m. In particular, the images of the σ_i coincide, so $Q[x]/(\Phi_m(x))$ is Galois over Q. This means that we can write $Q(\xi_m)$ for $Q[x]/(\Phi_m(x))$ without much fear of ambiguity; we will do so from now on, the identification being $\xi_m \mapsto x$. One advantage of this is that one can easily talk about cyclotomic fields being extensions of one another, or intersections or compositums; all of these things take place considering them as subfield of C. We now investigate some basic properties of cyclotomic fields. The first issue is whether or not they are all distinct; to determine this, we need to know which roots of unity lie in $Q(\xi_m)$. Note, for example, that if *m* is odd, then $-\xi_m$ is a $2m^{th}$ root of unity. We will show that this is the only way in which one can obtain any non- m^{th} roots of unity.

If *m* divides *n* , then $Q(\xi_m)$ is LEMMA 1.5 contained in $Q(\xi_n)$

PROOF. Since $\xi^{n/m} = \xi_m$, we have $\xi_m \in Q(\xi_n)$, so the result is clear

LEMMA 1.6 If m and n are relatively prime, then $Q(\xi_{m},\xi_{n})=Q(\xi_{nm})$

and

🕼 IJCER

$$Q(\xi_m) \cap Q(\xi_n) = Q$$

(Recall the $Q(\xi_m,\xi_n)$ is the compositum of $Q(\xi_m)$ and $Q(\xi_n)$)

PROOF. One checks easily that $\xi_m \xi_n$ is a primitive *mnth* root of unity, so that $Q(\xi_{mn}) \subseteq Q(\xi_{m},\xi_{n})$

 $[Q(\xi_m,\xi_n):Q] \leq [Q(\xi_m):Q][Q(\xi_n:Q]]$ $= \varphi(m)\varphi(n) = \varphi(mn);$ Since $[Q(\xi_{mn}):Q] = \varphi(mn)$; this implies that $Q(\xi_m,\xi_n)=Q(\xi_{nm})$ We know that $Q(\xi_m,\xi_n)$ has degree $\varphi(mn)$ over Q, so we must have $\left[Q(\xi_m,\xi_n):Q(\xi_m)\right] = \varphi(n)$ $\left[Q(\xi_m,\xi_n):Q(\xi_m)\right] = \varphi(m)$

$$\left[Q(\xi_m):Q(\xi_m)\cap Q(\xi_n)\right] \ge \varphi(m)$$

And thus that $Q(\xi_m) \cap Q(\xi_n) = Q$

PROPOSITION 1.2 For any *m* and *n*

$$Q(\xi_m, \xi_n) = Q(\xi_{[m,n]})$$

And
$$Q(\xi_m) \cap Q(\xi_n) = Q(\xi_{(m,n)})$$

here [m, n] and (m, n) denote the least common multiple and the greatest common divisor of m and n, respectively.

PROOF. Write
$$m = p_1^{e_1} \dots p_k^{e_k}$$
 and $p_1^{f_1} \dots p_k^{f_k}$
where the p_i are distinct primes. (We allow
 $e_i \text{ or } f_i$ to be zero)
 $Q(\xi_m) = Q(\xi_{p_1^{e_1}})Q(\xi_{p_2^{e_2}})\dots Q(\xi_{p_k^{e_k}})$
and
 $Q(\xi_n) = Q(\xi_{p_1^{f_1}})Q(\xi_{p_2^{f_2}})\dots Q(\xi_{p_k^{f_k}})$
Thus
 $Q(\xi_m, \xi_n) = Q(\xi_{p_1^{e_1}})\dots Q(\xi_{p_2^{e_2}})Q(\xi_{p_1^{f_1}})\dots Q(\xi_{p_k^{f_k}})$
 $= Q(\xi_{p_1^{e_1}})Q(\xi_{p_1^{f_1}})\dots Q(\xi_{p_k^{e_k}})Q(\xi_{p_k^{f_k}})$
 $= Q(\xi_{p_1^{e_1}})Q(\xi_{p_1^{f_1}})\dots Q(\xi_{p_k^{e_k}})Q(\xi_{p_k^{f_k}})$

$$= Q(\xi_{p_{1}^{\max(e_{1,f_{1}})},\dots,p_{1}^{\max(e_{k,f_{k}})}}))$$
$$= Q(\xi_{[m,n]});$$

An entirely similar computation shows that $Q(\xi_m) \cap Q(\xi_n) = Q(\xi_{(m,n)})$

Mutual information measures the information transferred when x_i is sent and y_i is received, and is defined as

$$I(x_i, y_i) = \log_2 \frac{P(\frac{x_i}{y_i})}{P(x_i)} bits \qquad (1)$$

In a noise-free channel, **each** y_i is uniquely connected to the corresponding X_i , and so they constitute an input –output pair (x_i, y_i) for which

$$P(\overset{x_i}{y_j}) = 1 \text{ and } I(x_i, y_j) = \log_2 \frac{1}{P(x_i)}$$
 bits;

that is, the transferred information is equal to the self-information that corresponds to the input X_i In a very noisy channel, the output y_i and input x_i

would be completely uncorrelated, and so $P(\overset{x_i}{y_j}) = P(x_i)$ and also $I(x_i, y_j) = 0$; that is,

ICER

there is no transference of information. In general, a given channel will operate between these two extremes. The mutual information is defined between the input and the output of a given channel. An average of the calculation of the mutual information for all input-output pairs of a given channel is the average mutual information:

$$I(X,Y) = \sum_{i,j} P(x_i, y_j) I(x_i, y_j) = \sum_{i,j} P(x_i, y_j) \log_2 \left[\frac{P(\frac{x_i}{y_j})}{P(x_i)} \right]$$

bits per symbol . This calculation is done over the input and output alphabets. The average mutual information. The following expressions are useful for modifying the mutual information expression:

$$P(x_i, y_j) = P(\stackrel{x_i}{y_j})P(y_j) = P(\stackrel{y_j}{x_i})P(x_i)$$
$$P(y_j) = \sum_i P(\stackrel{y_j}{x_i})P(x_i)$$
$$P(x_i) = \sum_i P(\stackrel{x_i}{y_j})P(y_j)$$

Then

$$I(X,Y) = \sum_{i,j} P(x_i, y_j)$$

$$= \sum_{i,j} P(x_i, y_j) \log_2 \left[\frac{1}{P(x_i)} \right]$$

$$-\sum_{i,j} P(x_i, y_j) \log_2 \left[\frac{1}{P(X_i/y_j)} \right]$$

$$\sum_{i,j} P(x_i, y_j) \log_2 \left[\frac{1}{P(x_i)} \right]$$

$$= \sum_i \left[P(X_i/y_j) P(y_j) \right] \log_2 \frac{1}{P(x_i)}$$

$$\sum_i P(x_i) \log_2 \frac{1}{P(x_i)} = H(X)$$

$$I(X,Y) = H(X) - H(X/Y)$$
Where $H(X/Y) = \sum_{i,j} P(x_i, y_j) \log_2 \frac{1}{P(X_i/y_j)}$

is usually called the equivocation. In a sense, the equivocation can be seen as the information lost in the noisy channel, and is a function of the backward conditional probability. The observation of an output symbol y_j provides H(X) - H(X/Y) bits of information. This difference is the mutual information of the channel. *Mutual Information: Properties* Since

$$P(\frac{x_i}{y_j})P(y_j) = P(\frac{y_j}{x_i})P(x_i)$$

The mutual information fits the condition I(X,Y) = I(Y,X)

And by interchanging input and output it is also true that

$$I(X,Y) = H(Y) - H(Y/X)$$

Where

$$H(Y) = \sum_{j} P(y_{j}) \log_{2} \frac{1}{P(y_{j})}$$

This last entropy is usually called the noise entropy. Thus, the information transferred through the channel is the difference between the output entropy and the noise entropy. Alternatively, it can be said that the channel mutual information is the difference between the number of bits needed for determining a given input symbol before knowing the corresponding output symbol, and the number of bits needed for determining a given input symbol after knowing the corresponding output symbol

$$I(X,Y) = H(X) - H(X/Y)$$

As the channel mutual information expression is a difference between two quantities, it seems that this parameter can adopt negative values. However, and is spite of the fact that for some y_j , $H(X / y_j)$ can be larger than H(X), this is not possible for the average value calculated over all the outputs:

$$\sum_{i,j} P(x_i, y_j) \log_2 \frac{P(x_i/y_j)}{P(x_i)} = \sum_{i,j} P(x_i, y_j) \log_2 \frac{P(x_i, y_j)}{P(x_i)P(y_j)}$$

Then

$$-I(X,Y) = \sum_{i,j} P(x_i, y_j) \frac{P(x_i)P(y_j)}{P(x_i, y_j)} \le 0$$

Because this expression is of the form

$$\sum_{i=1}^{M} P_i \log_2(\frac{Q_i}{P_i}) \le 0$$

The above expression can be applied due to the factor $P(x_i)P(y_j)$, which is the product of two probabilities, so that it behaves as the quantity Q_i , which in this expression is a dummy variable that fits the condition $\sum_i Q_i \leq 1$. It can be concluded that the average mutual information is a nonnegative number. It can also be equal to zero, when the input and the output are independent of each

Issn 2250-3005(online)

)

other. A related entropy called the joint entropy is defined as

$$H(X,Y) = \sum_{i,j} P(x_i, y_j) \log_2 \frac{1}{P(x_i, y_j)}$$
$$= \sum_{i,j} P(x_i, y_j) \log_2 \frac{P(x_i)P(y_j)}{P(x_i, y_j)}$$
$$+ \sum_{i,j} P(x_i, y_j) \log_2 \frac{1}{P(x_i)P(y_j)}$$

Theorem 1.5: Entropies of the binary erasure channel (BEC) The BEC is defined with an alphabet of two inputs and three outputs, with symbol probabilities.

 $P(x_1) = \alpha$ and $P(x_2) = 1 - \alpha$, and transition probabilities

$$P(\frac{y_3}{x_2}) = 1 - p \text{ and } P(\frac{y_2}{x_1}) = 0,$$

and $P(\frac{y_3}{x_1}) = 0$
and $P(\frac{y_1}{x_2}) = p$
and $P(\frac{y_1}{x_2}) = 1 - p$

Lemma 1.7. Given an arbitrary restricted timediscrete, amplitude-continuous channel whose restrictions are determined by sets F_n and whose density functions exhibit no dependence on the state s, let n be a fixed positive integer, and p(x) an arbitrary probability density function on Euclidean n-space. p(y|x) for the density $p_n(y_1,...,y_n | x_1,...x_n)$ and F for F_n . For any real number a, let

$$A = \left\{ (x, y) : \log \frac{p(y \mid x)}{p(y)} > a \right\}$$
(1)

Then for each positive integer u, there is a code (u, n, λ) such that

$$\lambda \leq ue^{-a} + P\{(X,Y) \notin A\} + P\{X \notin F\}$$

Where

 $P\{(X,Y) \in A\} = \int_A \dots \int p(x,y) dx dy, \qquad p(x,y) = p(x)p(y \mid x)$ and $P(X,y) = \int_A \dots \int p(x,y) dx dy, \qquad p(x,y) = p(x)p(y \mid x)$

$$P\left\{X \in F\right\} = \int_F \dots \int p(x) dx$$

Proof: A sequence
$$x^{(1)} \in F$$
 such that
 $P\left\{Y \in A_{x^1} \mid X = x^{(1)}\right\} \ge 1 - \varepsilon$
where $A_x = \{y : (x, y) \in A\};$

Choose the decoding set B_1 to be $A_{x^{(1)}}$. Having chosen $x^{(1)}, \ldots, x^{(k-1)}$ and B_1, \ldots, B_{k-1} , select $x^k \in F$ such that $P\left\{Y \in A_{x^{(k)}} - \bigcup_{i=1}^{k-1} B_i \mid X = x^{(k)}\right\} \ge 1 - \varepsilon;$ Set $B_k = A_{x^{(k)}} - \bigcup_{i=1}^{k-1} B_i$, If the process does not

Set $B_k = A_{x^{(k)}} - \bigcup_{i=1} B_i$, If the process does not terminate in a finite number of steps, then the sequences $x^{(i)}$ and decoding sets B_i , i = 1, 2, ..., u, form the desired code. Thus assume that the process terminates after t steps. (Conceivably t = 0). We will show $t \ge u$ by showing that $\varepsilon \le te^{-a} + P\{(X, Y) \notin A\} + P\{X \notin F\}$. We proceed as follows.

Let

$$B = \bigcup_{j=1}^{t} B_{j}. \quad (If \ t = 0, \ take \ B = \phi). \ Then$$
$$P\{(X, Y) \in A\} = \int_{(x, y) \in A} p(x, y) dx dy$$
$$= \int p(x) \int p(y \mid x) dy dx$$

$$= \int_{x}^{x} p(x) \int_{y \in B \cap A_x}^{y \in A_x} p(y \mid x) dy dx + \int_{x} p(x)$$

C. Algorithms

Ideals. Let A be a ring. Recall that an *ideal a* in A is a subset such that a is subgroup of A regarded as a group under addition;

$$a \in a, r \in A \Longrightarrow ra \in A$$

The ideal generated by a subset S of A is the intersection of all ideals A containing a ----- it is easy to verify that this is in fact an ideal, and that it consist of all finite sums of the form $\sum r_i s_i$ with (2) $r_i \in A, s_i \in S$. When $S = \{s_1, \dots, s_m\}$, we shall write (s_1, \dots, s_m) for the ideal it generates. Let a and b be ideals in A. The set $\{a+b \mid a \in a, b \in b\}$ is an ideal, denoted by

 $\{a+b \mid a \in a, b \in b\}$ is an ideal, denoted by a+b. The ideal generated by $\{ab \mid a \in a, b \in b\}$ is denoted by ab. Note that $ab \subset a \cap b$. Clearly ab consists of all finite sums $\sum a_i b_i$ with $a_i \in a$ and $b_i \in b$, and if $a = (a_1, ..., a_m)$ and $b = (b_1, ..., b_n)$, then $ab = (a_1b_1, ..., a_ib_j, ..., a_mb_n)$. Let a be an ideal of A. The set of cosets of a in A forms a ring A/a, and $a \mapsto a+a$ is a homomorphism

 $\phi: A \mapsto A / a$. The map $b \mapsto \phi^{-1}(b)$ is a one to one correspondence between the ideals of A/a and the ideals of A containing a An ideal p if prime if $p \neq A$ and $ab \in p \Longrightarrow a \in p$ or $b \in p$. Thus p is prime if and only if A / p is nonzero and has the $b \neq 0 \Longrightarrow a = 0$, i.e., property that ab = 0. A / p is an integral domain. An ideal *m* is maximal if $m \neq A$ and there does not exist an ideal n contained strictly between m and A. Thus m is maximal if and only if A/m has no proper nonzero ideals, and so is a field. Note that m maximal \Longrightarrow *m* prime. The ideals of $A \times B$ are all of the form $a \times b$, with a and b ideals in A and B. To see this, note that if c is an ideal in $A \times B$ and $(a,b) \in c$, then $(a,0) = (a,b)(1,0) \in c$ and $(0,b) = (a,b)(0,1) \in c$. This shows that $c = a \times b$ with $a = \{a \mid (a,b) \in c \text{ some } b \in b\}$ and

 $b = \{b \mid (a,b) \in c \text{ some } a \in a\}$

Let A be a ring. An A-algebra is a ring B together with a homomorphism $i_B: A \to B$. A homomorphism of A -algebra $B \rightarrow C$ is a homomorphism of rings $\varphi: B \to C$ such that $\varphi(i_{R}(a)) = i_{C}(a)$ for all $a \in A$. An A-algebra B is said to be *finitely generated* (or of *finite-type* over A) if there exist elements $x_1, ..., x_n \in B$ such that every element of B can be expressed as a polynomial in the x_i with coefficients in i(A), i.e., such that the homomorphism $A[X_1,...,X_n] \rightarrow B$ sending X_i to x_i is surjective. A ring homomorphism $A \rightarrow B$ is *finite*, and B is finitely generated as an A-module. Let k be a field, and let A be a k-algebra. If $1 \neq 0$ in A, then the map $k \rightarrow A$ is injective, we can identify k with its image, i.e., we can regard k as a subring of A. If 1=0 in a ring R, the R is the zero ring, i.e., $R = \{0\}$. **Polynomial rings.** Let k be a field. A monomial in $X_1, ..., X_n$ is an expression of the form $X_1^{a_1}...X_n^{a_n}, \qquad a_j \in N$. The total degree of the monomial is $\sum a_i$. We sometimes abbreviate it by $X^{\alpha}, \alpha = (a_1, ..., a_n) \in \square^n$ The elements of the polynomial ring $k[X_1,...,X_n]$ are finite sums $\sum c_{a_1\dots a_n} X_1^{a_1} \dots X_n^{a_n}, \qquad c_{a_1\dots a_n} \in k, \quad a_j \in \square$ With the obvious notions of equality, addition and multiplication. Thus the monomials from basis for $k[X_1,...,X_n]$ as a k-vector space. The ring $k[X_1,...,X_n]$ is an integral domain, and the only units in it are the nonzero constant polynomials. A polynomial $f(X_1,...,X_n)$ is *irreducible* if it is nonconstant and has only the obvious factorizations, i.e., $f = gh \Longrightarrow g$ or h is constant. Division in k[X]. The division algorithm allows us to divide a nonzero polynomial into another: let f and g be polynomials in k[X] with $g \neq 0$; then there exist unique polynomials $q, r \in k[X]$ such that f = qg + r with either r = 0 or deg $r < \deg g$. Moreover, there is an algorithm for deciding whether $f \in (g)$, namely, find r and check whether it is zero. Moreover, the Euclidean algorithm allows to pass from finite set of generators for an ideal in $k \mid X \mid$ to a single generator by successively replacing each pair of generators with their greatest common divisor.

(*Pure*) **lexicographic** ordering (lex). Here monomials are ordered by lexicographic(dictionary) order. More precisely, let $\alpha = (a_1, ..., a_n)$ and $\beta = (b_1, ..., b_n)$ be two elements of \Box^n ; then $\alpha > \beta$ and $X^{\alpha} > X^{\beta}$ (lexicographic ordering) if, in the vector difference $\alpha - \beta \in \Box$, the left most nonzero entry is positive. For example,

 $XY^2 > Y^3Z^4$; $X^3Y^2Z^4 > X^3Y^2Z$. Note that this isn't quite how the dictionary would order them: it would put *XXXYYZZZZ* after *XXXYYZ*. *Graded reverse lexicographic order (grevlex)*. Here monomials are ordered by total degree, with ties broken by reverse lexicographic ordering. Thus, $\alpha > \beta$ if $\sum a_i > \sum b_i$, or $\sum a_i = \sum b_i$ and in $\alpha - \beta$ the right most nonzero entry is negative. For example:

 $X^{4}Y^{4}Z^{7} > X^{5}Y^{5}Z^{4}$ (total degree greater) $XY^{5}Z^{2} > X^{4}YZ^{3}, \qquad X^{5}YZ > X^{4}YZ^{2}$

Orderings on $k[X_1,...,X_n]$. Fix an ordering on the monomials in $k[X_1,...,X_n]$. Then we can write an element f of $k[X_1,...,X_n]$ in a canonical

fashion, by re-ordering its elements in decreasing order. For example, we would write

$$f = 4XY^{2}Z + 4Z^{2} - 5X^{3} + 7X^{2}Z^{2}$$

as
$$f = -5X^{3} + 7X^{2}Z^{2} + 4XY^{2}Z + 4Z^{2} \quad (lex)$$

or
$$f = 4XY^{2}Z + 7X^{2}Z^{2} - 5X^{3} + 4Z^{2} \quad (grevlex)$$

Let $\sum a_{\alpha}X^{\alpha} \in k[X_1,...,X_n]$, in decreasing order:

Then we define.

- The *multidegree* of f to be multdeg(f) = α_0 ;
- The leading coefficient of f to be $LC(f) = a_{\alpha_0}$;
- The leading monomial of f to be LM(f) = X^{α_0} ·
- The leading term of f to be LT(f) = $a_{\alpha}X^{\alpha_0}$

For the polynomial $f = 4XY^2Z + ...,$ the multidegree is (1,2,1), the leading coefficient is 4, the leading monomial is XY^2Z , and the leading term is $4XY^2Z$. The division algorithm in $k[X_1,...,X_n]$. Fix a monomial ordering in \square^2 . Suppose given a polynomial f and an ordered set (g_1, \dots, g_s) of polynomials; the division algorithm then constructs polynomials $a_1, \dots a_s$ and r such that $f = a_1g_1 + \dots + a_sg_s + r$ Where either r = 0 or no monomial in r is divisible by any of $LT(g_1), \dots, LT(g_s)$ Step 1: If $LT(g_1)|LT(f)$, divide g_1 into f to get $f = a_1g_1 + h, \quad a_1 = \frac{LT(f)}{LT(g_1)} \in k[X_1, ..., X_n]$ If $LT(g_1) | LT(h)$, repeat the process until $f = a_1g_1 + f_1$ (different a_1) with $LT(f_1)$ not divisible by $LT(g_1)$. Now divide g_2 into f_1 , and so on, until $f = a_1g_1 + ... + a_sg_s + r_1$ With

 $LT(r_1)$ not divisible by any $LT(g_1), ..., LT(g_s)$ **Step 2:** Rewrite $r_1 = LT(r_1) + r_2$, and repeat Step 1 with r_2 for f $f = a_1g_1 + \ldots + a_sg_s + LT(r_1) + r_3$ (different

 a_i 's) Monomial ideals. In general, an ideal awill contain a polynomial without containing the individual terms of the polynomial; for example, the ideal $a = (Y^2 - X^3)$ contains $Y^2 - X^3$ but not Y^2 or X^3 .

DEFINITION 1.5. An ideal *a* is monomial if $\sum c_{\alpha} X^{\alpha} \in a \Longrightarrow X^{\alpha} \in a$

all α with $c_{\alpha} \neq 0$.

PROPOSITION 1.3. Let *a* be a monomial ideal, and $f = a_{\alpha_0} X^{\alpha_0} +_{\alpha_1} X^{\alpha_1} + \dots, \qquad \alpha_0 > \alpha_1 > \dots, \quad \alpha_0 \neq 0$ let $A = \{ \alpha \mid X^{\alpha} \in a \}$. Then A satisfies the condition $\alpha \in A$, $\beta \in \square^n \Rightarrow \alpha + \beta \in$ (*) And *a* is the *k*-subspace of $k[X_1,...,X_n]$ generated by the $X^{\alpha}, \alpha \in A$. Conversely, of A is a subset of \square^n satisfying (*), then the k-subspace a of $k[X_1,...,X_n]$ generated by $\{X^{\alpha} | \alpha \in A\}$ is a monomial ideal.

> PROOF. It is clear from its definition that a monomial ideal a is the k -subspace of $k[X_1, ..., X_n]$

> generated by the set of monomials it contains. If $X^{\alpha} \in a$ and $X^{\beta} \in k[X_1, ..., X_n]$

> If a permutation is chosen uniformly and at random from the n! possible permutations in S_n , then the counts $C_{i}^{(n)}$ of cycles of length j are dependent random variables. The joint distribution of $C^{(n)} = (C_1^{(n)}, ..., C_n^{(n)})$ follows from Cauchy's formula, and is given by

$$P[C^{(n)} = c] = \frac{1}{n!} N(n, c) = 1 \left\{ \sum_{j=1}^{n} jc_j = n \right\} \prod_{j=1}^{n} \left(\frac{1}{j}\right)^{c_j} \frac{1}{c_j!}, \qquad (1.1)$$

for $c \in \square_{+}^{n}$.

Lemma1.7 For nonnegative integers $m_{1\ldots}m_n$,

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = \left(\prod_{j=1}^{n} \left(\frac{1}{j}\right)^{m_{j}}\right) \left\{\sum_{j=1}^{n} jm_{j} \le n\right\}$$
(1.4)

Proof. This can be established directly by exploiting cancellation of the form $c_{i}^{[m_{j}]}/c_{i}^{!}=1/(c_{i}-m_{i})!$ when $c_{i} \ge m_{i}$, which occurs between the ingredients in Cauchy's formula and the falling factorials in the moments. Write

 $m = \sum jm_j$. Then, with the first sum indexed by $c = (c_1, ..., c_n) \in \square_+^n$ and the last sum indexed by $d = (d_1, ..., d_n) \in \square_+^n$ via the correspondence $d_j = c_j - m_j$, we have

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = \sum_{c} P[C^{(n)} = c] \prod_{j=1}^{n} (c_{j})^{[m_{j}]}$$
$$= \sum_{c:c_{j} \ge m_{j} \text{ for all } j} 1\left\{\sum_{j=1}^{n} jc_{j} = n\right\} \prod_{j=1}^{n} \frac{(c_{j})^{[m_{j}]}}{j^{c_{j}}c_{j}!}$$
$$= \prod_{j=1}^{n} \frac{1}{j^{m_{j}}} \sum_{d} 1\left\{\sum_{j=1}^{n} jd_{j} = n - m\right\} \prod_{j=1}^{n} \frac{1}{j^{d_{j}}(d_{j})!}$$

This last sum simplifies to the indicator $1(m \le n)$, corresponding to the fact that if $n-m \ge 0$, then $d_j = 0$ for j > n-m, and a random permutation in S_{n-m} must have some cycle structure $(d_1, ..., d_{n-m})$. The moments of $C_j^{(n)}$ follow immediately as

$$E(C_{j}^{(n)})^{[r]} = j^{-r} \mathbf{1} \{ jr \le n \}$$
(1.2)

We note for future reference that (1.4) can also be written in the form

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = E\left(\prod_{j=1}^{n} Z_{j}^{[m_{j}]}\right) \mathbb{1}\left\{\sum_{j=1}^{n} jm_{j} \le n\right\},$$
(1.3)

Where the Z_j are independent Poisson-distribution random variables that satisfy $E(Z_j) = 1/j$

The marginal distribution of cycle counts provides a formula for the joint distribution of the cycle counts C_j^n , we find the distribution of C_j^n using a combinatorial approach combined with the inclusion-exclusion formula.

Lemma 1.8. For
$$1 \le j \le n$$
,

$$P[C_{j}^{(n)} = k] = \frac{j^{-k}}{k!} \sum_{l=0}^{\lfloor n/j \rfloor - k} (-1)^{l} \frac{j^{-l}}{l!}$$
(1.1)

Proof. Consider the set I of all possible cycles of length j, formed with elements chosen from $\{1, 2, ..., n\}$, so that $|I| = n^{\lfloor j \rfloor / j}$. For each $\alpha \in I$, consider the "property" G_{α} of having α ; that is, G_{α} is the set of permutations $\pi \in S_n$ such that α is one of the cycles of π . We then have $|G_{\alpha}| = (n-j)!$, since the elements of $\{1, 2, ..., n\}$ not in α must be permuted among themselves. To use the inclusion-exclusion formula we need to

calculate the term S_r , which is the sum of the probabilities of the *r*-fold intersection of properties, summing over all sets of *r* distinct properties. There are two cases to consider. If the *r* properties are indexed by *r* cycles having no elements in common, then the intersection specifies how rj elements are moved by the permutation, and there are $(n-rj)!!(rj \le n)$ permutations in the intersection. There are $n^{[rj]} / (j^r r!)$ such intersections. For the other case, some two distinct properties name some element in common, so no permutation can have both these properties, and the *r*-fold intersection is empty. Thus

$$S_{r} = (n - rj)! 1(rj \le n)$$

$$\times \frac{n^{[rj]}}{j^{r}r!} \frac{1}{n!} = 1(rj \le n) \frac{1}{j^{r}r!}$$

Finally, the inclusion-exclusion series for the number of permutations having exactly k properties is

$$\sum_{l\geq 0} (-1)^l \binom{k+l}{l} S_{k+l}$$

Which simplifies to (1.1) Returning to the original hat-check problem, we substitute j=1 in (1.1) to obtain the distribution of the number of fixed points of a random permutation. For k = 0, 1, ..., n,

$$P[C_1^{(n)} = k] = \frac{1}{k!} \sum_{l=0}^{n-k} (-1)^l \frac{1}{l!},$$
 (1.2)

and the moments of $C_1^{(n)}$ follow from (1.2) with j = 1. In particular, for $n \ge 2$, the mean and variance of $C_1^{(n)}$ are both equal to 1. The joint distribution of $(C_1^{(n)}, ..., C_b^{(n)})$ for any $1 \le b \le n$ has an expression similar to (1.7); this too can be derived by inclusion-exclusion. For any $c = (c_1, ..., c_b) \in \square_+^b$ with $m = \sum i c_i$, $P[(C_1^{(n)}, ..., C_b^{(n)}) = c] = \left\{ \prod_{i=1}^b \left(\frac{1}{i}\right)^{c_i} \frac{1}{c_i!} \right\} \sum_{\substack{l \ge 0 \text{ with} \\ \sum i l_i \le n-m}} (-1)^{l_1 + ... + l_b} \prod_{i=1}^b \left(\frac{1}{i}\right)^{l_i} \frac{1}{l_i!}$ (1.3)

The joint moments of the first *b* counts $C_1^{(n)}, ..., C_b^{(n)}$ can be obtained directly from (1.2) and (1.3) by setting $m_{b+1} = ... = m_n = 0$

The limit distribution of cycle counts

It follows immediately from Lemma 1.2 that for each fixed j, as $n \rightarrow \infty$,

$$P[C_j^{(n)} = k] \to \frac{j^{-k}}{k!} e^{-1/j}, \quad k = 0, 1, 2, \dots$$

So that $C_j^{(n)}$ converges in distribution to a random variable Z_j having a Poisson distribution with mean 1/j; we use the notation $C_j^{(n)} \rightarrow_d Z_j$ where $Z_j \square P_o(1/j)$ to describe this. Infact, the limit random variables are independent.

Theorem 1.6 The process of cycle counts converges in distribution to a Poisson process of \Box with intensity j^{-1} . That is, as $n \to \infty$,

$$(C_1^{(n)}, C_2^{(n)}, ...) \to_d (Z_1, Z_2, ...)$$
 (1.1)

Where the Z_j , j = 1, 2, ..., are independent Poisson-distributed random variables with $E(Z_j) = \frac{1}{i}$

Proof. To establish the converges in distribution one shows that for each fixed $b \ge 1$, as $n \rightarrow \infty$,

$$P[(C_1^{(n)},...,C_b^{(n)})=c] \to P[(Z_1,...,Z_b)=c]$$

Error rates

The proof of Theorem says nothing about the rate of convergence. Elementary analysis can be used to estimate this rate when b=1. Using properties of alternating series with decreasing terms, for k=0,1,...,n,

$$\begin{split} &\frac{1}{k!}(\frac{1}{(n-k+1)!} - \frac{1}{(n-k+2)!}) \leq \left| P[C_1^{(n)} = k] - P[Z_1 = k] \right| \\ &\leq \frac{1}{k!(n-k+1)!} \end{split}$$

It follows that $\frac{2^{n+1}}{(n+1)!} \frac{n}{n+2} \le \sum_{k=0}^{n} \left| P[C_1^{(n)} = k] - P[Z_1 = k] \right| \le \frac{2^{n+1} - 1}{(n+1)!} \quad (1.11)$ Since $P[Z_1 > n] = \frac{e^{-1}}{(n+1)!} (1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + ...) < \frac{1}{(n+1)!},$

We see from (1.11) that the total variation distance between the distribution $L(C_1^{(n)})$ of $C_1^{(n)}$ and the distribution $L(Z_1)$ of Z_1 Establish the asymptotics of $P[A_n(C^{(n)})]$ under conditions (A_0) and (B_{01}) , where $A_n(C^{(n)}) = \bigcap_{1 \le i \le n} \bigcap_{r_i + 1 \le j \le r_i} \{C_{ij}^{(n)} = 0\},\$ and $\zeta_i = (r_i / r_{id}) - 1 = O(i^{-g})$ as $i \to \infty$, for some g' > 0. We start with the expression $P[A_n(C^{(n)})] = \frac{P[T_{0m}(Z') = n]}{P[T_{0m}(Z) = n]}$ $\prod_{\substack{1 \le i \le n \\ r_i + 1 \le j \le r_i}} \{1 - \frac{\theta}{ir_i}(1 + E_{i0})\}$ (1.1) $P[T_{0n}(Z') = n]$ $= \frac{\theta d}{r_i} \exp\{\sum [\log(1 + i^{-1}\theta d) - i^{-1}\theta d]\}$

$$= -\frac{1}{n} \exp \left\{ \sum_{i \ge 1} [\log(1+i^{-1}\theta d) - i^{-1}\theta d] \right\}$$

$$\left\{ 1 + O(n^{-1}\varphi'_{\{1,2,7\}}(n)) \right\} \quad (1.2)$$
and

P[T (Z') = n]

$$= \frac{\theta d}{n} \exp\left\{\sum_{i\geq 1} [\log(1+i^{-1}\theta d) - i^{-1}\theta d]\right\}$$

$$\left\{1 + O(n^{-1}\varphi_{\{1,2,7\}}(n))\right\}$$
(1.3)

Where $\varphi_{\{1,2,7\}}(n)$ refers to the quantity derived from $Z^{'}$. It thus follows that $P[A_{n}(C^{(n)})] \square Kn^{-\theta(1-d)}$ for a constant K, depending on Z and the r_i and computable explicitly from (1.1) - (1.3), if Conditions (A_0) and (B_{01}) are satisfied and if $\zeta_i^* = O(i^{-g})$ from some g' > 0, since, under these circumstances, both $n^{-1}\varphi_{\{1,2,7\}}(n)$ and $n^{-1}\varphi_{\{1,2,7\}}(n)$ tend to zero as $n \rightarrow \infty$. In particular, for polynomials and square free polynomials, the relative error in this asymptotic approximation is of order n^{-1} if g' > 1. For $0 \le b \le n/8$ and $n \ge n_0$, with n_0 $d_{TV}(L(C[1,b]), L(Z[1,b]))$ $\leq d_{\tau v}(L(C[1,b]), L(Z[1,b]))$ $\leq \varepsilon_{(7,7)}(n,b),$ Where $\mathcal{E}_{\{7,7\}}(n,b) = O(b/n)$ under Conditions $(A_0), (D_1)$ and (B_{11}) Since, by the Conditioning

Issn 2250-3005(online)

Relation,

$$L(C[1,b] | T_{0b}(C) = l) = L(Z[1,b] | T_{0b}(Z) = l),$$

It follows by direct calculation that

$$d_{TV}(L(C[1,b]), L(Z[1,b])) = d_{TV}(L(T_{0b}(C)), L(T_{0b}(Z))) = \max_{A} \sum_{r \in A} P[T_{0b}(Z) = r] \left\{ 1 - \frac{P[T_{bn}(Z) = n - r]}{P[T_{0n}(Z) = n]} \right\}$$
(1.4)

Suppressing the argument Z from now on, we thus obtain

$$\begin{split} &d_{TV}(L(C[1,b]), L(Z[1,b])) \\ &= \sum_{r \ge 0} P[T_{0b} = r] \left\{ 1 - \frac{P[T_{bn} = n - r]}{P[T_{0n} = n]} \right\}_{+} \\ &\leq \sum_{r > n/2} P[T_{0b} = r] + \sum_{r=0}^{[n/2]} \frac{P[T_{0b} = r]}{P[T_{0b} = n]} \\ &\times \left\{ \sum_{s=0}^{n} P[T_{0b} = s](P[T_{bn} = n - s] - P[T_{bn} = n - r]) \right\}_{+} \end{split}$$

$$\leq \sum_{r>n/2} P[T_{0b} = r] + \sum_{r=0}^{\lfloor n/2 \rfloor} P[T_{0b} = r]$$

$$\times \sum_{s=0}^{\lfloor n/2 \rfloor} P[T_{0b} = s] \frac{\{P[T_{bn} = n - s] - P[T_{bn} = n - r]\}}{P[T_{0n} = n]}$$

$$+ \sum_{s=0}^{\lfloor n/2 \rfloor} P[T_{0b} = r] \sum_{s=\lfloor n/2 \rfloor+1}^{n} P[T = s] P[T_{bn} = n - s] / P[T_{0n} = n]$$

The first sum is at most $2n^{-1}ET_{0b}$; the third is bound by

$$(\max_{n/2 < s \le n} P[T_{0b} = s]) / P[T_{0n} = n]$$

$$\leq \frac{2\varepsilon_{\{10.5(1)\}}(n/2,b)}{n} \frac{3n}{\theta P_{\theta}[0,1]},$$

$$\frac{3n}{\theta P_{\theta}[0,1]} 4n^{-2}\phi_{\{10.8\}}^{*}(n)\sum_{r=0}^{[n/2]} P[T_{0b} = r]\sum_{s=0}^{[n/2]} P[T_{0b} = s]\frac{1}{2}|r-s|$$

$$\leq \frac{12\phi_{\{10.8\}}^{*}(n)}{\theta P_{\theta}[0,1]} \frac{ET_{0b}}{n}$$
Hence we may take
$$\varepsilon_{\{7,7\}}(n,b) = 2n^{-1}ET_{0b}(Z) \left\{ 1 + \frac{6\phi_{\{10.8\}}^{*}(n)}{\theta P_{\theta}[0,1]} \right\} P$$

$$+ \frac{6}{\theta P_{\theta}[0,1]} \varepsilon_{\{10.5(1)\}}(n/2,b) \qquad (1.5)$$

Required order under Conditions $(A_0), (D_1)$ and (B_{11}) , if $S(\infty) < \infty$. If not, $\phi_{\{10,8\}}^*(n)$ can be replaced by $\phi^*_{\{10,11\}}(n)$ in the above, which has the required order, without the restriction on the r_i implied by $S(\infty) < \infty$. Examining the Conditions $(A_0), (D_1)$ and (B_{11}) , it is perhaps surprising to find that (B_{11}) is required instead of just (B_{01}) ; that is, that we should need $\sum_{l>2} l \varepsilon_{il} = O(i^{-a_1})$ to hold for some $a_1 > 1$. A first observation is that a similar problem arises with the rate of decay of \mathcal{E}_{i1} as well. For this reason, n_1 is replaced by n_1 . This makes it possible to replace condition (A_1) by the weaker pair of conditions (A_0) and (D_1) in the eventual assumptions needed for $\mathcal{E}_{(7,7)}(n,b)$ to be of order O(b/n); the decay rate requirement of order $i^{-1-\gamma}$ is shifted from \mathcal{E}_{i1} itself to its first difference. This is needed to obtain the right approximation error for the random mappings example. However, since all the classical applications make far more stringent assumptions about the $\mathcal{E}_{i1}, l \geq 2$, than are made in (B_{11}) . The critical point of the proof is seen where the initial difference estimate the of $P[T_{bn}^{(m)} = s] - P[T_{bn}^{(m)} = s+1]$ The factor $\mathcal{E}_{\{10,10\}}(n)$, which should be small, contains a far tail element from n_1 of the form $\phi_1^{\theta}(n) + u_1^*(n)$, which is only small if $a_1 > 1$, being otherwise of order $O(n^{1-a_1+\delta})$ for any $\delta > 0$, since $a_2 > 1$ is in any case assumed. For $s \ge n/2$, this gives rise to a contribution of order $O(n^{-1-a_1+\delta})$ in the estimate of the difference $P[T_{bn} = s] - P[T_{bn} = s+1]$, which, in the remainder of the proof, is translated into a contribution of order $O(tn^{-1-a_1+\delta})$ for differences of the form $P[T_{bn} = s] - P[T_{bn} = s+1]$, finally leading to a contribution of order $bn^{-a_1+\delta}$ for any $\delta > 0$ in $\mathcal{E}_{(7,7)}(n,b)$. Some improvement would seem to be possible, defining the function g by $g(w) = 1_{\{w=s\}} - 1_{\{w=s+t\}}$, differences that are of the form $P[T_{bn} = s] - P[T_{bn} = s+t]$ can be

Issn 2250-3005(online)

D T T

п

directly estimated, at a cost of only a single contribution of the form $\phi_1^{\theta}(n) + u_1^*(n)$. Then, iterating the cycle, in which one estimate of a difference in point probabilities is improved to an estimate of smaller order, a bound of the form $|P[T_{bn} = s] - P[T_{bn} = s+t]| = O(n^{-2}t + n^{-1-a_1+\delta})$ for any $\delta > 0$ could perhaps be attained, leading to a final error estimate in order $O(bn^{-1} + n^{-a_1+\delta})$ for any $\delta > 0$, to replace $\mathcal{E}_{\{7.7\}}(n,b)$. This would be of the ideal order O(b/n) for large enough b, but would still be coarser for small b.

With b and n as in the previous section, we wish to show that

$$\left| d_{TV}(L(C[1,b]), L(Z[1,b])) - \frac{1}{2}(n+1)^{-1} \left| 1 - \theta \right| E \left| T_{0b} - ET_{0b} \right| \right|$$

$$\leq \varepsilon_{\{7,8\}}(n,b),$$

Where $\varepsilon_{\{7.8\}}(n,b) = O(n^{-1}b[n^{-1}b + n^{-\beta_{12}+\delta}])$ for any $\delta > 0$ under Conditions $(A_0), (D_1)$ and (B_{12}) , with β_{12} . The proof uses sharper estimates. As before, we begin with the formula

$$d_{TV}(L(C[1,b]), L(Z[1,b]))$$

= $\sum_{r \ge 0} P[T_{0b} = r] \left\{ 1 - \frac{P[T_{bn} = n - r]}{P[T_{0n} = n]} \right\}_{+}$

Now we observe that

$$\begin{split} & \left| \sum_{r\geq 0} P[T_{0b} = r] \left\{ 1 - \frac{P[T_{bn} = n - r]}{P[T_{0n} = n]} \right\}_{+} - \sum_{r=0}^{\lfloor n/2 \rfloor} \frac{P[T_{0b} = r]}{P[T_{0n} = n]} \right| \\ & \times \left| \sum_{s=\lfloor n/2 \rfloor+1}^{n} P[T_{0b} = s] (P[T_{bn} = n - s] - P[T_{bn} = n - r]) \right| \\ & \leq 4n^{-2} E T_{0b}^{2} + (\max_{n/2 < s \le n} P[T_{0b} = s]) / P[T_{0n} = n] \\ & + P[T_{0b} > n/2] \\ & \leq 8n^{-2} E T_{0b}^{2} + \frac{3\mathcal{E}_{\{10.5(2)\}}(n/2, b)}{\theta P_{\theta}[0, 1]}, \qquad (1.1) \end{split}$$

We have

$$\Big| \sum_{r=0}^{[n/2]} \frac{P[T_{0b} = r]}{P[T_{0n} = n]} \\ \times \Big(\left\{ \sum_{s=0}^{[n/2]} P[T_{0b} = s] (P[T_{bn} = n - s] - P[T_{bn} = n - r] \right\}_{+} \\ - \left\{ \sum_{s=0}^{[n/2]} P[T_{0b} = s] \frac{(s - r)(1 - \theta)}{n + 1} P[T_{0n} = n] \right\}_{+} \Big) \Big|$$

$$\leq \frac{1}{n^{2}P[T_{0n} = n]} \sum_{r \geq 0} P[T_{0b} = r] \sum_{s \geq 0} P[T_{0b} = s] |s - r|$$

$$\times \left\{ \varepsilon_{\{10.14\}}(n, b) + 2(r \vee s) |1 - \theta| n^{-1} \left\{ K_{0}\theta + 4\phi_{\{10.8\}}^{*}(n) \right\} \right\}$$

$$\leq \frac{6}{\theta n P_{\theta}[0, 1]} ET_{0b} \varepsilon_{\{10.14\}}(n, b)$$

$$+ 4 |1 - \theta| n^{-2} ET_{0b}^{2} \left\{ K_{0}\theta + 4\phi_{\{10.8\}}^{*}(n) \right\}$$

$$(\frac{3}{\theta n P_{\theta}[0, 1]}) \right\}, \qquad (1.2)$$

The approximation in (1.2) is further simplified by noting that

$$\sum_{r=0}^{[n/2]} P[T_{0b} = r] \left\{ \sum_{s=0}^{[n/2]} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1} \right\}_{+}$$

$$-\left\{\sum_{s=0}^{\infty} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1}\right\}_{+} \\ \leq \sum_{r=0}^{[n/2]} P[T_{0b} = r] \sum_{s>[n/2]} P[T_{0b} = s] \frac{(s-r)|1-\theta|}{n+1} \\ \leq |1-\theta| n^{-1} E(T_{0b} 1\{T_{0b} > n/2\}) \leq 2|1-\theta| n^{-2} ET_{0b}^{2},$$
(1.3)

and then by observing that

$$\sum_{r > \lfloor n/2 \rfloor} P[T_{0b} = r] \left\{ \sum_{s \ge 0} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1} \right\}$$

$$\leq n^{-1} |1-\theta| (ET_{0b}P[T_{0b} > n/2] + E(T_{0b}1\{T_{0b} > n/2\}))$$

$$\leq 4 |1-\theta| n^{-2} ET_{0b}^{2}$$
(1.4)

Combining the contributions of (1.2) –(1.3), we thus find that \Box_{1}

$$\left| \begin{array}{l} d_{TV}(L(C[1,b]), L(Z[1,b])) \\ -(n+1)^{-1} \sum_{r \ge 0} P[T_{0b} = r] \left\{ \sum_{s \ge 0} P[T_{0b} = s](s-r)(1-\theta) \right\}_{+} \\ \leq \varepsilon_{\{7,8\}}(n,b) \\ = \frac{3}{\theta P_{\theta}[0,1]} \left\{ \varepsilon_{\{10.5(2)\}}(n/2,b) + 2n^{-1}ET_{0b}\varepsilon_{\{10.14\}}(n,b) \right\} \\ + 2n^{-2}ET_{0b}^{2} \left\{ 4 + 3\left|1-\theta\right| + \frac{24\left|1-\theta\right|\phi_{\{10.8\}}^{*}(n)}{\theta P_{\theta}[0,1]} \right\}$$
(1.5)

The quantity $\mathcal{E}_{\{7,8\}}(n,b)$ is seen to be of the order claimed under Conditions $(A_0), (D_1)$ and (B_{12}) , provided that $S(\infty) < \infty$; this supplementary condition can be removed if $\phi_{\{10,8\}}^*(n)$ is replaced by $\phi_{\{10,11\}}^*(n)$ in the definition of $\mathcal{E}_{\{7,8\}}(n,b)$, has the required order without the restriction on the r_i implied by assuming that $S(\infty) < \infty$. Finally, a direct calculation now shows that

$$\sum_{r \ge 0} P[T_{0b} = r] \left\{ \sum_{s \ge 0} P[T_{0b} = s](s - r)(1 - \theta) \right\}_{+}$$
$$= \frac{1}{2} |1 - \theta| E |T_{0b} - ET_{0b}|$$

Example 1.0. Consider the point $O = (0, ..., 0) \in \square^n$. For an arbitrary vector r, the coordinates of the point x = O + r are equal to the coordinates respective of the vector $r: x = (x^1, ..., x^n)$ and $r = (x^1, ..., x^n)$. The vector r such as in the example is called the position vector or the radius vector of the point X. (Or, in greater detail: r is the radius-vector of x w.r.t an origin O). Points are frequently specified by their radiusvectors. This presupposes the choice of O as the "standard origin". Let us summarize. We have considered \square^n and interpreted its elements in two ways: as points and as vectors. Hence we may say that we leading with the two copies of \Box^n : $\Box^n =$ $\square^n = \{\text{vectors}\}$ {points}.

Operations with vectors: multiplication by a number, addition. Operations with points and vectors: adding a vector to a point (giving a point), subtracting two points (giving a vector). \Box^n treated in this way is called an *n*-dimensional affine space. (An "abstract" affine space is a pair of sets, the set of points and the set of vectors so that the operations as above are defined axiomatically). Notice that vectors in an affine space are also known as "free vectors".

Intuitively, they are not fixed at points and "float freely" in space. From \Box^n considered as an affine space we can precede in two opposite directions: \Box^n as an Euclidean space $\Leftarrow \Box^n$ as an affine space $\Longrightarrow \Box^n$ as a manifold.Going to the left means introducing some extra structure which will make the geometry richer. Going to the right means forgetting about part of the affine structure; going further in this direction will lead us to the so-called "smooth (or differentiable) manifolds". The theory of differential forms does not require any extra geometry. So our natural direction is to the right. The Euclidean structure, however, is useful for examples and applications. So let us say a few words about it:

Remark 1.0. Euclidean geometry. In \square^n considered as an affine space we can already do a good deal of geometry. For example, we can consider lines and planes, and quadric surfaces like an ellipsoid. However, we cannot discuss such things as "lengths", "angles" or "areas" and "volumes". To be able to do so, we have to introduce some more definitions, making \square^n a Euclidean space. Namely, we define the length of a vector $a = (a^1, ..., a^n)$ to be

$$|a| := \sqrt{(a^1)^2 + \dots + (a^n)^2}$$
 (1)

After that we can also define distances between points as follows:

$$d(A,B) \coloneqq \left| \overline{AB} \right| \tag{2}$$

One can check that the distance so defined possesses natural properties that we expect: is it always non-negative and equals zero only for coinciding points; the distance from A to B is the same as that from B to A (symmetry); also, for three points, А, В C, have and we $d(A,B) \le d(A,C) + d(C,B)$ (the "triangle inequality"). To define angles, we first introduce the scalar product of two vectors

$$(a,b) \coloneqq a^{1}b^{1} + \dots + a^{n}b^{n}$$
 (3)
Thus $|a| = \sqrt{(a,a)}$. The scalar product is

also denote by dot: ab = (a,b), and hence is often referred to as the "dot product". Now, for nonzero vectors, we define the angle between them by the equality

$$\cos \alpha \coloneqq \frac{(a,b)}{|a||b|} \tag{4}$$

The angle itself is defined up to an integral multiple of 2π . For this definition to be consistent we have to ensure that the r.h.s. of (4) does not

exceed 1 by the absolute value. This follows from the inequality

$$(a,b)^2 \le \left|a\right|^2 \left|b\right|^2 \tag{5}$$

known as the Cauchy–Bunyakovsky– Schwarz inequality (various combinations of these three names are applied in different books). One of the ways of proving (5) is to consider the scalar square of the linear combination a+tb, where $t \in R$. As $(a+tb, a+tb) \ge 0$ is a quadratic polynomial in t which is never negative, its discriminant must be less or equal zero. Writing this explicitly yields (5). The triangle inequality for distances also follows from the inequality (5).

Example 1.1. Consider the function $f(x) = x^{i}$ (the i-th coordinate). The linear function dx^{i} (the differential of x^{i}) applied to an arbitrary vector h is simply h^{i} . From these examples follows that we can rewrite df as

$$df = \frac{\partial f}{\partial x^1} dx^1 + \dots + \frac{\partial f}{\partial x^n} dx^n, \qquad (1)$$

which is the standard form. Once again: the partial derivatives in (1) are just the coefficients (depending on x); $dx^1, dx^2, ...$ are linear functions giving on an arbitrary vector h its coordinates $h^1, h^2, ...$, respectively. Hence

$$df(x)(h) = \partial_{hf(x)} = \frac{\partial f}{\partial x^{1}}h^{1} + \dots + \frac{\partial f}{\partial x^{n}}h^{n}, \quad (2)$$

Theorem 1.7. Suppose we have a parametrized curve $t \mapsto x(t)$ passing through $x_0 \in \square^n$ at $t = t_0$ and with the velocity vector $x(t_0) = \upsilon$ Then $\frac{df(x(t))}{dt}(t_0) = \partial_{\upsilon} f(x_0) = df(x_0)(\upsilon)$ (1)

Proof. Indeed, consider a small increment of the parameter $t: t_0 \mapsto t_0 + \Delta t$, Where $\Delta t \mapsto 0$. On the other hand, we have $f(x_0+h) - f(x_0) = df(x_0)(h) + \beta(h)|h|$ for an arbitrary vector h, where $\beta(h) \rightarrow 0$ when $h \rightarrow 0$. Combining it together, for the increment of f(x(t)) we obtain

$$f(x(t_0 + \Delta t) - f(x_0))$$

= $df(x_0)(\upsilon.\Delta t + \alpha(\Delta t)\Delta t)$
+ $\beta(\upsilon.\Delta t + \alpha(\Delta t)\Delta t).|\upsilon\Delta t + \alpha(\Delta t)\Delta t|$
= $df(x_0)(\upsilon).\Delta t + \gamma(\Delta t)\Delta t$

For a certain $\gamma(\Delta t)$ such that $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$ (we used the linearity of $df(x_0)$). By the definition, this means that the derivative of f(x(t)) at $t = t_0$ is exactly $df(x_0)(v)$. The statement of the theorem can be expressed by a simple formula:

$$\frac{df(x(t))}{dt} = \frac{\partial f}{\partial x^1} x^1 + \dots + \frac{\partial f}{\partial x^n} x^n$$
(2)

To calculate the value Of df at a point x_0 on a given vector v one can take an arbitrary curve passing Through x_0 at t_0 with v as the velocity vector at t_0 and calculate the usual derivative of f(x(t)) at $t = t_0$.

Theorem 1.8. For functions $f, g: U \to \Box$, $U \subset \Box^n$,

$$d(f+g) = df + dg$$
(1)
$$d(fg) = df \cdot g + f \cdot dg$$
(2)

Proof. Consider an arbitrary point x_0 and an arbitrary vector v stretching from it. Let a curve x(t) be such that $x(t_0) = x_0$ and $x(t_0) = v$. Hence

$$d(f+g)(x_0)(\upsilon) = \frac{d}{dt}(f(x(t)) + g(x(t)))$$

at $t = t_0$ and

$$d(fg)(x_0)(\upsilon) = \frac{d}{dt}(f(x(t))g(x(t)))$$

at $t = t_0$ Formulae (1) and (2) then immediately follow from the corresponding formulae for the usual derivative Now, almost without change the theory generalizes to functions taking values in \square^m instead of \square . The only difference is that now the differential of a map $F: U \to \square^m$ at a point xwill be a linear function taking vectors in \square^n to vectors in \square^m (instead of \square). For an arbitrary vector $h \in |\square^n$,

$$F(x+h) = F(x) + dF(x)(h)$$

+ $\beta(h)|h|$ (3)
Where $\beta(h) \to 0$ when $h \to 0$. We have
 $dF = (dF^1, ..., dF^m)$ and
 $dF = \frac{\partial F}{\partial x^1} dx^1 + ... + \frac{\partial F}{\partial x^n} dx^n$
$$= \begin{pmatrix} \frac{\partial F^1}{\partial x^1} \dots \frac{\partial F^1}{\partial x^n} \\ \dots & \dots & \dots \\ \frac{\partial F^m}{\partial x^1} \dots \frac{\partial F^m}{\partial x^n} \end{pmatrix} \begin{pmatrix} dx^1 \\ \dots \\ dx^n \end{pmatrix}$$
 (4)

In this matrix notation we have to write vectors as vector-columns.

Theorem 1.9. For an arbitrary parametrized curve x(t) in \Box^n , the differential of a map $F: U \to \Box^m$ (where $U \subset \Box^n$) maps the velocity vector x(t) to the velocity vector of the curve F(x(t)) in \Box^m : $\frac{dF(x(t))}{dt} = dF(x(t))(x(t))$ (1)

Proof. By the definition of the velocity vector,

$$x(t + \Delta t) = x(t) + x(t) \Delta t + \alpha(\Delta t) \Delta t$$
(2)
Where $\alpha(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$. By the definition of the differential,

 $F(x+h) = F(x) + dF(x)(h) + \beta(h) |h \qquad (3)|$ Where $\beta(h) \to 0$ when $h \to 0$, we obtain

$$F(x(t + \Delta t)) = F(x + \underbrace{x(t) \cdot \Delta t + \alpha(\Delta t) \Delta t}_{h})$$

= $F(x) + dF(x)(x(t)\Delta t + \alpha(\Delta t)\Delta t) +$
 $\beta(x(t)\Delta t + \alpha(\Delta t)\Delta t) \cdot \left| x(t)\Delta t + \alpha(\Delta t)\Delta t \right|$
= $F(x) + dF(x)(x(t)\Delta t + \gamma(\Delta t)\Delta t)$

For some $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$.

This precisely means that dF(x)x(t) is the velocity vector of F(x). As every vector attached to a point can be viewed as the velocity vector of some curve passing through this point, this theorem gives a clear geometric picture of dF as a linear map on vectors.

Theorem 1.10 Suppose we have two maps $F: U \to V$ and $G: V \to W$, where $U \subset \square^n, V \subset \square^m, W \subset \square^p$ (open domains). Let $F: x \mapsto y = F(x)$. Then the differential of the composite map $GoF: U \to W$ is the composition of the differentials of F and G:d(GoF)(x) = dG(y)odF(x) (4)

Proof. We can use the description of the differential .Consider a curve x(t) in \square^n with the

velocity vector x. Basically, we need to know to which vector in \Box^p it is taken by d(GoF). the curve (GoF)(x(t) = G(F(x(t))). By the same theorem, it equals the image under dG of the Anycast Flow vector to the curve F(x(t)) in \Box^m . Applying the theorem once again, we see that the velocity vector to the curve F(x(t)) is the image under dF of the vector x(t). Hence d(GoF)(x) = dG(dF(x)) for an arbitrary vector x.

Corollary 1.0. If we denote coordinates in \Box^n by $(x^1, ..., x^n)$ and in \Box^m by $(y^1, ..., y^m)$, and write

$$dF = \frac{\partial F}{\partial x^{1}} dx^{1} + \dots + \frac{\partial F}{\partial x^{n}} dx^{n}$$
(1)

$$dG = \frac{\partial G}{\partial y^1} dy^1 + \dots + \frac{\partial G}{\partial y^n} dy^n, \qquad (2)$$

Then the chain rule can be expressed as follows:

$$d(GoF) = \frac{\partial G}{\partial y^1} dF^1 + \dots + \frac{\partial G}{\partial y^m} dF^m, \qquad (3)$$

Where dF^i are taken from (1). In other words, to get d(GoF) we have to substitute into (2) the expression for $dy^i = dF^i$ from (3). This can also be expressed by the following matrix formula:

$$d(GoF) = \begin{pmatrix} \frac{\partial G^{1}}{\partial y^{1}} \dots \frac{\partial G^{1}}{\partial y^{m}} \\ \dots & \dots & \dots \\ \frac{\partial G^{p}}{\partial y^{1}} \dots \frac{\partial G^{p}}{\partial y^{m}} \end{pmatrix} \begin{pmatrix} \frac{\partial F^{1}}{\partial x^{1}} \dots \frac{\partial F^{1}}{\partial x^{n}} \\ \dots & \dots & \dots \\ \frac{\partial F^{m}}{\partial x^{1}} \dots \frac{\partial F^{m}}{\partial x^{n}} \end{pmatrix} \begin{pmatrix} dx^{1} \\ \dots \\ dx^{n} \end{pmatrix}$$
(4)

i.e., if dG and dF are expressed by matrices of partial derivatives, then d(GoF) is expressed by the product of these matrices. This is often written as

$$\begin{pmatrix} \frac{\partial z^{1}}{\partial x^{1}} \cdots \frac{\partial z^{1}}{\partial x^{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial z^{p}}{\partial x^{1}} \cdots \frac{\partial z^{p}}{\partial x^{n}} \end{pmatrix} = \begin{pmatrix} \frac{\partial z^{1}}{\partial y^{1}} \cdots \frac{\partial z^{1}}{\partial y^{m}} \\ \cdots & \cdots & \cdots \\ \frac{\partial z^{p}}{\partial x^{1}} \cdots \frac{\partial y^{1}}{\partial x^{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial y^{m}}{\partial x^{1}} \cdots \frac{\partial y^{m}}{\partial x^{n}} \end{pmatrix}, \quad (5)$$
Or
$$\frac{\partial z^{\mu}}{\partial x^{a}} = \sum_{i=1}^{m} \frac{\partial z^{\mu}}{\partial y^{i}} \frac{\partial y^{i}}{\partial x^{a}}, \quad (6)$$

Where it is assumed that the dependence of $y \in \square^m$ on $x \in \square^n$ is given by the map F, the dependence of $z \in \square^p$ on $y \in \square^m$ is given by the map G, and the dependence of $z \in \square^p$ on $x \in \square^n$ is given by the composition GoF.

6)

Definition 1.6. Consider an open domain $U \subset \square^n$. Consider also another copy of \square^n , denoted for distinction \square_y^n , with the standard coordinates $(y^1...y^n)$. A system of coordinates in the open domain U is given by a map $F: V \to U$, where $V \subset \square_y^n$ is an open domain of \square_y^n , such that the following three conditions are satisfied :

(1) F is smooth;

(2) F is invertible;

(3) $F^{-1}: U \to V$ is also smooth

The coordinates of a point $x \in U$ in this system are the standard coordinates of $F^{-1}(x) \in \Box_y^n$

In other words,

$$F:(y^{1}...,y^{n}) \mapsto x = x(y^{1}...,y^{n})$$
 (1)

Here the variables $(y^1,...,y^n)$ are the "new" coordinates of the point x

Example 1.2. Consider a curve in \square^2 specified in polar coordinates as

$$x(t): r = r(t), \varphi = \varphi(t) \tag{1}$$

We can simply use the chain rule. The map $t \mapsto x(t)$ can be considered as the composition of the maps $t \mapsto (r(t), \varphi(t)), (r, \varphi) \mapsto x(r, \varphi)$. Then, by the chain rule, we have

$$x = \frac{dx}{dt} = \frac{\partial x}{\partial r}\frac{dr}{dt} + \frac{\partial x}{\partial \varphi}\frac{d\varphi}{dt} = \frac{\partial x}{\partial r}r + \frac{\partial x}{\partial \varphi}\varphi$$
(2)

Here *r* and φ are scalar coefficients depending on *t*, whence the partial derivatives $\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi}$ are vectors depending on point in \Box^2 . We can compare this with the formula in the "standard" coordinates:

$$x = e_1 x + e_2 y \quad \text{Consider the vectors}$$

$$\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi} \text{ Explicitly we have}$$

$$\frac{\partial x}{\partial r} = (\cos \varphi, \sin \varphi) \quad (3)$$

$$\frac{\partial x}{\partial \varphi} = (-r \sin \varphi, r \cos \varphi) \quad (4)$$

From where it follows that these vectors make a basis at all points except for the origin (where r = 0). It is instructive to sketch a picture, drawing vectors corresponding to a point as starting from that point. Notice that $\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi}$ are, respectively, the velocity vectors for the curves $r \mapsto x(r,\varphi)$ ($\varphi = \varphi_0 fixed$) and $\varphi \mapsto x(r,\varphi)$ ($r = r_0 fixed$). We can conclude that for an arbitrary curve given in polar coordinates the velocity vector will have components (r,φ) if as a basis we take $e_r \coloneqq \frac{\partial x}{\partial r}, e_{\varphi} \coloneqq \frac{\partial x}{\partial \varphi}$:

 $\dot{x} = e_r r + e_{\varphi} \phi \qquad (5)$

A characteristic feature of the basis e_r, e_{φ} is that it is not "constant" but depends on point. Vectors "stuck to points" when we consider curvilinear coordinates.

Proposition 1.3. The velocity vector has the same appearance in all coordinate systems.

Proof. Follows directly from the chain rule and the transformation law for the basis e_i . In particular, the elements of the basis $e_i = \frac{\partial x}{\partial x^i}$ (originally, a formal notation) can be understood directly as the velocity vectors of the coordinate lines

 $x^i \mapsto x(x^1,...,x^n)$ (all coordinates but x^i are fixed). Since we now know how to handle velocities in arbitrary coordinates, the best way to treat the differential of a map $F: \square^n \to \square^m$ is by its action on the velocity vectors. By definition, we set

🕼 IJCER

$$dF(x_0):\frac{dx(t)}{dt}(t_0)\mapsto \frac{dF(x(t))}{dt}(t_0) \tag{1}$$

Now $dF(x_0)$ is a linear map that takes vectors attached to a point $x_0 \in \square^n$ to vectors attached to the point $F(x) \in \square^m$

$$dF = \frac{\partial F}{\partial x^{1}} dx^{1} + \dots + \frac{\partial F}{\partial x^{n}} dx^{n}$$

$$(e_{1}, \dots, e_{m}) \begin{pmatrix} \frac{\partial F^{1}}{\partial x^{1}} \cdots \frac{\partial F^{1}}{\partial x^{n}} \\ \dots & \dots & \dots \\ \frac{\partial F^{m}}{\partial x^{1}} \cdots \frac{\partial F^{m}}{\partial x^{n}} \end{pmatrix} \begin{pmatrix} dx^{1} \\ \dots \\ dx^{n} \end{pmatrix}, \qquad (2)$$

In particular, for the differential of a function we always have

$$df = \frac{\partial f}{\partial x^1} dx^1 + \dots + \frac{\partial f}{\partial x^n} dx^n, \qquad (3)$$

Where x^{i} are arbitrary coordinates. The form of the differential does not change when we perform a change of coordinates.

Example 1.3 Consider a 1-form in \square^2 given in the standard coordinates:

A = -ydx + xdy In the polar coordinates we will have $x = r \cos \varphi$, $y = r \sin \varphi$, hence $dx = \cos \varphi dr - r \sin \varphi d\varphi$ $dy = \sin \varphi dr + r \cos \varphi d\varphi$ Substituting into A, we get $A = -r \sin \varphi (\cos \varphi dr - r \sin \varphi d\varphi)$ $+r \cos \varphi (\sin \varphi dr + r \cos \varphi d\varphi)$ $= r^2 (\sin^2 \varphi + \cos^2 \varphi) d\varphi = r^2 d\varphi$ Hence $A = r^2 d\varphi$ is the formula for A in the

Hence $A = r \, a \phi$ is the formula for A in the polar coordinates. In particular, we see that this is again a 1-form, a linear combination of the differentials of coordinates with functions as coefficients. Secondly, in a more conceptual way, we can define a 1-form in a domain U as a linear function on vectors at every point of U : $\omega(\upsilon) = \omega_1 \upsilon^1 + ... + \omega_n \upsilon^n$, (1) If $\upsilon = \sum e_i \upsilon^i$, where $e_i = \frac{\partial x}{\partial x^i}$. Recall that the differentials of functions were defined as linear functions on vectors (at every point), and $dx^i(e_j) = dx^i \left(\frac{\partial x}{\partial x^j}\right) = \delta_j^i$ (2) at every point *x*.

Theorem 1.9. For arbitrary 1-form ω and path γ , the integral $\int_{\gamma} \omega$ does not change if we change parametrization of γ provide the orientation remains the same.

Proof: Consider
$$\left\langle \omega(x(t)), \frac{dx}{dt} \right\rangle$$
 and $\left\langle \omega(x(t(t'))), \frac{dx}{dt} \right\rangle$ As $\left\langle \omega(x(t(t'))), \frac{dx}{dt} \right\rangle = \left| \left\langle \omega(x(t(t'))), \frac{dx}{dt'} \right\rangle \cdot \frac{dt}{dt'},$

Let p be a rational prime and let $K = \Box (\zeta_p)$. We write ζ for ζ_p or this section. Recall that K has degree $\varphi(p) = p - 1$ over \Box . We wish to show that $O_K = \Box [\zeta]$. Note that ζ is a root of $x^p - 1$, and thus is an algebraic integer; since O_K is a ring we have that $\Box [\zeta] \subseteq O_K$. We give a proof without assuming unique factorization of ideals. We begin with some norm and trace computations. Let j be an integer. If j is not divisible by p, then ζ^j is a primitive p^{th} root of unity, and thus its conjugates are $\zeta, \zeta^2, ..., \zeta^{p-1}$. Therefore

$$Tr_{K/2}(\zeta^{j}) = \zeta + \zeta^{2} + \dots + \zeta^{p-1} = \Phi_{p}(\zeta) - 1 = -1$$

If *p* does divide *j*, then $\zeta^{j} = 1$, so it has only the one conjugate 1, and $Tr_{K/\Box}(\zeta^{j}) = p - 1$ By linearity of the trace, we find that $Tr_{K/\Box}(1-\zeta) = Tr_{K/\Box}(1-\zeta^{2}) = ...$ = $Tr_{K/\Box}(1-\zeta^{p-1}) = p$

We also need to compute the norm of $1-\zeta$. For this, we use the factorization

$$x^{p-1} + x^{p-2} + \dots + 1 = \Phi_p(x)$$

= $(x - \zeta)(x - \zeta^2) \dots (x - \zeta^{p-1})$

Plugging in x = 1 shows that

 $p = (1 - \zeta)(1 - \zeta^{2})...(1 - \zeta^{p-1})$

Since the $(1-\zeta^{j})$ are the conjugates of $(1-\zeta)$, this shows that $N_{K/\Box}(1-\zeta) = p$ The key result for determining the ring of integers O_{K} is the following.

LEMMA 1.9

🕼 IJCER

$$(1-\zeta)O_K \cap \Box = p\Box$$

Proof. We saw above that p is a multiple of $(1-\zeta)$ in O_{κ} , the inclusion so $(1-\zeta)O_{\kappa} \cap \Box \supseteq p\Box$ is immediate. Suppose now that the inclusion is strict. Since $(1-\zeta)O_{\kappa}\cap\square$ is an ideal of \square containing $p\square$ and $p\Box$ is a maximal ideal of \Box , we must have $(1-\zeta)O_{\kappa}\cap\Box=\Box$ Thus we write can $1 = \alpha(1 - \zeta)$

For some $\alpha \in O_{\kappa}$. That is, $1-\zeta$ is a unit in O_{κ} .

COROLLARY 1.1 For any $\alpha \in O_K$, $Tr_{K/\Box} ((1-\zeta)\alpha) \in p \Box$ PROOF. We have

$$Tr_{K/\Box} ((1-\zeta)\alpha) = \sigma_1((1-\zeta)\alpha) + \dots + \sigma_{p-1}((1-\zeta)\alpha)_{\text{clain}}$$
$$= \sigma_1(1-\zeta)\sigma_1(\alpha) + \dots + \sigma_{p-1}(1-\zeta)\sigma_{p-1}(\alpha) \quad \text{gene}$$
$$= (1-\zeta)\sigma_1(\alpha) + \dots + (1-\zeta^{p-1})\sigma_{p-1}(\alpha) \quad \frac{\text{clean}}{\alpha}$$

Where the σ_i are the complex embeddings of K (which we are really viewing as automorphisms of K) with the usual ordering. Furthermore, $1-\zeta^j$ is a multiple of $1-\zeta$ in O_K for every $j \neq 0$. Thus $Tr_{K/\Box} (\alpha(1-\zeta)) \in (1-\zeta)O_K$ Since the trace is also a rational integer.

PROPOSITION 1.4 Let p be a prime number and let $K = |\Box (\zeta_p)$ be the p^{th} cyclotomic field. Then $O_K = \Box [\zeta_p] \cong \Box [x] / (\Phi_p(x));$ Thus $1, \zeta_p, ..., \zeta_p^{p-2}$ is an integral basis for O_K . PROOF. Let $\alpha \in O_K$ and write

$$\alpha = a_0 + a_1 \zeta + \ldots + a_{p-2} \zeta^{p-2} \quad \text{With} \quad a_i \in \Box .$$

Then

$$\alpha(1-\zeta) = a_0(1-\zeta) + a_1(\zeta-\zeta^2) + \dots + a_{p-2}(\zeta^{p-2}-\zeta^{p-1})$$

By the linearity of the trace and our above calculations we find that $Tr_{K/\Box} (\alpha(1-\zeta)) = pa_0$ We also have

 $Tr_{K/\Box}(\alpha(1-\zeta)) \in p\Box$, so $a_0 \in \Box$ Next consider the algebraic integer

 $(\alpha - a_0)\zeta^{-1} = a_1 + a_2\zeta + ... + a_{p-2}\zeta^{p-3}$; This is an algebraic integer since $\zeta^{-1} = \zeta^{p-1}$ is. The same argument as above shows that $a_1 \in \Box$, and continuing in this way we find that all of the a_i are in \Box . This completes the proof.

Example 1.4 Let $K = \Box$, then the local ring $\Box_{(p)}$ is simply the subring of \Box of rational numbers with denominator relatively prime to p. Note that this ring $\Box_{(p)}$ is not the ring \Box_p of p -adic integers; to get \Box_p one must complete $\Box_{(p)}$. The usefulness of $O_{K,p}$ comes from the fact that it has a particularly simple ideal structure. Let a be any proper ideal of $O_{K,p}$ of O_K . We

m that $a = (a \cap O_K)O_{K,p}$; That is, that a is erated by the elements of a in $a \cap O_{K}$. It is r from the definition of an ideal that $a \supseteq (a \cap O_K) O_{K,p}$. To prove the other inclusion, let α be any element of a. Then we can write $\alpha = \beta / \gamma$ where $\beta \in O_K$ and $\gamma \notin p$. In particular, $\beta \in a$ (since $\beta / \gamma \in a$ and a is an ideal), so $\beta \in O_{\kappa}$ and $\gamma \notin p$. so $\beta \in a \cap O_{\kappa}$. $1/\gamma \in O_{K_n}$, this implies that Since $\alpha = \beta / \gamma \in (a \cap O_K)O_{K,p}$, as claimed.We can use this fact to determine all of the ideals of $O_{K,p}$. Let *a* be any ideal of $O_{K,p}$ and consider the ideal factorization of $a \cap O_K$ in O_K , write it as $a \cap O_{\kappa} = p^{n}b$ For some *n* and some ideal *b*, relatively prime to p. we claim first that $bO_{K,p} = O_{K,p}$. We now find that

 $a = (a \cap O_K)O_{K,n} = p^n bO_{K,n} = p^n O_{K,n}$ Since $bO_{K,p}$. Thus every ideal of $O_{K,p}$ has the form $p^n O_{K,p}$ for some *n*; it follows immediately that O_{K_n} is noetherian. It is also now clear that $p^n O_{K,n}$ is the unique non-zero prime ideal in $O_{K,n}$. Furthermore, the inclusion $O_K \mapsto O_{K,p} / pO_{K,p}$ Since $pO_{K,p} \cap O_K = p$, this map is also surjection, since the residue class of $\alpha / \beta \in O_{K,p}$ (with $\alpha \in O_{\kappa}$ and $\beta \notin p$) is the image of $\alpha \beta^{-1}$ in $O_{K/p}$, which makes sense since β is invertible in $O_{K/p}$. Thus the map is an isomorphism. In particular, it is now abundantly clear that every nonzero prime ideal of $O_{K,p}$ is maximal. To show that $O_{K,p}$ is a Dedekind domain, it remains to show that it is integrally closed in K. So let $\gamma \in K$ be a root of a polynomial with coefficients in O_{K_n} ; polynomial write this as $x^m + \frac{\alpha_{m-1}}{\beta_{m-1}} x^{m-1} + \ldots + \frac{\alpha_0}{\beta_0}$ With $\alpha_i \in O_K$ and

 $\beta_i \in O_{K-p}$. Set $\beta = \beta_0 \beta_1 \dots \beta_{m-1}$. Multiplying by β^m we find that $\beta\gamma$ is the root of a monic polynomial with coefficients in O_K . Thus $\beta\gamma \in O_K$; since $\beta \notin p$, we have $\beta\gamma / \beta = \gamma \in O_{K,p}$. Thus $O_{K,p}$ is integrally close in K.

COROLLARY 1.2. Let *K* be a number field of degree *n* and let α be in O_K then $N_{K/\Box}$ (αO_K) = $|N_{K/\Box} (\alpha)|$

PROOF. We assume a bit more Galois theory than usual for this proof. Assume first that K/\Box is Galois. Let σ be an element of $Gal(K/\Box)$. It is that $\sigma(O_{\kappa}) / \sigma(\alpha) \cong O_{\kappa/\alpha};$ clear since $\sigma(O_{\kappa}) = O_{\kappa},$ this shows that $N_{K/\Box} (\sigma(\alpha)O_{K}) = N_{K/\Box} (\alpha O_{K})$. Taking the product over all $\sigma \in Gal(K/\Box)$, we have $N_{K/\Box} (N_{K/\Box} (\alpha) O_K) = N_{K/\Box} (\alpha O_K)^n$ Since $N_{_{K/\!\cap}}\left(lpha
ight)$ is a rational integer and $O_{_K}$ is a free \square module of rank n,

 $O_{K} / N_{K/\square} (\alpha) O_{K}$ Will have order $N_{K/\square} (\alpha)^{n}$; therefore

 $N_{K/\Box}^{'}\left(N_{K/\Box}\left(\alpha\right)O_{K}\right)=N_{K/\Box}\left(\alpha O_{K}\right)^{n}$

This completes the proof. In the general case, let L be the Galois closure of K and set [L:K] = m.

III. RESULTS

Patients with different prostate tissue types got prostate-specific antigen (PSA) test, before MRI examinations. Prostate-specific antigen (PSA) is a protein produced by the cells of the prostate gland. PSA test measures the level of PSA in the blood and PSA is produced by the body and can be used to detect disease and tumor location, it is sometimes called a biological marker or tumor marker. Testing results are usually reported as nanograms of PSA per milliliter (ng/ml) of blood. Most doctors considered PSA values that are below 4.0 ng/ml as a normal. Current Research found that prostate cancer in men with PSA levels below 3.5 ng/ml. Doctors are now using the following ranges, with some variation: 0 to 3.0 ng/ml is low, 2.0 to 8 ng/ml is slightly to moderately elevated 12 to 18.1 ng/ml is moderately elevated 10 ng/ml or more is significantly elevated DWI and ADC detected prostate cancer clearly at 3.0T, and especially factor of 10000 was the best cancer localizer in low PSA value patient. 1H-MRS yielded qualified signals at 3 T without an endorectal coil. The prostate cancer tissue is found to be high in a chemical called choline, while low in another, citrate. Normal prostate is remains low in choline (Cho) and high in citrate (Cit). Choline and citrate are critical to the body in opposing amounts, both amino acids are essential components in proper organ functioning. High PSA value patients, Cho/Ci ratio of the prostate tissue at 3T without an endorectal coil distinguished between malignant and benign tissues more distinctly than that of 1.5T with an endorectal coil. Attributes to the high SNR available at 3T and elimination of the balloon inflation of the endorectal coil which could cause magnetic field inhomogeneity distribution.

A. Authors and Affiliations

Dr Akash Singh is working with IBM Corporation as an IT Architect and has been designing Mission Critical System and Service Solutions; He has published papers in IEEE and other International Conferences and Journals.

He joined IBM in Jul 2003 as a IT Architect which conducts research and design of High Performance Smart Grid Services and Systems and design mission critical architecture for High Performance Computing Platform and Computational Intelligence and High Speed Communication systems. He is a member of IEEE (Institute for Electrical and Electronics Engineers), the AAAI (Association for the Advancement of Artificial Intelligence) and the AACR (American Association for Cancer Research). He is the recipient of numerous awards from World Computer Science, Congress in Computer Engineering and Applied Computing 2010, 2011, and IP Multimedia System 2008 and Billing and Roaming 2008. He is active research in the field of Artificial Intelligence and advancement in Medical Systems. He is in Industry for 18 Years where he performed various role to provide the Leadership in Information Technology and Cutting edge Technology.

REFERENCES

- Dynamics and Control of Large Electric Power Systems. Ilic, M. and Zaborszky, J. John Wiley & Sons, Inc. © 2000, p. 756.
- [2] Modeling and Evaluation of Intrusion Tolerant Systems Based on Dynamic Diversity Backups. Meng, K. et al. Proceedings of the 2009 International Symposium on Information Processing (ISIP'09). Huangshan, P. R. China, August 21-23, 2009, pp. 101–104
- [3] Characterizing Intrusion Tolerant Systems Using A State Transition Model. Gong, F. et al., April 24, 2010.
- [4] Energy Assurance Daily, September 27, 2007. U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, Infrastructure Security and Energy Restoration Division. April 25, 2010.
- [5] CENTIBOTS Large Scale Robot Teams. Konoledge, Kurt et al. Artificial Intelligence Center, SRI International, Menlo Park, CA 2003.
- [6] Handling Communication Restrictions and Team Formation in Congestion Games, Agogino, A. and Tumer, K. Journal of Autonomous Agents and Multi Agent Systems, 13(1):97–115, 2006.
- [7] Robotics and Autonomous Systems Research, School of Mechanical, Industrial and Manufacturing Engineering, College of Engineering, Oregon State University
- [8] D. Dietrich, D. Bruckner, G. Zucker, and P. Palensky, "Communication and computation in buildings: A short introduction and overview," IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3577– 3584, Nov. 2010.
- [9] V. C. Gungor and F. C. Lambert, "A survey on communication networks for electric system automation," Comput. Networks, vol. 50, pp. 877–897, May 2006.
- [10] S. Paudyal, C. Canizares, and K. Bhattacharya, "Optimal operation of distribution feeders in smart grids," IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4495–4503, Oct. 2011.

- [11] D. M. Laverty, D. J. Morrow, R. Best, and P. A. Crossley, "Telecommunications for smart grid: Backhaul solutions for the distribution network," in Proc. IEEE Power and Energy Society General Meeting, Jul. 25–29, 2010, pp. 1–6.
- [12] L. Wenpeng, D. Sharp, and S. Lancashire, "Smart grid communication network capacity planning for power utilities," in Proc. IEEE PES, Transmission Distrib. Conf. Expo., Apr. 19–22, 2010, pp. 1–4.
- [13] Y. Peizhong, A. Iwayemi, and C. Zhou, "Developing ZigBee deployment guideline under WiFi interference for smart grid applications," IEEE Trans. Smart Grid, vol. 2, no. 1, pp. 110–120, Mar. 2011.
- [14] C. Gezer and C. Buratti, "A ZigBee smart energy implementation for energy efficient buildings," in Proc. IEEE 73rd Veh. Technol. Conf. (VTC Spring), May 15–18, 2011, pp. 1–5.
- [15] R. P. Lewis, P. Igic, and Z. Zhongfu, "Assessment of communication methods for smart electricity metering in the U.K.," in Proc. IEEE PES/IAS Conf. Sustainable Alternative Energy (SAE), Sep. 2009, pp. 1–4.
- [16] A. Yarali, "Wireless mesh networking technology for commercial and industrial customers," in Proc. Elect. Comput. Eng., CCECE,May 1–4, 2008, pp. 000047– 000052.
- [17] M. Y. Zhai, "Transmission characteristics of low-voltage distribution networks in China under the smart grids environment," IEEE Trans. Power Delivery, vol. 26, no. 1, pp. 173–180, Jan. 2011.
- [18] V. Paruchuri, A. Durresi, and M. Ramesh, "Securing powerline communications," in Proc. IEEE Int. Symp. Power Line Commun. Appl., (ISPLC), Apr. 2–4, 2008, pp. 64–69.
- [19] Q.Yang, J. A. Barria, and T. C. Green, "Communication infrastructures for distributed control of power distribution networks," IEEE Trans. Ind. Inform., vol. 7, no. 2, pp. 316–327, May 2011.
- [20] T. Sauter and M. Lobashov, "End-to-end communication architecture for smart grids," IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1218–1228, Apr. 2011.
- [21] K. Moslehi and R. Kumar, "Smart grid—A reliability perspective," Innovative Smart Grid Technologies (ISGT), pp. 1–8, Jan. 19–21, 2010.
- [22] Southern Company Services, Inc., "Comments request for information on smart grid communications requirements," Jul. 2010

- [23] R. Bo and F. Li, "Probabilistic LMP forecasting considering load uncertainty," IEEE Trans. Power Syst., vol. 24, pp. 1279–1289, Aug. 2009.
- [24] Power Line Communications, H. Ferreira, L. Lampe, J. Newbury, and T. Swart (Editors), Eds. New York: Wiley, 2010.
- [25] G. Bumiller, "Single frequency network technology for fast ad hoc communication networks over power lines," WiKu-Wissenschaftsverlag Dr. Stein 2010.
- [31] G. Bumiller, L. Lampe, and H. Hrasnica, "Power line communications for large-scale control and automation systems," IEEE Commun. Mag., vol. 48, no. 4, pp. 106– 113, Apr. 2010.
- [32] M. Biagi and L. Lampe, "Location assisted routing techniques for power line communication in smart grids," in Proc. IEEE Int. Conf. Smart Grid Commun., 2010, pp. 274–278.
- [33] J. Sanchez, P. Ruiz, and R. Marin-Perez, "Beacon-less geographic routing made partical: Challenges, design guidelines and

protocols," IEEE Commun. Mag., vol. 47, no. 8, pp. 85–91, Aug. 2009.

- [34] N. Bressan, L. Bazzaco, N. Bui, P. Casari, L. Vangelista, and M. Zorzi, "The deployment of a smart monitoring system using wireless sensors and actuators networks," in Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), 2010, pp. 49–54.
- [35] S. Dawson-Haggerty, A. Tavakoli, and D. Culler, "Hydro: A hybrid routing protocol for low-power and lossy networks," in Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), 2010, pp. 268–273.
- [36] S. Goldfisher and S. J. Tanabe, "IEEE 1901 access system: An overview of its uniqueness and motivation," IEEE Commun. Mag., vol. 48, no. 10, pp. 150– 157, Oct. 2010.
- [37] V. C. Gungor, D. Sahin, T. Kocak, and S. Ergüt, "Smart grid communications and networking," Türk Telekom, Tech. Rep. 11316-01, Apr 2011.