

Prosthetic Hand Control

Akash K Singh, PhD

IBM Corporation Sacramento, USA

Abstract

This paper presents a five-fingered underactuated prosthetic hand controlled by surface electromyographic (EMG) signals. The prosthetic hand control part is based on an EMG motion pattern classifier which combines variable learning rate (VLR) based neural network with parametric Autoregressive (AR) model and wavelet transform. This motion pattern classifier can successfully identify flexion and extension of the thumb, the index finger and the middle finger, by measuring the surface EMG signals through three electrodes mounted on the flexor digitorum profundus, flexor pollicis longus and extensor digitorum. Furthermore, via continuously controlling single finger's motion, the five-fingered underactuated prosthetic hand can achieve more prehensile postures such as power grasp, centralized grip, fingertip grasp, cylindrical grasp, etc. The experimental results show that the classifier has a great potential application to the control of bionic man-machine systems because of its fast learning speed, high recognition capability.

Keywords- Prosthetic Hand, Underactuated,EMG, Neural Network, Wavelet Transform.

I. INTRODUCTION

Up to the present, many researchers have investigated rehabilitation systems and designed prosthetic hands for amputees since Wiener [1] proposed the concept of an EMG-controlled prosthetic hand. EMG signals have often been used as control signals for prosthetic hands, such as the Waseda hand [2]. Since the EMG signals also include information about force level properties of the limb motion, Akazawa et al. [3] designed a signal processor for estimating force from the EMG signals. Also, Ito et al. [4] used amplitude information of this signal as the speedcontrol command of the prosthetic forearm. This prosthetic forearm was controlled with three levels of driving speeds. Most previous research on prosthetic hands used on/off control based on EMG pattern recognition or controlled only one particular joint, depending on torque estimated from the EMG signals. However, as the number of degrees of freedom (DOF) increased, it was difficult to discriminate the operator's intended motion with sufficiently high accuracy due to their nonlinear and nonstationary characteristics. Moreover, there is a problem that the EMG patterns are changed

according to differences among individuals, different locations of the electrodes, and time variation caused by fatigue or sweat. We need a new recognition method to control the various motions of a prosthetic hand required in daily activities. Many studies on using EMG signals pattern recognition to control prosthetic hands have been reported. During the first stage of this research, linear prediction models for EMG signals, such as the AR model, were frequently used [5]–[9]. Graupe et al. [5] reported on discriminating EMG signals measured from one pair of electrodes using this model. The EMG signals have the nature of nonlinearity and nonstationarity, but in a short time period, the EMG signals can be regarded as a stationary Gaussian process and can be represented by an AR model. Subsequent research has proposed several EMG pattern recognition methods using neural networks [10]-[17]. The neural networks can acquire the nonlinear mapping of learning data. For example, Kelly et al. [10] proposed a pattern recognition method combining the back propagation neural network (BPN) [18] and the Hopfield's neural network. This method can acquire mapping from the EMG patterns measured from one pair of electrodes to four motions of elbow and wrist joints. Also, Hiraiwa et al. [11] used BPN to estimate five-finger motion. They reported that five-finger motion, joint torque, and angles were successfully estimated. Huang and Chen [14] constructed several feature vectors from the integral of the EMG, the zerocrossing and the variance of the EMG, and eight motions were classified using BPN. In recent years, some researchers begin to use wavelet transform to extract feature vectors from EMG signals. Cai and Wang [19] used BPN together with wavelet transform feature extraction method to classify four forearm motions with an average accuracy of 90%. Zhang [20] proposed a wavelet based neuro-fuzzy approach to classify six motions of elbow, wrist joint and hand. BPN was frequently used in previous research. In this paper, we propose and develop a new fivefingered underactuated prosthetic hand system based on the EMG signals. The proposed system uses EMG signals detected by three surface electrodes to realize a control of the five-fingered underactuated prosthetic hand. In many cases, some parts of the muscles near the amputated part remain after amputation, and the EMG signals measured from them can be used as a control signal for our proposed system. In order to increase the DOFs of the prosthetic hand and its each finger, and at the same time decrease the number of driving motors,

we propose a new five-fingered underactuated prosthetic hand with 3 joints per finger. Only the thumb, the index finger and the middle finger can move independently, the ring finger and the little finger will move with the middle finger. In order to realize more prehensile posture, the system has to discriminate the EMG motion patterns with a high degree of accuracy. The method of recognition of EMG motion patterns, using AR model, wavelet transform and VLR based neural network, is a key topic of this paper. The techniques of AR model, wavelet transform and Integral of the absolute value of EMG signals are developed for feature extraction. Then a VLR based neural network is applied to discriminate the EMG motion patterns among the feature sets. An analysis interface system based on personal computer (PC) environment with the fivefingered prosthetic hand has been constructed to verify the proposed method. The experimental results show that the recognition system has fast learning speed, high recognition capability (training network with only several samples of each motion).

II. SYSTEM COMPONENTS

The components of the proposed system, which is composed of a human operator, a fivefingered underactuated prosthetic hand, the prosthetic hand controller and visual feedback part. The human operator wears three active electrodes (Otto Bock Company Group: 13E125), which will be digitized by an analog-to-digital (A/D) converter (ADLINK Technology Inc. 9118HR). The active electrodes are designed with a built-in filter and a built-in adjustable gain, up to 10000 times stronger than the myoelectric input signals. The five-fingered underactuated prosthetic hand used in the bionic man-machine control system. The prosthetic hand is almost the same size as an adult's hand and weighs about 0.55 kg. This hand has five fingers, but only the thumb, the index finger and the middle finger are driven by three stepper motors (PORTESCAP Corporation) separately. The three fingers from the middle finger to the little finger are coupled. Each finger has three joints. In the base joint of each drivable finger, there are torque sensors and angle sensors. The control circuit board based on DSP (Texas Instruments: TMS320F2812) is integrated in the palm. The underactuated prosthetic hand are the solution between intermediate hands for manipulation (versatile, stable grasps, expensive, complex control, many actuators) and simple grippers (simple control, few actuators, task specific, unstable grasps) [21]. In an underactuated prosthetic hand, the number of actuators is less than the hand's DOFs. The mechanical intelligence embedded into the design of the hand allows the automatic shape adaptation of one finger. The underactuated DOFs are governed by springs and mechanical limits. The prosthetic hand controller determines the human operator's intended motion based on EMG pattern recognition and controls the fingers' movement of the prosthetic hand. The visual feedback part displays information about the monitored EMG signals, the muscular contraction levels and the results of the EMG pattern recognition. The control algorithms have been developed on a PC (Pentium 4, 2.8G) using VC 6.0. After expanding memory of the DSP and simplifying the algorithm, for example, not training neural network in the DSP, it is also possible to run the program on DSP chip embedded in the prosthetic hand palm. The running period will be extended, but it will be useful in practical applications. We have simplified our previous work [22], which used two electrodes to classify three fingers' flexion motion, and will run it in the DSP.

III. CONTROL ALGORITHMS

EMG signals are used as the control signals to control the prosthetic hand. These signals are measured from the operator's forearm muscles when the operators contract their muscles to control their finger motion. The detailed structure of the prosthetic hand control system. In the system, the pattern recognition is divided into two parts: feature extraction and feature classification. Feature extraction part extracts the measured EMG signals' feature vectors using the method of AR parametric model, wavelet transform and integral of EMG signals. Feature classification part discriminates operator's fingers' motion from feature vectors using VLR based three-layer feedforward neural network and then sends the recognition results as control signals to the prosthetic hand motor controller. The driving speed of the driven finger is controlled according to force information extracted from the EMG signals.

We consider the following anycast field equations defined over an open bounded piece of network and /or feature space $\Omega \subset \mathbb{R}^d$. They describe the dynamics of the mean anycast of each of p node populations.

$$\begin{split} \Big[(\frac{d}{dt} + l_i) V_i(t, r) &= \sum_{j=1}^p \int_{\Omega} J_{ij}(r, \bar{r}) S[(V_j(t - \tau_{ij}(r, \bar{r}), \bar{r}) - h_{|j})] d\bar{r} \\ &+ I_i^{ext}(r, t), \quad t \ge 0, 1 \le i \le p, \\ V_i(t, r) &= \phi_i(t, r) \quad t \in [-T, 0] \end{split}$$

We give an interpretation of the various parameters and functions that appear in (1), Ω is finite piece of nodes and/or feature space and is represented as an open bounded set of \mathbb{R}^d . The vector r and \overline{r} represent points in Ω . The function $S: \mathbb{R} \to (0,1)$ is the normalized sigmoid function:

International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7

$$S(z) = \frac{1}{1 + e^{-z}}$$
(2)

MIJCER

It describes the relation between the input rate v_i of population i as a function of the packets potential, for example, $V_i = v_i = S[\sigma_i(V_i - h_i)]$. We note V the p – dimensional vector $(V_1, ..., V_n)$. The p function $\phi_i, i = 1, ..., p$, represent the initial conditions, see below. We note ϕ the pdimensional vector $(\phi_1, ..., \phi_p)$. The p function $I_i^{ext}, i = 1, ..., p$, represent external factors from other network areas. We note I^{ext} the pdimensional vector $(I_1^{ext},...,I_p^{ext})$. The $p \times p$ matrix of functions $J = \{J_{ij}\}_{i, j=1,...,n}$ represents the connectivity between populations i and j, see below. The *p* real values h_i , i = 1, ..., p, determine the threshold of activity for each population, that is, the value of the nodes potential corresponding to 50% of the maximal activity. The p real positive values σ_i , i = 1, ..., p, determine the slopes of the sigmoids at the origin. Finally the p real positive values $l_i, i = 1, ..., p$, determine the speed at which each anycast node potential decreases exponentially toward its real value. We also introduce the function $S: \mathbb{R}^p \to \mathbb{R}^p$, defined $S(x) = [S(\sigma_1(x_1 - h_1)), ..., S(\sigma_p - h_p))],$ by diagonal and the $p \times p$ matrix $L_0 = diag(l_1, ..., l_p)$. Is the intrinsic dynamics of the population given by the linear response of data transfer. $(\frac{d}{dt} + l_i)$ is replaced by $(\frac{d}{dt} + l_i)^2$ to use the alpha function response. We use $(\frac{d}{dt} + l_i)$ for simplicity although our analysis applies to more general intrinsic dynamics. For the sake, of generality, the propagation delays are not assumed to be identical for all populations, hence they are described by a matrix $\tau(r,r)$ whose element $au_{ii}(r,r)$ is the propagation delay between population j at r and population i at r. The reason for this assumption is that it is still unclear from anycast if propagation delays are independent of the populations. We assume for technical reasons that τ is continuous, that is $\tau \in C^0(\overline{\Omega}^2, R_{\perp}^{p \times p})$.

symmetric function i.e., $\tau_{ij}(r, r) \neq \tau_{ij}(r, r)$, thus no assumption is made about this symmetry unless otherwise stated. In order to compute the righthand side of (1), we need to know the node potential factor V on interval [-T, 0]. The value of T is obtained by considering the maximal delay:

$$\tau_m = \max_{i,j(r,\bar{r}\in\overline{\Omega\times\Omega})} \tau_{i,j}(r,\bar{r})$$
(3)

Hence we choose $T = \tau_m$

A. Mathematical Framework

A convenient functional setting for the non-delayed packet field equations is to use the space $F = L^2(\Omega, \mathbb{R}^p)$ which is a Hilbert space endowed with the usual inner product:

$$\left\langle V, U \right\rangle_F = \sum_{i=1}^p \int_{\Omega} V_i(r) U_i(r) dr$$
 (1)

To give a meaning to (1), we defined the history space $C = C^0([-\tau_m, 0], F)$ with $\|\phi\| = \sup_{t \in [-\tau_m, 0]} \|\phi(t)\| F$, which is the Banach phase space associated with equation (3). Using the notation $V_t(\theta) = V(t+\theta), \theta \in [-\tau_m, 0]$, we write (1) as

$$\begin{cases} V(t) = -L_0 V(t) + L_1 S(V_t) + I^{ext}(t), \\ V_0 = \phi \in C, \end{cases}$$
(2)

Where

$$\begin{cases} L_1: C \to F, \\ \phi \to \int_{\Omega} J(., \bar{r}) \phi(\bar{r}, -\tau(., \bar{r})) d\bar{r} \end{cases}$$

Is the linear continuous operator satisfying $\|L_1\| \leq \|J\|_{L^2(\Omega^2, R^{p \times p})}$. Notice that most of the papers on this subject assume Ω infinite, hence requiring $\tau_m = \infty$.

Proposition 1.0 If the following assumptions are satisfied.

- 1. $J \in L^2(\Omega^2, \mathbb{R}^{p \times p}),$
- 2. The external current $I^{ext} \in C^0(R, F)$,

3.
$$\tau \in C^0(\Omega^2, R_+^{p \times p}), \sup_{\overline{\Omega^2}} \tau \le \tau_m.$$

Then for any $\phi \in C$, there exists a unique solution $V \in C^1([0,\infty), F) \cap C^0([-\tau_m,\infty,F) \text{ to } (3)$

Notice that this result gives existence on R_+ , finitetime explosion is impossible for this delayed differential equation. Nevertheless, a particular

Moreover packet data indicate that τ is not a

solution could grow indefinitely, we now prove that this cannot happen.

B. Boundedness of Solutions

🕼 IJCER

A valid model of neural networks should only feature bounded packet node potentials.

Theorem 1.0 All the trajectories are ultimately bounded by the same constant R if $I \equiv \max_{t \in R^+} \|I^{ext}(t)\|_F < \infty$.

Proof :Let us defined
$$f: R \times C \to R^+$$
 as

$$f(t,V_t) \stackrel{\text{def}}{=} \left\langle -L_0 V_t(0) + L_1 S(V_t) + I^{ext}(t), V(t) \right\rangle_F = \frac{1}{2} \frac{d \left\| V \right\|_F^2}{dt}$$

We note $l = \min_{i=1,\dots,p} l_i$

$$f(t, V_t) \le -l \|V(t)\|_F^2 + (\sqrt{p |\Omega|} \|J\|_F + I) \|V(t)\|_F$$

Thus, if

$$\|V(t)\|_{F} \ge 2\frac{\sqrt{p|\Omega|} \|J\|_{F} + I}{l} \stackrel{def}{=} R, f(t,V_{t}) \le -\frac{lR^{2}}{2} \stackrel{def}{=} -\delta < 0$$

Let us show that the open route of F of center 0 and radius R, B_R , is stable under the dynamics of equation. We know that V(t) is defined for all $t \ge 0s$ and that f < 0 on ∂B_R , the boundary of B_R . We consider three cases for the initial condition V_0 . If $\|V_0\|_C < R$ and set $T = \sup\{t \mid \forall s \in [0, t], V(s) \in B_{\mathbb{R}}\}.$ Suppose that $T \in \mathbb{R}$, then V(T) is defined and belongs to $\overline{B_R}$, the closure of B_R , because $\overline{B_R}$ is closed, in ∂B_{P} , we to effect also have $\frac{d}{dt} \left\| V \right\|_F^2 |_{t=T} = f(T, V_T) \le -\delta < 0 \qquad \text{because}$ $V(T) \in \partial B_R$. Thus we deduce that for $\mathcal{E} > 0$ and small enough, $V(T+\varepsilon) \in \overline{B_R}$ which contradicts the definition of T. Thus $T \notin R$ and $\overline{B_R}$ is stable. Because f<0 on $\partial B_R, V(0) \in \partial B_R$ implies that $\forall t > 0, V(t) \in B_R$. Finally we consider the $V(0) \in CB_{\scriptscriptstyle D}$. Suppose case that $\forall t > 0, V(t) \notin B_{\mathbb{P}},$ then $\forall t > 0, \frac{d}{dt} \|V\|_F^2 \le -2\delta, \quad \text{thus} \quad \|V(t)\|_F \quad \text{is}$ monotonically decreasing and reaches the value of R in finite time when V(t) reaches ∂B_R . This contradicts our assumption. Thus $\exists T > 0 | V(T) \in B_R$.

Proposition 1.1 : Let *s* and *t* be measured simple functions on X. for $E \in M$, define

$$\phi(E) = \int_{E} s \, d\mu \qquad (1)$$

Then ϕ is a measure on M .
$$\int_{X} (s+t) d\mu = \int_{X} s \, d\mu + \int_{X} t d\mu \qquad (2)$$

Proof: If s and if E_1, E_2, \dots are disjoint members of M whose union is E, the countable additivity of μ shows that

$$\phi(E) = \sum_{i=1}^{n} \alpha_i \mu(A_i \cap E) = \sum_{i=1}^{n} \alpha_i \sum_{r=1}^{\infty} \mu(A_i \cap E_r)$$
$$= \sum_{r=1}^{\infty} \sum_{i=1}^{n} \alpha_i \mu(A_i \cap E_r) = \sum_{r=1}^{\infty} \phi(E_r)$$

Also, $\varphi(\phi) = 0$, so that φ is not identically ∞ . Next, let *s* be as before, let $\beta_1, ..., \beta_m$ be the distinct values of t, and let $B_j = \{x : t(x) = \beta_j\}$ If $E_{ij} = A_i \cap B_j$, the $\int_{E_{ij}} (s+t)d\mu = (\alpha_i + \beta_j)\mu(E_{ij})$ and $\int_{E_{ij}} sd\mu + \int_{E_{ij}} td\mu = \alpha_i\mu(E_{ij}) + \beta_j\mu(E_{ij})$ Thus (2) holds with E_{ij} in place of *X*. Since *X*

is the disjoint union of the sets E_{ij} $(1 \le i \le n, 1 \le j \le m)$, the first half of our proposition implies that (2) holds.

Theorem 1.1: If K is a compact set in the plane whose complement is connected, if f is a continuous complex function on K which is holomorphic in the interior of , and if $\varepsilon > 0$, then there exists a polynomial P such that $|f(z) = P(z)| < \varepsilon$ for all $z \varepsilon K$. If the interior of K is empty, then part of the hypothesis is vacuously satisfied, and the conclusion holds for every $f \varepsilon C(K)$. Note that K need to be connected. *Proof:* By Tietze's theorem, f can be extended to a continuous function in the plane, with compact support. We fix one such extension and denote it

again by f. For any $\delta > 0$, let $\omega(\delta)$ be the

supremum of the numbers $|f(z_2) - f(z_1)|$ Where z_1 and z_2 are subject to the condition $|z_2 - z_1| \le \delta$. Since f is uniformly continous, we have $\lim_{\delta \to 0} \omega(\delta) = 0$ (1) From now on, δ will be fixed. We shall prove that there is a polynomial P such that

$$|f(z) - P(z)| < 10,000 \ \omega(\delta) \ (z \in K)$$
 (2)

By (1), this proves the theorem. Our first objective is the construction of a function $\Phi \varepsilon C_c(R^2)$, such that for all z

$$\begin{split} \left| f(z) - \Phi(z) \right| &\leq \omega(\delta), \quad (3) \\ \left| (\partial \Phi)(z) \right| &< \frac{2\omega(\delta)}{\delta}, \quad (4) \end{split}$$

And

$$\Phi(z) = -\frac{1}{\pi} \iint_{\chi} \frac{(\partial \Phi)(\zeta)}{\zeta - z} d\zeta d\eta \qquad (\zeta = \xi + i\eta), \tag{5}$$

Where X is the set of all points in the support of Φ whose distance from the complement of K does not δ . (Thus X contains no point which is "far within" K.) We construct Φ as the convolution of f with a smoothing function A. Put a(r) = 0 if $r > \delta$, put

$$a(r) = \frac{3}{\pi\delta^2} (1 - \frac{r^2}{\delta^2})^2 \qquad (0 \le r \le \delta), \quad (6)$$

And define
$$A(z) = a(|z|) \qquad (7)$$

For all complex z. It is clear that $A \varepsilon C_c(R^2)$. We claim that

$$\iint_{R^{3}} A = 1, \qquad (8)$$

$$\iint_{R^{2}} \partial A = 0, \qquad (9)$$

$$\iint_{R^{3}} |\partial A| = \frac{24}{15\delta} < \frac{2}{\delta}, \qquad (10)$$

The constants are so adjusted in (6) that (8) holds. (Compute the integral in polar coordinates), (9) holds simply because A has compact support. To compute (10), express ∂A in polar coordinates, and note that $\partial A/_{2,0} = 0$.

hote that
$$\frac{\partial A}{\partial r} = 0$$
,
 $\frac{\partial A}{\partial r} = -a'$,

Now define

Issn 2250-3005(online)

$$\Phi(z) = \iint_{R^2} f(z-\zeta) A d\xi d\eta = \iint_{R^2} A(z-\zeta) f(\zeta) d\xi d\eta$$
(11)

Since f and A have compact support, so does Φ . Since

$$\Phi(z) - f(z)$$

=
$$\iint_{R^2} [f(z - \zeta) - f(z)] A(\xi) d\xi d\eta$$
(12)

And $A(\zeta) = 0$ if $|\zeta| > \delta$, (3) follows from (8). The difference quotients of A converge boundedly to the corresponding partial derivatives, since $A \varepsilon C_c'(R^2)$. Hence the last expression in (11) may be differentiated under the integral sign, and we obtain

$$(\partial \Phi)(z) = \iint_{R^2} (\overline{\partial A})(z - \zeta) f(\zeta) d\xi d\eta$$

$$= \iint_{R^2} f(z - \zeta) (\partial A)(\zeta) d\xi d\eta$$

$$= \iint_{R^2} [f(z - \zeta) - f(z)](\partial A)(\zeta) d\xi d\eta \qquad (13)$$

The last equality depends on (9). Now (10) and (13) give (4). If we write (13) with Φ_x and Φ_y in place of $\partial \Phi$, we see that Φ has continuous partial derivatives, if we can show that $\partial \Phi = 0$ in *G*, where *G* is the set of all $z \in K$ whose distance from the complement of *K* exceeds δ . We shall do this by showing that

$$\Phi(z) = f(z) \qquad (z \in G); \qquad (14)$$

Note that $\partial f = 0$ in G, since f is hol

Note that $\partial f = 0$ in G, since f is holomorphic there. Now if $z \in G$, then $z - \zeta$ is in the interior of K for all ζ with $|\zeta| < \delta$. The mean value property for harmonic functions therefore gives, by the first equation in (11),

$$\Phi(z) = \int_{0}^{\delta} a(r)rdr \int_{0}^{2\pi} f(z - re^{i\theta})d\theta$$

= $2\pi f(z) \int_{0}^{\delta} a(r)rdr = f(z) \iint_{R^{2}} A = f(z)$ (15)

For all $z \in G$, we have now proved (3), (4), and (5) The definition of X shows that X is compact and that X can be covered by finitely many open discs $D_1, ..., D_n$, of radius 2δ , whose centers are not in K. Since $S^2 - K$ is connected, the center of each D_j can be joined to ∞ by a polygonal path in $S^2 - K$. It follows that each D_j contains a

November | 2012

compact connected set E_j , of diameter at least 2δ , so that $S^2 - E_j$ is connected and so that $K \cap E_j = \phi$. with $r = 2\delta$. There are functions $g_j \varepsilon H(S^2 - E_j)$ and constants b_j so that the inequalities.

$$\left| \mathcal{Q}_{j}(\zeta, z) \right| < \frac{50}{\delta}, \qquad (16)$$

$$\left| \mathcal{Q}_{j}(\zeta, z) - \frac{1}{z - \zeta} \right| < \frac{4,000\delta^{2}}{\left| z - \zeta \right|^{2}} \qquad (17)$$

Hold for $z \notin E_i$ and $\zeta \in D_i$, if

$$Q_j(\zeta, z) = g_j(z) + (\zeta - b_j)g_j^2(z)$$
 (18)

Let Ω be the complement of $E_1 \cup ... \cup E_n$. Then

$$\Omega$$
 is an open set which contains K . Put
 $X_1 = X \cap D_1$ and

$$\begin{aligned} X_j &= (X \cap D_j) - (X_1 \cup \dots \cup X_{j-1}), \\ 2 &\leq j \leq n, \end{aligned}$$
for

Define

🕼 IJCER

$$R(\zeta, z) = Q_j(\zeta, z) \qquad (\zeta \varepsilon X_j, z \varepsilon \Omega) \tag{19}$$

And

$$F(z) = \frac{1}{\pi} \iint_{X} (\partial \Phi)(\zeta) R(\zeta, z) d\zeta d\eta \qquad (20)$$
$$(z \in \Omega)$$

Since,

$$F(z) = \sum_{j=1}^{\infty} \frac{1}{\pi} \iint_{X_i} (\partial \Phi)(\zeta) Q_j(\zeta, z) d\xi d\eta, \qquad (21)$$

(18) shows that F is a finite linear combination of the functions g_j and g_j^2 . Hence $F \varepsilon H(\Omega)$. By (20), (4), and (5) we have

$$\left|F(z) - \Phi(z)\right| < \frac{2\omega(\delta)}{\pi\delta} \iint_{X} |R(\zeta, z)|$$
$$-\frac{1}{z - \zeta} |d\xi d\eta \quad (z \in \Omega) \quad (22)$$

Observe that the inequalities (16) and (17) are valid with R in place of Q_j if $\zeta \in X$ and $z \in \Omega$. Now fix $z \in \Omega$, put $\zeta = z + \rho e^{i\theta}$, and estimate the integrand in (22) by (16) if $\rho < 4\delta$, by (17) if $4\delta \le \rho$. The integral in (22) is then seen to be less than the sum of

$$2\pi \int_{0}^{4\delta} \left(\frac{50}{\delta} + \frac{1}{\rho}\right) \rho d\rho = 808\pi\delta \qquad (23)$$

And

$$2\pi \int_{4\delta}^{\infty} \frac{4,000\delta^2}{\rho^2} \rho d\rho = 2,000\pi\delta.$$
 (24)

Hence (22) yields $|F(z) - \Phi(z)| < 6,000 \omega(\delta)$ $(z \in \Omega)$ (25)

Since $F \in H(\Omega)$, $K \subset \Omega$, and $S^2 - K$ is connected, Runge's theorem shows that F can be uniformly approximated on K by polynomials. Hence (3) and (25) show that (2) can be satisfied. This completes the proof.

Lemma 1.0 : Suppose $f \varepsilon C_c(R^2)$, the space of all continuously differentiable functions in the plane, with compact support. Put

$$\partial = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \tag{1}$$

Then the following "Cauchy formula" holds:

$$f(z) = -\frac{1}{\pi} \iint_{\mathbb{R}^2} \frac{(\partial f)(\zeta)}{\zeta - z} d\xi d\eta$$
$$(\zeta = \xi + i\eta) \tag{2}$$

Proof: This may be deduced from Green's theorem. However, here is a simple direct proof:

Put $\varphi(r,\theta) = f(z + re^{i\theta}), r > 0, \theta$ real

If
$$\zeta = z + re^{i\theta}$$
, the chain rule gives
 $(\partial f)(\zeta) = \frac{1}{2}e^{i\theta} \left[\frac{\partial}{\partial r} + \frac{i}{r}\frac{\partial}{\partial \theta}\right] \varphi(r,\theta)$

The right side of (2) is therefore equal to the limit, as $\mathcal{E} \rightarrow 0$, of

(3)

$$-\frac{1}{2}\int_{\varepsilon}^{\infty}\int_{0}^{2\pi} \left(\frac{\partial\varphi}{\partial r} + \frac{i}{r}\frac{\partial\varphi}{\partial\theta}\right) d\theta dr \qquad (4)$$

For each $r > 0, \varphi$ is periodic in θ , with period 2π . The integral of $\partial \varphi / \partial \theta$ is therefore 0, and (4) becomes

$$-\frac{1}{2\pi}\int_{0}^{2\pi}d\theta\int_{\varepsilon}^{\infty}\frac{\partial\varphi}{\partial r}dr = \frac{1}{2\pi}\int_{0}^{2\pi}\varphi(\varepsilon,\theta)d\theta$$
(5)

As $\varepsilon \to 0$, $\varphi(\varepsilon, \theta) \to f(z)$ uniformly. This gives (2)

If $X^{\alpha} \in a$ and $X^{\beta} \in k[X_1, ..., X_n]$, then $X^{\alpha}X^{\beta} = X^{\alpha+\beta} \in a$, and so A satisfies the condition (*). Conversely,

$$(\sum_{\alpha \in A} c_{\alpha} X^{\alpha}) (\sum_{\beta \in \mathbb{J}^n} d_{\beta} X^{\beta}) = \sum_{\alpha, \beta} c_{\alpha} d_{\beta} X^{\alpha + \beta} \qquad (finite sums),$$

and so if A satisfies (*), then the subspace generated by the monomials $X^{\alpha}, \alpha \in a$, is an ideal. The proposition gives a classification of the monomial ideals in $k[X_1,...X_n]$: they are in one to one correspondence with the subsets A of \square^n satisfying (*). For example, the monomial ideals in k[X] are exactly the ideals $(X^n), n \ge 1$, and the zero ideal (corresponding to the empty set A). We write $\langle X^{\alpha} | \alpha \in A \rangle$ for the ideal corresponding to A (subspace generated by the $X^{\alpha}, \alpha \in a$).

LEMMA 1.1. Let S be a subset of \Box^n . The the ideal a generated by $X^{\alpha}, \alpha \in S$ is the monomial ideal corresponding to

 $A = \left\{ \beta \in \square^{n} \mid \beta - \alpha \in \square^{n}, \text{ some } \alpha \in S \right\}$ Thus, a monomial is in α if and only if it is divisible by one of the $X^{\alpha}, \alpha \in S$

Clearly A satisfies (*), and PROOF. $a \subset \langle X^{\beta} | \beta \in A \rangle$. Conversely, if $\beta \in A$, then $\beta - \alpha \in \square^n$ for some $\alpha \in S$, and $X^{\beta} = X^{\alpha} X^{\beta-\alpha} \in a$. The last statement follows from the fact that $X^{\alpha} \mid X^{\beta} \Leftrightarrow \beta - \alpha \in \square^{n}$. Let $A \subset \square^n$ satisfy (*). From the geometry of A, it is clear that there is a finite set of elements $S = \{\alpha_1, \dots, \alpha_s\}$ of Α such that $A = \left\{ \beta \in \square^n \mid \beta - \alpha_i \in \square^2, \text{ some } \alpha_i \in S \right\}$ (The α_i 's are the corners of A) Moreover,

 $a = \langle X^{\alpha} | \alpha \in A \rangle$ is generated by the monomials $X^{\alpha_i}, \alpha_i \in S$.

DEFINITION 1.0. For a nonzero ideal a in $k[X_1,...,X_n]$, we let (LT(a)) be the ideal generated by $\{LT(f) | f \in a\}$

LEMMA 1.2 Let *a* be a nonzero ideal in $k[X_1,...,X_n]$; then (LT(a)) is a monomial ideal, and it equals $(LT(g_1),...,LT(g_n))$ for some $g_1,...,g_n \in a$.

PROOF. Since (LT(a)) can also be described as the ideal generated by the leading monomials (rather than the leading terms) of elements of a.

THEOREM 1.2. Every *ideal a* in $k[X_1,...,X_n]$ is finitely generated; more precisely, $a = (g_1,...,g_s)$ where $g_1,...,g_s$ are any elements of *a* whose leading terms generate LT(a)

PROOF. Let $f \in a$. On applying the division algorithm, find we $f = a_1g_1 + \dots + a_sg_s + r, \qquad a_i, r \in k[X_1, \dots, X_n]$, where either r = 0 or no monomial occurring in $LT(g_i)$. it is divisible by any But $r = f - \sum a_i g_i \in a$, and therefore $LT(r) \in LT(a) = (LT(g_1), ..., LT(g_s))$ implies that every monomial occurring in r is divisible by one in $LT(g_i)$. Thus r=0, and $g \in (g_1, ..., g_s)$.

DEFINITION 1.1. A finite subset $S = \{g_1, | ..., g_s\}$ of an ideal *a* is a standard ((*Grobner*) bases for *a* if $(LT(g_1), ..., LT(g_s)) = LT(a)$. In other words, S is a standard basis if the leading term of every element of *a* is divisible by at least one of the leading terms of the g_i .

THEOREM 1.3 The ring $k[X_1,...,X_n]$ is Noetherian i.e., every ideal is finitely generated.

PROOF. For n = 1, k[X] is a principal ideal domain, which means that every ideal is generated by single element. We shall prove the theorem by induction on n. Note that the obvious map $k[X_1,...X_{n-1}][X_n] \rightarrow k[X_1,...X_n]$ is an isomorphism – this simply says that every polynomial f in n variables $X_1,...X_n$ can be expressed uniquely as a polynomial in X_n with coefficients in $k[X_1,...,X_n]$:

$$f(X_1,...X_n) = a_0(X_1,...X_{n-1})X_n^r + ... + a_r(X_1,...X_{n-1})$$

🕼 IJCER

Thus the next lemma will complete the proof

LEMMA 1.3. If A is Noetherian, then so also is A[X]PROOF. For a polynomial

$$f(X) = a_0 X^r + a_1 X^{r-1} + \dots + a_r, \quad a_i \in A, \quad a_0 \neq 0,$$

r is called the degree of f, and a_0 is its leading coefficient. We call 0 the leading coefficient of the polynomial 0. Let *a* be an ideal in A[X]. The leading coefficients of the polynomials in *a* form an ideal *a* in *A*, and since *A* is Noetherian, *a* will be finitely generated. Let g_1, \ldots, g_m be elements of *a* whose leading coefficients generate *a*, and let *r* be the maximum degree of g_i . Now let $f \in a$, and suppose *f* has degree s > r, say, $f = aX^s + \ldots$ Then $a \in a'$, and so we can write $a = \sum b_i a_i$, $b_i \in A$,

 $a_i = leading \ coefficient \ of \ g_i$ Now

 $f - \sum b_i g_i X^{s-r_i}$, $r_i = \deg(g_i)$, has degree $< \deg(f)$. By continuing in this way, we find that $f \equiv f_{.}$ $mod(g_1, \dots, g_m)$ With f_{t} a polynomial of degree t < r. For each d < r, let a_d be the subset of A consisting of 0 and the leading coefficients of all polynomials in a of degree d; it is again an ideal in A. Let $g_{d,1}, ..., g_{d,m_d}$ be polynomials of degree d whose leading coefficients generate a_d . Then the same argument as above shows that any polynomial f_d in of degree d can be written a $f_d \equiv f_{d-1} \mod(g_{d,1}, ..., g_{d,m_d})$ With f_{d-1} of degree $\leq d-1$. On applying this remark we repeatedly find that $f_t \in (g_{r-1,1}, \dots, g_{r-1,m_{n-1}}, \dots, g_{0,1}, \dots, g_{0,m_0})$ Hence

$$f_t \in (g_1, \dots g_m g_{r-1,1}, \dots g_{r-1,m_{r-1}}, \dots, g_{0,1}, \dots, g_{0,m_0})$$

and so the polynomials $g_1, ..., g_{0,m_0}$ generate *a*

One of the great successes of category theory in computer science has been the development of a "unified theory" of the constructions underlying denotational semantics. In the untyped λ -calculus, any term may appear in the function position of an application. This means that a model D of the λ -calculus must have the property that given a term t whose interpretation is $d \in D$, Also, the interpretation of a functional abstraction like λx . x is most conveniently defined as a function from D to D, which must then be regarded as an element of D. Let $\psi: [D \to D] \to D$ be the function that picks out elements of D to represent elements of $[D \rightarrow D]$ and $\phi: D \rightarrow [D \rightarrow D]$ be the function that maps elements of D to functions of D. Since $\psi(f)$ is intended to represent the function f as an element of D, it makes sense to require that $\phi(\psi(f)) = f$, that is, $\psi o \psi = id_{[D \to D]}$ Furthermore, we often want to view every element of D as representing some function from D to D and require that elements representing the same function be equal that is $\psi(\varphi(d)) = d$

or

 $\psi o \phi = id_D$

The latter condition is called extensionality. These conditions together imply that ϕ and ψ are inverses--- that is, D is isomorphic to the space of functions from D to D that can be the interpretations functional abstractions: of $D \cong |D \to D|$.Let us suppose we are working with the untyped $\lambda - calculus$, we need a solution ot the equation $D \cong A + |D \rightarrow D|$, where A is predetermined domain containing some interpretations for elements of C. Each element of D corresponds to either an element of A or an element of $[D \rightarrow D]$, with a tag. This equation can be solved by finding least fixed points of the function $F(X) = A + |X \to X|$ from domains to domains --- that is, finding domains X such that $X \cong A + [X \to X]$, and such that for any domain Y also satisfying this equation, there is an embedding of X to Y --- a pair of maps f

$$\begin{array}{c} X \prod_{f^R} & Y \\ & \\ Such that \end{array}$$

$$f^{R} o f = id_{X}$$
$$f o f^{R} \subseteq id_{Y}$$

Where $f \subseteq g$ means that f approximates g in some ordering representing their information content. The key shift of perspective from the domain-theoretic to the more general categorytheoretic approach lies in considering F not as a function on domains, but as a *functor* on a category of domains. Instead of a least fixed point of the function, F.

Definition 1.3: Let K be a category and $F: K \to K$ as a functor. A fixed point of F is a pair (A,a), where A is a **K-object** and $a: F(A) \to A$ is an isomorphism. A prefixed point of F is a pair (A,a), where A is a **K-object** and a is any arrow from F(A) to A

Definition 1.4: An ω -chain in a category **K** is a diagram of the following form:

$$\Delta = D_o \xrightarrow{J_o} D_1 \xrightarrow{J_1} D_2 \xrightarrow{J_2} \dots$$

🕼 IJCER

Recall that a cocone μ of an ω -chain Δ is a *K*-object *X* and a collection of *K* -arrows $\{\mu_i: D_i \to X \mid i \ge 0\}$ such that $\mu_i = \mu_{i+1}o f_i$ for all $i \ge 0$. We sometimes write $\mu: \Delta \to X$ as a reminder of the arrangement of μ 's components Similarly, a colimit $\mu: \Delta \to X$ is a cocone with the property that if $\nu: \Delta \to X'$ is also a cocone then there exists a unique mediating arrow $k: X \to X'$ such that for all $i \ge 0$, $\nu_i = k o \mu_i$. Colimits of ω -chains are sometimes referred to as ω -colimits. Dually, an ω^{op} -chain in **K** is a diagram of the following form:

$$\Delta = D_o \underbrace{\stackrel{f_o}{\longleftarrow} D_1 \underbrace{\stackrel{f_1}{\longleftarrow} D_2 \underbrace{\stackrel{f_2}{\longleftarrow} \dots \dots}_A \quad \text{cone}$$

 $\mu: X \to \Delta \text{ of an } \omega^{op} - chain \Delta \text{ is a } K\text{-object}$ X and a collection of K-arrows $\{\mu_i: D_i \mid i \ge 0\}$ such that for all $i \ge 0$, $\mu_i = f_i \circ \mu_{i+1}$. An ω^{op} -limit of an $\omega^{op} - chain \Delta$ is a cone $\mu: X \to \Delta$ with the property that if $V: X' \to \Delta$ is also a cone, then there exists a unique mediating arrow $k: X' \to X$ such that for all $i \ge 0$, $\mu_i \circ k = v_i$. We write \bot_k (or just \bot) for the distinguish initial object of K, when it has one, and $\bot \to A$ for the unique arrow from \bot to each K-object A. It is also convenient to write $\Delta^- = D_1 \xrightarrow{f_1} D_2 \xrightarrow{f_2} \dots$ to denote all of Δ except D_o and f_0 . By analogy, μ^- is $\{\mu_i \mid i \ge 1\}$. For the images of Δ and μ

under
$$F$$
 we write
 $F(\Delta) = F(D_o) \xrightarrow{F(f_o)} F(D_1) \xrightarrow{F(f_1)} F(D_2) \xrightarrow{F(f_2)} \dots$
and $F(\mu) = \{F(\mu_i) | i \ge 0\}$

We write F^i for the *i*-fold iterated composition of F — that is, $F^o(f) = f, F^1(f) = F(f), F^2(f) = F(F(f))$, etc. With these definitions we can state that every monitonic function on a complete lattice has a least fixed point:

Lemma 1.4. Let *K* be a category with initial object \bot and let $F: K \to K$ be a functor. Define the ω -chain Δ by

$$\Delta = \bot \xrightarrow{\mu \to F(\bot)} F(\bot) \xrightarrow{F(\Box \to F(\bot))} F^2(\Box \to F(\bot))$$

If both $\mu : \Delta \to D$ and $F(\mu) : F(\Delta) \to F(D)$
are colimits, then (D,d) is an initial F-algebra, where $d : F(D) \to D$ is the mediating arrow from $F(\mu)$ to the cocone μ^-

Theorem 1.4 Let a DAG G given in which each node is a random variable, and let a discrete conditional probability distribution of each node given values of its parents in G be specified. Then the product of these conditional distributions yields a joint probability distribution P of the variables, and (G,P) satisfies the Markov condition.

Proof. Order the nodes according to an ancestral ordering. Let X_1, X_2, \dots, X_n be the resultant ordering. Next define.

$$P(x_1, x_2, \dots, x_n) = P(x_n | pa_n) P(x_{n-1} | Pa_{n-1}) \dots$$

...P(x_2 | pa_2)P(x_1 | pa_1),

Where PA_i is the set of parents of X_i of in G and $P(x_i \mid pa_i)$ is the specified conditional probability distribution. First we show this does indeed vield a joint probability distribution. Clearly, $0 \le P(x_1, x_2, \dots, x_n) \le 1$ for all values of the variables. Therefore, to show we have a joint distribution, as the variables range through all their possible values, is equal to one. To that end, Specified conditional distributions are the conditional distributions they notationally represent in the joint distribution. Finally, we show the Markov condition is satisfied. To do this, we need show for $1 \le k \le n$ that

whenever

follows

 $P(pa_k) \neq 0, if \ P(nd_k \mid pa_k) \neq 0$ and $P(x_k \mid pa_k) \neq 0$ then $P(x_k \mid nd_k, pa_k) = P(x_k \mid pa_k),$ Where ND_k is the set of nondescendents of X_k of in G. Since $PA_k \subseteq ND_k$, we need only show $P(x_k \mid nd_k) = P(x_k \mid pa_k).$ First for a given k, order the nodes so that all and only nondescendents of X_k precede X_k in the ordering. Note that this ordering depends on k, whereas the ordering in the first part of the proof does not. Clearly then

$$ND_{k} = \{X_{1}, X_{2}, \dots, X_{k-1}\}$$

Let
$$D_{k} = \{X_{k+1}, X_{k+2}, \dots, X_{n}\}$$

$$\sum_{d_{k}}$$

We define the m^{th} cyclotomic field to be the field $Q[x]/(\Phi_m(x))$ Where $\Phi_m(x)$ is the m^{th} cyclotomic polynomial. $Q[x]/(\Phi_m(x)) \Phi_m(x)$ has degree $\varphi(m)$ over Q since $\Phi_m(x)$ has degree $\varphi(m)$. The roots of $\Phi_m(x)$ are just the primitive m^{th} roots of unity, so the complex embeddings of $Q[x]/(\Phi_m(x))$ are simply the $\varphi(m)$ maps $\sigma_k : Q[x]/(\Phi_m(x)) \mapsto C,$ $1 \le k \prec m, (k, m) = 1$, where $\sigma_k(x) = \xi_m^k$,

 ξ_m being our fixed choice of primitive m^{th} root of unity. Note that $\xi_m^k \in Q(\xi_m)$ for every k; it follows that $Q(\xi_m) = Q(\xi_m^k)$ for all k relatively prime to m. In particular, the images of the σ_i coincide, so $Q[x]/(\Phi_m(x))$ is Galois over Q. This means that we can write $Q(\xi_m)$ for $Q[x]/(\Phi_m(x))$ without much fear of ambiguity; we will do so from now on, the identification being $\xi_m \mapsto x$. One advantage of this is that one can easily talk about cyclotomic fields being extensions of one another, or intersections or compositums; all of these things take place considering them as subfield of C. We now investigate some basic properties of cyclotomic fields. The first issue is whether or not they are all distinct; to determine this, we need to know which roots of unity lie in $Q(\xi_m)$. Note, for example, that if *m* is odd, then $-\xi_m$ is a $2m^{th}$ root of unity. We will show that this is the only way in which one can obtain any non- m^{th} roots of unity.

LEMMA 1.5 If *m* divides *n* , then $Q(\xi_m)$ is contained in $Q(\xi_n)$

PROOF. Since $\xi^{n/m} = \xi_m$, we have $\xi_m \in Q(\xi_n)$, so the result is clear

LEMMA 1.6 If m and n are relatively prime, then $Q(\xi_m, \xi_n) = Q(\xi_{nm})$

and

$$Q(\xi_m) \cap Q(\xi_n) = Q$$

(Recall the $Q(\xi_m,\xi_n)$ is the compositum of $Q(\xi_m)$ and $Q(\xi_n)$)

PROOF. One checks easily that $\xi_m \xi_n$ is a primitive mn^{th} root of unity, so that $Q(\xi_{mn}) \subseteq Q(\xi_m, \xi_n)$ $[Q(\xi_m, \xi_n) : Q] \leq [Q(\xi_m) : Q][Q(\xi_n : Q]]$ $= \varphi(m)\varphi(n) = \varphi(mn);$ Since $[Q(\xi_{mn}) : Q] = \varphi(mn);$ this implies that $Q(\xi_m, \xi_n) = Q(\xi_{nm})$ We know that $Q(\xi_m, \xi_n)$ has degree $\varphi(mn)$ over Q, so we must have $[Q(\xi_m, \xi_n) : Q(\xi_m)] = \varphi(n)$

and

$$\left[Q(\xi_m,\xi_n):Q(\xi_m)\right]=\varphi(m)$$

 $\left[Q(\xi_m):Q(\xi_m)\cap Q(\xi_n)\right] \ge \varphi(m)$ And thus that $Q(\xi_m)\cap Q(\xi_n)=Q$

PROPOSITION 1.2 For any m and n

$$Q(\xi_m, \xi_n) = Q(\xi_{[m,n]})$$

And
$$Q(\xi_m) \cap Q(\xi_n) = Q(\xi_{(m,n)})$$

here [m, n] and (m, n) denote the least common multiple and the greatest common divisor of m and n, respectively.

PROOF. Write $m = p_1^{e_1} \dots p_k^{e_k}$ and $p_1^{f_1} \dots p_k^{f_k}$ where the p_i are distinct primes. (We allow e_i or f_i to be zero) $Q(\xi_m) = Q(\xi_{p_1^{e_1}})Q(\xi_{p_2^{e_2}})\dots Q(\xi_{p_k^{e_k}})$ and $Q(\xi_n) = Q(\xi_{p_1^{f_1}})Q(\xi_{p_2^{f_2}})\dots Q(\xi_{p_k^{f_k}})$ Thus $Q(\xi_m, \xi_n) = Q(\xi_{p_1^{e_1}})\dots Q(\xi_{p_2^{e_k}})Q(\xi_{p_1^{f_1}})\dots Q(\xi_{p_k^{f_k}})$ $= Q(\xi_{p_1^{e_1}})Q(\xi_{p_1^{f_1}})\dots Q(\xi_{p_k^{e_k}})Q(\xi_{p_k^{f_k}})$ $= Q(\xi_{p_1^{e_1}})Q(\xi_{p_1^{f_1}})\dots Q(\xi_{p_k^{e_k}})Q(\xi_{p_k^{f_k}})$

$$= Q(\xi_{p_{1}^{\max(e_{l},f_{l})}})^{\max(e_{l},f_{l})})^{\max(e_{k},f_{k})})$$
$$= Q(\xi_{p_{1}^{\max(e_{l},f_{l})}})^{\max(e_{k},f_{k})})$$
$$= Q(\xi_{[m,n]});$$

An entirely similar computation shows that $Q(\xi_m) \cap Q(\xi_n) = Q(\xi_{(m,n)})$

Mutual information measures the information transferred when x_i is sent and y_i is received, and is defined as

$$I(x_i, y_i) = \log_2 \frac{P(\frac{x_i}{y_i})}{P(x_i)} bits \qquad (1)$$

In a noise-free channel, **each** y_i is uniquely connected to the corresponding x_i , and so they constitute an input –output pair (x_i, y_i) for which

$$P(\overset{x_i}{y_j}) = 1 \text{ and } I(x_i, y_j) = \log_2 \frac{1}{P(x_i)}$$
 bits;

that is, the transferred information is equal to the self-information that corresponds to the input x_i In a very noisy channel, the output y_i and input x_i would be completely uncorrelated, and so $P(\frac{x_i}{y_j}) = P(x_i)$ and also $I(x_i, y_j) = 0$; that is, there is no transference of information. In general, a

there is no transference of information. In general, a given channel will operate between these two extremes. The mutual information is defined between the input and the output of a given channel. An average of the calculation of the mutual information for all input-output pairs of a given channel is the average mutual information:

$$I(X,Y) = \sum_{i,j} P(x_i, y_j) I(x_i, y_j) = \sum_{i,j} P(x_i, y_j) \log_2 \left| \frac{P(\frac{x_i}{y_j})}{P(x_i)} \right|^2$$

bits per symbol . This calculation is done over the

input and output alphabets. The average mutual information. The following expressions are useful for modifying the mutual information expression:

$$P(x_{i}, y_{j}) = P(\frac{x_{i}}{y_{j}})P(y_{j}) = P(\frac{y_{j}}{x_{i}})P(x_{i})$$

$$P(y_{j}) = \sum_{i} P(\frac{y_{j}}{x_{i}})P(x_{i})$$

$$P(x_{i}) = \sum_{i} P(\frac{x_{i}}{y_{j}})P(y_{j})$$
Then
$$I(X,Y) = \sum_{i,j} P(x_{i}, y_{j})\log_{2}\left[\frac{1}{P(x_{i})}\right]$$

$$-\sum_{i,j} P(x_{i}, y_{j})\log_{2}\left[\frac{1}{P(\frac{x_{i}}{y_{j}})}\right]$$

$$\sum_{i,j} P(x_{i}, y_{j})\log_{2}\left[\frac{1}{P(x_{i})}\right]$$

$$= \sum_{i} \left[P(\frac{x_{i}}{y_{j}})P(y_{j})\right]\log_{2}\frac{1}{P(x_{i})}$$

$$\sum_{i} P(x_{i})\log_{2}\frac{1}{P(x_{i})} = H(X)$$

$$I(X,Y) = H(X) - H(\frac{X}{Y})$$
Where
$$W(X = \sum_{i} \sum_{j} P(x_{i}) + \sum_{j} P(x_{j}) + \sum_{j} P$$

$$H(X/Y) = \sum_{i,j} P(x_i, y_j) \log_2 \frac{1}{P(X_i/y_j)}$$
 is

usually called the equivocation. In a sense, the equivocation can be seen as the information lost in the noisy channel, and is a function of the backward conditional probability. The observation of an output symbol y_j provides H(X) - H(X/Y) bits of information. This difference is the mutual information of the channel. *Mutual Information:* Properties Since

$$P(\frac{x_i}{y_j})P(y_j) = P(\frac{y_j}{x_i})P(x_i)$$

The mutual information fits the condition I(X, Y) = I(Y, X)

And by interchanging input and output it is also true that

$$I(X,Y) = H(Y) - H(Y/X)$$

Where

$$H(Y) = \sum_{j} P(y_{j}) \log_{2} \frac{1}{P(y_{j})}$$

This last entropy is usually called the noise entropy. Thus, the information transferred through the channel is the difference between the output entropy and the noise entropy. Alternatively, it can be said that the channel mutual information is the difference between the number of bits needed for determining a given input symbol before knowing the corresponding output symbol, and the number of bits needed for determining a given input symbol after knowing the corresponding output symbol

$$I(X,Y) = H(X) - H(X/Y)$$

As the channel mutual information expression is a difference between two quantities, it seems that this parameter can adopt negative values. However, and is spite of the fact that for some y_i , $H(X / y_i)$

can be larger than H(X), this is not possible for the average value calculated over all the outputs:

$$\sum_{i,j} P(x_i, y_j) \log_2 \frac{\frac{P(x_i/y_j)}{p(x_i)}}{P(x_i)} = \sum_{i,j} P(x_i, y_j) \log_2 \frac{P(x_i, y_j)}{P(x_i)P(y_j)}$$

Then

$$-I(X,Y) = \sum_{i,j} P(x_i, y_j) \frac{P(x_i)P(y_j)}{P(x_i, y_j)} \le 0$$

Because this expression is of the form

$$\sum_{i=1}^{M} P_i \log_2(\frac{Q_i}{P_i}) \le 0$$

The above expression can be applied due to the factor $P(x_i)P(y_j)$, which is the product of two probabilities, so that it behaves as the quantity Q_i , which in this expression is a dummy variable that fits the condition $\sum_i Q_i \leq 1$. It can be concluded that the average mutual information is a nonnegative number. It can also be equal to zero, when the input and the output are independent of each other. A related entropy called the joint entropy is defined as

$$H(X,Y) = \sum_{i,j} P(x_i, y_j) \log_2 \frac{1}{P(x_i, y_j)}$$
$$= \sum_{i,j} P(x_i, y_j) \log_2 \frac{P(x_i)P(y_j)}{P(x_i, y_j)}$$
$$+ \sum_{i,j} P(x_i, y_j) \log_2 \frac{1}{P(x_i)P(y_j)}$$

Theorem 1.5: Entropies of the binary erasure channel (BEC) The BEC is defined with an alphabet of two inputs and three outputs, with symbol probabilities.

 $P(x_1) = \alpha$ and $P(x_2) = 1 - \alpha$, and transition probabilities

$$P(\frac{y_3}{x_2}) = 1 - p \text{ and } P(\frac{y_2}{x_1}) = 0,$$

and $P(\frac{y_3}{x_1}) = 0$
and $P(\frac{y_1}{x_2}) = p$
and $P(\frac{y_1}{x_2}) = 1 - p$

Lemma 1.7. Given an arbitrary restricted timediscrete, amplitude-continuous channel whose restrictions are determined by sets F_n and whose density functions exhibit no dependence on the state s, let n be a fixed positive integer, and p(x) an arbitrary probability density function on Euclidean n-space. p(y|x) for the density $p_n(y_1,...,y_n | x_1,...x_n)$ and F for F_n . For any real number a, let

$$A = \left\{ (x, y) : \log \frac{p(y \mid x)}{p(y)} > a \right\}$$
(1)

Then for each positive integer u, there is a code (u, n, λ) such that

$$\lambda \le u e^{-a} + P\{(X,Y) \notin A\} + P\{X \notin F\}$$
(2)

Where $P\{(X,Y) \in A\} = \int_A \dots \int p(x,y) dx dy, \qquad p(x,y) = p(x)p(y \mid x)$ and

$$P\left\{X \in F\right\} = \int_{F} \dots \int p(x) dx$$

Proof: A sequence
$$x^{(1)} \in F$$
 such that
 $P\left\{Y \in A_{x^1} \mid X = x^{(1)}\right\} \ge 1 - \varepsilon$
where $A_x = \left\{y : (x, y) \in A\right\};$

Choose the decoding set B_1 to be $A_{x^{(1)}}$. Having chosen $x^{(1)},\ldots\ldots,x^{(k-1)}$ and B_1,\ldots,B_{k-1} , select $x^k\in F$ such that

$$P\left\{Y \in A_{x^{(k)}} - \bigcup_{i=1}^{k-1} B_i \mid X = x^{(k)}\right\} \ge 1 - \varepsilon;$$

Set $B_k = A_{x^{(k)}} - \bigcup_{i=1}^{k-1} B_i$, If the process does not terminate in a finite number of steps, then the sequences $x^{(i)}$ and decoding sets B_i , i = 1, 2, ..., u, form the desired code. Thus assume that the process terminates after t steps. (Conceivably t = 0). We will show $t \ge u$ by showing that $\varepsilon \le te^{-a} + P\{(X, Y) \notin A\} + P\{X \notin F\}$. We proceed as follows.

Let

$$B = \bigcup_{j=1}^{t} B_{j}. \quad (If \ t = 0, \ take \ B = \phi). \ Then$$
$$P\{(X,Y) \in A\} = \int_{(x,y)\in A} p(x,y)dx \, dy$$
$$= \int_{x} p(x) \int_{y \in A_{x}} p(y \mid x)dy \, dx$$
$$= \int_{x} p(x) \int_{y \in A_{x}} p(y \mid x)dy \, dx + \int_{x} p(x)$$

C. Algorithms

Ideals. Let A be a ring. Recall that an *ideal a* in A is a subset such that a is subgroup of A regarded as a group under addition;

 $a \in a, r \in A \Longrightarrow ra \in A$

The ideal generated by a subset *S* of *A* is the intersection of all ideals *A* containing a ----- it is easy to verify that this is in fact an ideal, and that it consist of all finite sums of the form $\sum r_i s_i$ with $r_i \in A, s_i \in S$. When $S = \{s_1, \ldots, s_m\}$, we shall write (s_1, \ldots, s_m) for the ideal it generates.

Let a and b be ideals in A. The set $\{a+b \mid a \in a, b \in b\}$ is an ideal, denoted by a+bThe . ideal generated by $\{ab \mid a \in a, b \in b\}$ is denoted by ab. Note that $ab \subset a \cap b$. Clearly ab consists of all finite sums $\sum a_i b_i$ with $a_i \in a$ and $b_i \in b$, and if $a = (a_1, ..., a_m)$ and $b = (b_1, ..., b_n)$, then $ab = (a_1b_1, \dots, a_ib_i, \dots, a_mb_n)$.Let a be an ideal of A. The set of cosets of a in A forms a ring A/aand $a \mapsto a + a$ is a homomorphism $\phi: A \mapsto A/a$. The map $b \mapsto \phi^{-1}(b)$ is a one to one correspondence between the ideals of A/aand the ideals of A containing a An ideal p if *prime* if $p \neq A$ and $ab \in p \Longrightarrow a \in p$ or $b \in p$. Thus p is prime if and only if A / p is nonzero has and the property that ab = 0, $b \neq 0 \Longrightarrow a = 0$, i.e., A / p is an integral domain. An ideal *m* is *maximal* if $m \neq A$ and there does not exist an ideal n contained strictly between m and A. Thus m is maximal if and only if A/m has no proper nonzero ideals, and so is a field. Note that *m* maximal \implies *m* prime. The ideals of $A \times B$ are all of the form $a \times b$, with a and b ideals in A and B. To see this, note that if c is an ideal in $A \times B$ and $(a,b) \in c$, then $(a,0) = (a,b)(1,0) \in c$ and $(0,b) = (a,b)(0,1) \in c$. This shows that $c = a \times b$ with $a = \{a \mid (a,b) \in c \text{ some } b \in b\}$ and $b = \{b \mid (a,b) \in c \text{ some } a \in a\}$

Let A be a ring. An A -algebra is a ring B together with a homomorphism $i_B: A \to B$. A homomorphism of A -algebra $B \rightarrow C$ is a homomorphism of rings $\varphi: B \to C$ such that $\varphi(i_{R}(a)) = i_{C}(a)$ for all $a \in A$. An A-algebra B is said to be *finitely generated* (or of *finite-type* over A) if there exist elements $x_1, ..., x_n \in B$ such that every element of B can be expressed as a polynomial in the x_i with coefficients in i(A), i.e., such that the homomorphism $A[X_1,...,X_n] \rightarrow B$ sending X_i to x_i is surjective. A ring homomorphism $A \rightarrow B$ is *finite*, and B is finitely generated as an A-module. Let k be a field, and let A be a k-algebra. If $1 \neq 0$ in A, then the map $k \rightarrow A$ is injective, we can identify k with its image, i.e., we can regard k as a subring of A. If 1=0 in a ring R, the R is the zero ring, i.e., $R = \{0\}$. Polynomial rings. Let k be a field. A monomial in $X_1, ..., X_n$ is an expression of the form $X_1^{a_1}...X_n^{a_n}, \qquad a_i \in N$. The total degree of the monomial is $\sum a_i$. We sometimes abbreviate it by $X^{\alpha}, \alpha = (a_1, ..., a_n) \in \square^n$ The elements of the polynomial ring $k[X_1,...,X_n]$ are finite sums $\sum c_{a_1\dots a_n} X_1^{a_1} \dots X_n^{a_n}, \qquad c_{a_1\dots a_n} \in k, \quad a_j \in \square$ With the obvious notions of equality, addition and multiplication. Thus the monomials from basis for $k[X_1,...,X_n]$ as a k -vector space. The ring $k X_1, \dots, X_n$ is an integral domain, and the only units in it are the nonzero constant polynomials. A polynomial $f(X_1,...,X_n)$ is *irreducible* if it is nonconstant and has only the obvious factorizations, i.e., $f = gh \Longrightarrow g$ or h is constant. Division in $k \mid X \mid$. The division algorithm allows us to divide a nonzero polynomial into another: let f and g be

polynomials in k[X] with $g \neq 0$; then there exist unique polynomials $q, r \in k[X]$ such that f = qg + r with either r = 0 or deg $r < \deg g$. Moreover, there is an algorithm for deciding whether $f \in (g)$, namely, find r and check whether it is zero. Moreover, the Euclidean algorithm allows to pass from finite set of generators for an ideal in k[X] to a single generator by successively replacing each pair of generators with their greatest common divisor.

(*Pure*) **lexicographic** ordering (lex). Here monomials are ordered by lexicographic(dictionary) order. More precisely, let $\alpha = (a_1, ..., a_n)$ and $\beta = (b_1, ..., b_n)$ be two elements of \Box^n ; then $\alpha > \beta$ and $X^{\alpha} > X^{\beta}$ (lexicographic ordering) if, in the vector difference $\alpha - \beta \in \Box$, the left most nonzero entry is positive. For example,

 $XY^2 > Y^3Z^4$; $X^3Y^2Z^4 > X^3Y^2Z$. Note that this isn't quite how the dictionary would order them: it would put *XXXYYZZZZ* after *XXXYYZ*. *Graded reverse lexicographic order (grevlex)*. Here monomials are ordered by total degree, with ties broken by reverse lexicographic ordering. Thus, $\alpha > \beta$ if $\sum a_i > \sum b_i$, or $\sum a_i = \sum b_i$ and in $\alpha - \beta$ the right most nonzero entry is negative. For example:

 $\begin{aligned} X^{4}Y^{4}Z^{7} > X^{5}Y^{5}Z^{4} \quad (total \ degree \ greater) \\ XY^{5}Z^{2} > X^{4}YZ^{3}, \quad X^{5}YZ > X^{4}YZ^{2} \end{aligned}$

Orderings on $k[X_1,...,X_n]$. Fix an ordering on the monomials in $k[X_1,...,X_n]$. Then we can write an element f of $k[X_1,...,X_n]$ in a canonical fashion, by re-ordering its elements in decreasing order. For example, we would write

$$f = 4XY^{2}Z + 4Z^{2} - 5X^{3} + 7X^{2}Z^{2}$$

as
$$f = -5X^{3} + 7X^{2}Z^{2} + 4XY^{2}Z + 4Z^{2} \quad (lex)$$

or
$$f = 4XY^{2}Z + 7X^{2}Z^{2} - 5X^{3} + 4Z^{2} \quad (grevlex)$$

Let $\sum a_{\alpha}X^{\alpha} \in k[X_1,...,X_n]$, in decreasing order:

$$f = a_{\alpha_0} X^{\alpha_0} +_{\alpha_1} X^{\alpha_1} + \dots, \qquad \alpha_0 > \alpha_1 > \dots, \quad \alpha_0 \neq 0^{\text{all}}_{\text{PRO}}$$

Then we define.

Issn 2250-3005(online)

• The multidegree of
$$f$$
 to be multdeg(f) = α_0 ;

- The leading coefficient of f to be LC(f) = a_{α_0} ;
- The leading monomial of f to be LM(f)= X^{α_0} ;
- The leading term of f to be LT(f) = $a_{\alpha_0} X^{\alpha_0}$

the polynomial $f = 4XY^2Z + ...,$ the For multidegree is (1,2,1), the leading coefficient is 4, the leading monomial is XY^2Z , and the leading term is $4XY^2Z$. The division algorithm in $k[X_1,...X_n]$. Fix a monomial ordering in \square^2 . Suppose given a polynomial f and an ordered set $(g_1, ..., g_s)$ of polynomials; the division algorithm then constructs polynomials $a_1, \dots a_s$ and r such that $f = a_1g_1 + \dots + a_sg_s + r$ Where either r = 0 or no monomial in r is divisible by any of $LT(g_1), ..., LT(g_s)$ Step 1: If $LT(g_1) | LT(f)$, divide f g_1 into to get $f = a_1g_1 + h, \qquad a_1 = \frac{LT(f)}{LT(g_1)} \in k[X_1, ..., X_n]$ If $LT(g_1) | LT(h)$, repeat the process until $f = a_1g_1 + f_1$ (different a_1) with $LT(f_1)$ not divisible by $LT(g_1)$. Now divide g_2 into f_1 , and so on, until $f = a_1g_1 + ... + a_sg_s + r_1$ With $LT(r_1)$ not divisible by any $LT(g_1), ..., LT(g_s)$ **Step 2:** Rewrite $r_1 = LT(r_1) + r_2$, and repeat Step r_2 for 1 with f : $f = a_1g_1 + \ldots + a_sg_s + LT(r_1) + r_3$ (different a_i 's) Monomial ideals. In general, an ideal awill contain a polynomial without containing the individual terms of the polynomial; for example, the ideal $a = (Y^2 - X^3)$ contains $Y^2 - X^3$ but not Y^2 or X^3 .

DEFINITION 1.5. An ideal *a* is monomial if $\sum c_{\alpha} X^{\alpha} \in a \Longrightarrow X^{\alpha} \in a$

 $\begin{array}{l} 0 \text{ all } \alpha \text{ with } c_{\alpha} \neq 0 \text{ .} \\ \text{PROPOSITION 1.3. Let } a \text{ be a monomial ideal,} \\ \text{and let } A = \left\{ \alpha \mid X^{\alpha} \in a \right\} \text{. Then } A \text{ satisfies the} \end{array}$

condition $\alpha \in A$, $\beta \in \square^n \Rightarrow \alpha + \beta \in$ (*) And *a* is the *k*-subspace of $k[X_1,...,X_n]$ generated by the $X^{\alpha}, \alpha \in A$. Conversely, of *A* is a subset of \square^n satisfying (*), then the k-subspace *a* of $k[X_1,...,X_n]$ generated by $\{X^{\alpha} | \alpha \in A\}$ is a monomial ideal.

PROOF. It is clear from its definition that a monomial ideal a is the k-subspace of $k[X_1,...,X_n]$

generated by the set of monomials it contains. If $X^{\alpha} \in a_{\text{and}} X^{\beta} \in k[X_1,...,X_n]$.

If a permutation is chosen uniformly and at random from the n! possible permutations in S_n , then the counts $C_j^{(n)}$ of cycles of length j are dependent random variables. The joint distribution of $C^{(n)} = (C_1^{(n)}, ..., C_n^{(n)})$ follows from Cauchy's formula, and is given by

$$P[C^{(n)} = c] = \frac{1}{n!} N(n, c) = 1 \left\{ \sum_{j=1}^{n} jc_j = n \right\} \prod_{j=1}^{n} \left(\frac{1}{j}\right)^{c_j} \frac{1}{c_j!}, \quad (1.1)$$

for $c \in \square_{+}^{n}$.

Lemma1.7 For nonnegative integers $m_{1,\dots}, m_n$,

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = \left(\prod_{j=1}^{n} \left(\frac{1}{j}\right)^{m_{j}}\right) \left\{\sum_{j=1}^{n} jm_{j} \le n\right\}$$
(1.4)

Proof. This can be established directly by exploiting cancellation of the form $c_j^{[m_j]}/c_j^! = 1/(c_j - m_j)!$ when $c_j \ge m_j$, which occurs between the ingredients in Cauchy's formula and the falling factorials in the moments. Write $m = \sum jm_j$. Then, with the first sum indexed by $c = (c_1, ..., c_n) \in \square_+^n$ and the last sum indexed by $d = (d_1, ..., d_n) \in \square_+^n$ via the correspondence $d_j = c_j - m_j$, we have

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = \sum_{c} P[C^{(n)} = c] \prod_{j=1}^{n} (c_{j})^{[m_{j}]}$$
$$= \sum_{cc_{j} \ge m_{j} \text{ for all } j} \left\{\sum_{j=1}^{n} jc_{j} = n\right\} \prod_{j=1}^{n} \frac{(c_{j})^{[m_{j}]}}{j^{c_{j}}c_{j}!}$$
$$= \prod_{j=1}^{n} \frac{1}{j^{m_{j}}} \sum_{d} \left\{\sum_{j=1}^{n} jd_{j} = n - m\right\} \prod_{j=1}^{n} \frac{1}{j^{d_{j}}(d_{j})!}$$

This last sum simplifies to the indicator $1(m \le n)$, corresponding to the fact that if $n-m \ge 0$, then $d_j = 0$ for j > n-m, and a random permutation in S_{n-m} must have some cycle structure $(d_1,...,d_{n-m})$. The moments of $C_j^{(n)}$ follow immediately as

$$E(C_{j}^{(n)})^{[r]} = j^{-r} \mathbf{1} \{ jr \le n \}$$
(1.2)

We note for future reference that (1.4) can also be written in the form

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = E\left(\prod_{j=1}^{n} Z_{j}^{[m_{j}]}\right) \mathbb{1}\left\{\sum_{j=1}^{n} jm_{j} \le n\right\},$$
(1.3)

Where the Z_j are independent Poisson-distribution random variables that satisfy $E(Z_j) = 1/j$

The marginal distribution of cycle counts provides a formula for the joint distribution of the cycle counts C_j^n , we find the distribution of C_j^n using a combinatorial approach combined with the inclusion-exclusion formula.

Lemma 1.8. For
$$1 \le j \le n$$
,

$$P[C_j^{(n)} = k] = \frac{j^{-k}}{k!} \sum_{l=0}^{\lfloor n/j \rfloor - k} (-1)^l \frac{j^{-l}}{l!}$$
(1.1)

Consider the set I of all possible cycles Proof. of length j, formed with elements chosen from $\{1,2,...n\}$, so that $|I| = n^{\lfloor j \rfloor / j}$. For each $\alpha \in I$, consider the "property" G_{α} of having α ; that is, G_{α} is the set of permutations $\pi \in S_n$ such that α is one of the cycles of π . We then have $|G_{\alpha}| = (n-j)!$, since the elements of $\{1, 2, ..., n\}$ not in α must be permuted among themselves. To use the inclusion-exclusion formula we need to calculate the term S_r , which is the sum of the probabilities of the r -fold intersection of properties, summing over all sets of r distinct properties. There are two cases to consider. If the rproperties are indexed by r cycles having no elements in common, then the intersection specifies

how rj elements are moved by the permutation, and there are $(n-rj)!!(rj \le n)$ permutations in the intersection. There are $n^{[rj]}/(j^r r!)$ such intersections. For the other case, some two distinct properties name some element in common, so no permutation can have both these properties, and the *r*-fold intersection is empty. Thus

$$S_{r} = (n - rj)! l(rj \le n)$$

$$\times \frac{n^{[rj]}}{j^{r}r!} \frac{1}{n!} = l(rj \le n) \frac{1}{j^{r}r!}$$

Finally, the inclusion-exclusion series for the number of permutations having exactly k properties is

$$\sum_{l\geq 0} (-1)^l \binom{k+l}{l} S_{k+l}$$

Which simplifies to (1.1) Returning to the original hat-check problem, we substitute j=1 in (1.1) to obtain the distribution of the number of fixed points of a random permutation. For k = 0, 1, ..., n,

$$P[C_1^{(n)} = k] = \frac{1}{k!} \sum_{l=0}^{n-k} (-1)^l \frac{1}{l!},$$
 (1.2)

and the moments of $C_1^{(n)}$ follow from (1.2) with j = 1. In particular, for $n \ge 2$, the mean and variance of $C_1^{(n)}$ are both equal to 1. The joint distribution of $(C_1^{(n)}, ..., C_b^{(n)})$ for any $1 \le b \le n$ has an expression similar to (1.7); this too can be derived by inclusion-exclusion. For any $c = (c_1, ..., c_b) \in \square_+^b$ with $m = \sum i c_i$, $P[(C_1^{(n)}, ..., C_b^{(n)}) = c]$ $= \left\{ \prod_{i=1}^b \left(\frac{1}{i}\right)^{c_i} \frac{1}{c_i!} \right\}_{\substack{l \ge 0 \text{ with} \\ \sum_{l_i \le n-m}}^{l_i \le 0 \text{ with}} (-1)^{l_1 + ... + l_b} \prod_{i=1}^b \left(\frac{1}{i}\right)^{l_i} \frac{1}{l_i!}$ (1.3)

The joint moments of the first *b* counts $C_1^{(n)}, ..., C_b^{(n)}$ can be obtained directly from (1.2) and (1.3) by setting $m_{b+1} = ... = m_n = 0$

The limit distribution of cycle counts

It follows immediately from Lemma 1.2 that for each fixed j, as $n \rightarrow \infty$,

$$P[C_j^{(n)} = k] \rightarrow \frac{j^{-k}}{k!} e^{-1/j}, \quad k = 0, 1, 2, ...,$$

So that $C_j^{(n)}$ converges in distribution to a random variable Z_j having a Poisson distribution with mean 1/j; we use the notation $C_j^{(n)} \rightarrow_d Z_j$

where $Z_j \square P_o(1/j)$ to describe this. Infact, the limit random variables are independent.

Theorem 1.6 The process of cycle counts converges in distribution to a Poisson process of \Box with intensity j^{-1} . That is, as $n \rightarrow \infty$,

$$(C_1^{(n)}, C_2^{(n)}, ...) \to_d (Z_1, Z_2, ...)$$
 (1.1)

Where the Z_j , j = 1, 2, ..., are independent Poisson-distributed random variables with

$$E(Z_j) = \frac{1}{j}$$

Proof. To establish the converges in distribution one shows that for each fixed $b \ge 1$, as $n \to \infty$,

$$P[(C_1^{(n)},...,C_b^{(n)})=c] \to P[(Z_1,...,Z_b)=c]$$

Error rates

The proof of Theorem says nothing about the rate of convergence. Elementary analysis can be used to estimate this rate when b=1. Using properties of alternating series with decreasing terms, for k=0,1,...,n,

$$\begin{aligned} &\frac{1}{k!} (\frac{1}{(n-k+1)!} - \frac{1}{(n-k+2)!}) \le \left| P[C_1^{(n)} = k] - P[Z_1 = k] \right| \\ \le &\frac{1}{k!(n-k+1)!} \end{aligned}$$

It follows that

$$\frac{2^{n+1}}{(n+1)!} \frac{n}{n+2} \le \sum_{k=0}^{n} \left| P[C_1^{(n)} = k] - P[Z_1 = k] \right| \le \frac{2^{n+1} - 1}{(n+1)!} \quad (1.11)$$

Since

$$P[Z_1 > n] = \frac{e^{-1}}{(n+1)!} (1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots) < \frac{1}{(n+1)!},$$

We see from (1.11) that the total variation distance between the distribution $L(C_1^{(n)})$ of $C_1^{(n)}$ and the distribution $L(Z_1)$ of Z_1

Establish the asymptotics of $P[A_n(C^{(n)})]$ under conditions (A_0) and (B_{01}) , where

$$A_n(C^{(n)}) = \bigcap_{1 \le i \le n} \bigcap_{i_i + 1 \le j \le r_i} \{C_{ij}^{(n)} = 0\},\$$

and $\zeta_i = (r_i / r_{id}) - 1 = O(i^{-g})$ as $i \to \infty$, for some g' > 0. We start with the expression

$$P[A_{n}(C^{(n)})] = \frac{P[T_{0m}(Z) = n]}{P[T_{0m}(Z) = n]}$$

$$\prod_{\substack{1 \le i \le n \\ r_{i}+1 \le j \le r_{i}}} \left\{ 1 - \frac{\theta}{ir_{i}} (1 + E_{i0}) \right\} \quad (1.1)$$

$$P[T_{0n}(Z') = n]$$

$$= \frac{\theta d}{n} \exp\left\{ \sum_{i\ge 1} [\log(1 + i^{-1}\theta d) - i^{-1}\theta d] \right\}$$

$$\left\{ 1 + O(n^{-1}\varphi_{\{1,2,7\}}^{'}(n)) \right\} \quad (1.2)$$
and
$$P[T_{0n}(Z') = n]$$

$$= \frac{\theta d}{n} \exp\left\{ \sum_{i\ge 1} [\log(1 + i^{-1}\theta d) - i^{-1}\theta d] \right\}$$

$$\left\{ 1 + O(n^{-1}\varphi_{\{1,2,7\}}^{'}(n)) \right\} \quad (1.3)$$

Where $\varphi_{\{1,2,7\}}(n)$ refers to the quantity derived from Z'. It thus follows that $P[A_n(C^{(n)})] \square Kn^{-\theta(1-d)}$ for a constant K, depending on Z and the r_i and computable explicitly from (1.1) - (1.3), if Conditions (A_0) and (B_{01}) are satisfied and if $\zeta_i^* = O(i^{-g'})$ from some g' > 0, since, under these circumstances, both $n^{-1}\varphi_{\{1,2,7\}}(n)$ and $n^{-1}\varphi_{\{1,2,7\}}(n)$ tend to zero as $n \to \infty$. In particular, for polynomials and square free polynomials, the relative error in this asymptotic approximation is of order n^{-1} if g' > 1.

For
$$0 \le b \le n/8$$
 and $n \ge n_0$, with n_0
 $d_{TV}(L(C[1,b]), L(Z[1,b]))$
 $\le d_{TV}(L(C[1,b]), L(Z[1,b]))$
 $\le \varepsilon_{\{7,7\}}(n,b),$

Where $\mathcal{E}_{\{7,7\}}(n,b) = O(b/n)$ under Conditions $(A_0), (D_1)$ and (B_{11}) Since, by the Conditioning Relation,

$$L(C[1,b]|T_{0b}(C) = l) = L(Z[1,b]|T_{0b}(Z) = l),$$

It follows by direct calculation that

$$d_{TV}(L(C[1,b]), L(Z[1,b]))$$

= $d_{TV}(L(T_{0b}(C)), L(T_{0b}(Z)))$
= $\max_{A} \sum_{r \in A} P[T_{0b}(Z) = r]$
 $\left\{1 - \frac{P[T_{bn}(Z) = n - r]}{P[T_{0n}(Z) = n]}\right\}$ (1.4)

Suppressing the argument Z from now on, we thus obtain

$$d_{TV}(L(C[1,b]), L(Z[1,b]))$$

$$= \sum_{r \ge 0} P[T_{0b} = r] \left\{ 1 - \frac{P[T_{bn} = n - r]}{P[T_{0n} = n]} \right\}_{+}$$

$$\leq \sum_{r > n/2} P[T_{0b} = r] + \sum_{r=0}^{[n/2]} \frac{P[T_{0b} = r]}{P[T_{0b} = n]}$$

$$\times \left\{ \sum_{s=0}^{n} P[T_{0b} = s](P[T_{bn} = n - s] - P[T_{bn} = n - r]) \right\}_{+}$$

$$\leq \sum_{s=0}^{n} P[T_{0s} = r] + \sum_{s=0}^{[n/2]} P[T_{s} = r]$$

$$\leq \sum_{r>n/2} P[T_{0b} = r] + \sum_{r=0} P[T_{0b} = r]$$

$$\times \sum_{s=0}^{[n/2]} P[T_{0b} = s] \frac{\{P[T_{bn} = n - s] - P[T_{bn} = n - r]\}}{P[T_{0n} = n]}$$

$$+ \sum_{s=0}^{[n/2]} P[T_{0b} = r] \sum_{s=[n/2]+1}^{n} P[T = s] P[T_{bn} = n - s] / P[T_{0n} = n]$$

The first sum is at most $2n^{-1}ET_{0b}$; the third is bound by

$$\begin{aligned} &(\max_{n/2 < s \le n} P[T_{0b} = s]) / P[T_{0n} = n] \\ &\leq \frac{2\varepsilon_{\{10.5(1)\}}(n/2, b)}{n} \frac{3n}{\theta P_{\theta}[0, 1]}, \\ &\frac{3n}{\theta P_{\theta}[0, 1]} 4n^{-2} \phi_{\{10.8\}}^{*}(n) \sum_{r=0}^{[n/2]} P[T_{0b} = r] \sum_{s=0}^{[n/2]} P[T_{0b} = s] \frac{1}{2} |r-s| \\ &\leq \frac{12\phi_{\{10.8\}}^{*}(n)}{\theta P_{\theta}[0, 1]} \frac{ET_{0b}}{n} \end{aligned}$$

Hence we may take

$$\varepsilon_{\{7,7\}}(n,b) = 2n^{-1}ET_{0b}(Z) \left\{ 1 + \frac{6\phi_{\{10,8\}}^*(n)}{\theta P_{\theta}[0,1]} \right\} P + \frac{6}{\theta P_{\theta}[0,1]} \varepsilon_{\{10,5(1)\}}(n/2,b)$$
(1.5)

Required order under Conditions $(A_0), (D_1)$ and (B_{11}) , if $S(\infty) < \infty$. If not, $\phi_{\{10,8\}}^*(n)$ can be

replaced by $\phi_{10,11}^*(n)$ in the above, which has the required order, without the restriction on the r_i implied by $S(\infty) < \infty$. Examining the Conditions $(A_0), (D_1)$ and (B_{11}) , it is perhaps surprising to find that (B_{11}) is required instead of just (B_{01}) ; that is, that we should need $\sum_{l>2} l \varepsilon_{il} = O(i^{-a_1})$ to hold for some $a_1 > 1$. A first observation is that a similar problem arises with the rate of decay of \mathcal{E}_{i1} as well. For this reason, n_1 is replaced by n_1 . This makes it possible to replace condition (A_1) by the weaker pair of conditions (A_0) and (D_1) in the eventual assumptions needed for $\, arepsilon_{_{\{7,7\}}}ig(n,big) \,$ to be of order O(b/n); the decay rate requirement of order $i^{-1-\gamma}$ is shifted from \mathcal{E}_{i1} itself to its first difference. This is needed to obtain the right approximation error for the random mappings example. However, since all the classical applications make far more stringent assumptions about the $\mathcal{E}_{i1}, l \geq 2$, than are made in (B_{11}) . The critical point of the proof is seen where the initial estimate of the difference $P[T_{bn}^{(m)} = s] - P[T_{bn}^{(m)} = s+1]$. The factor $\mathcal{E}_{(10,10)}(n)$, which should be small, contains a far tail element from n_1 of the form $\phi_1^{\theta}(n) + u_1^{*}(n)$, which is only small if $a_1 > 1$, being otherwise of order $O(n^{1-a_1+\delta})$ for any $\delta > 0$, since $a_2 > 1$ is in any case assumed. For $s \ge n/2$, this gives rise to a contribution of order $O(n^{-1-a_1+\delta})$ in the estimate difference of the $P[T_{bn} = s] - P[T_{bn} = s+1],$ which, in the remainder of the proof, is translated into a contribution of order $O(tn^{-1-a_1+\delta})$ for differences of the form $P[T_{bn} = s] - P[T_{bn} = s+1]$, finally leading to a contribution of order $bn^{-a_1+\delta}$ for any $\delta > 0$ in $\mathcal{E}_{\{7,7\}}(n,b)$. Some improvement would seem to be possible, defining the function g by $g(w) = 1_{\{w=s\}} - 1_{\{w=s+t\}}$, differences that are of the form $P[T_{bn} = s] - P[T_{bn} = s+t]$ can be directly estimated, at a cost of only a single contribution of the form $\phi_1^{\theta}(n) + u_1^{*}(n)$. Then,

🕼 IJCER

iterating the cycle, in which one estimate of a difference in point probabilities is improved to an estimate of smaller order, a bound of the form

 $|P[T_{bn} = s] - P[T_{bn} = s+t]| = O(n^{-2}t + n^{-1-a_1+\delta})$ for any $\delta > 0$ could perhaps be attained, leading to a final error estimate in order $O(bn^{-1} + n^{-a_1+\delta})$ for any $\delta > 0$, to replace $\varepsilon_{\{7,7\}}(n,b)$. This would be of the ideal order O(b/n) for large enough b, but would still be coarser for small b.

With b and n as in the previous section, we wish to show that

$$\left| d_{TV}(L(C[1,b]), L(Z[1,b])) - \frac{1}{2}(n+1)^{-1} \left| 1 - \theta \right| E \left| T_{0b} - ET_{0b} \right|$$

 $\leq \varepsilon_{[7,8]}(n,b),$

Where $\mathcal{E}_{\{7.8\}}(n,b) = O(n^{-1}b[n^{-1}b + n^{-\beta_{12}+\delta}])$ for any $\delta > 0$ under Conditions $(A_0), (D_1)$ and (B_{12}) , with β_{12} . The proof uses sharper estimates. As before, we begin with the formula

$$d_{TV}(L(C[1,b]), L(Z[1,b])) = \sum_{r \ge 0} P[T_{0b} = r] \left\{ 1 - \frac{P[T_{bn} = n - r]}{P[T_{0n} = n]} \right\}_{+}$$

Now we observe that

$$\begin{split} &\left|\sum_{r\geq0} P[T_{0b}=r] \left\{ 1 - \frac{P[T_{bn}=n-r]}{P[T_{0n}=n]} \right\}_{+} - \sum_{r=0}^{[n/2]} \frac{P[T_{0b}=r]}{P[T_{0n}=n]} \right| \\ &\times \left|\sum_{s=[n/2]+1}^{n} P[T_{0b}=s](P[T_{bn}=n-s] - P[T_{bn}=n-r])\right| \\ &\leq 4n^{-2} E T_{0b}^{2} + (\max_{n/2 < s \leq n} P[T_{0b}=s]) / P[T_{0n}=n] \\ &+ P[T_{0b} > n/2] \\ &\leq 8n^{-2} E T_{0b}^{2} + \frac{3\varepsilon_{\{10.5(2)\}}(n/2,b)}{\theta P_{\theta}[0,1]}, \end{split}$$
(1.1)

We have

ONLINE PEER REVIEWED JOURNAL International Journal of Computational Engeneering Research

חרת

$$\left|\sum_{r=0}^{[n/2]} \frac{P[T_{0b} = r]}{P[T_{0n} = n]} \times \left(\left\{\sum_{s=0}^{[n/2]} P[T_{0b} = s](P[T_{bn} = n - s] - P[T_{bn} = n - r]\right\}_{+} - \left\{\sum_{s=0}^{[n/2]} P[T_{0b} = s] \frac{(s - r)(1 - \theta)}{n + 1} P[T_{0n} = n]\right\}_{+}\right)\right|$$

$$\leq \frac{1}{n^{2} P[T_{0n} = n]} \sum_{r \geq 0} P[T_{0b} = r] \sum_{s \geq 0} P[T_{0b} = s] |s - r|$$

$$\times \left\{ \varepsilon_{\{10.14\}}(n, b) + 2(r \lor s) |1 - \theta| n^{-1} \left\{ K_{0}\theta + 4\phi_{\{10.8\}}^{*}(n) \right\} \right\}$$

$$\leq \frac{6}{\theta n P_{\theta}[0, 1]} E T_{0b} \varepsilon_{\{10.14\}}(n, b)$$

$$+ 4 |1 - \theta| n^{-2} E T_{0b}^{2} \left\{ K_{0}\theta + 4\phi_{\{10.8\}}^{*}(n) \right\}$$

$$(\frac{3}{\theta n P_{\theta}[0, 1]}) \right\}, \qquad (1.2)$$

The approximation in (1.2) is further simplified by noting that

$$\sum_{r=0}^{\lfloor n/2 \rfloor} P[T_{0b} = r] \left\{ \sum_{s=0}^{\lfloor n/2 \rfloor} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1} \right\}_{+}$$

$$- \left\{ \sum_{s=0} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1} \right\}_{+} |$$

$$\leq \sum_{r=0}^{\lfloor n/2 \rfloor} P[T_{0b} = r] \sum_{s > \lfloor n/2 \rfloor} P[T_{0b} = s] \frac{(s-r)|1-\theta|}{n+1}$$

$$\leq |1-\theta| n^{-1} E(T_{0b} | \{T_{0b} > n/2\}) \leq 2|1-\theta| n^{-2} ET_{0b}^{2}, \quad (1.3)$$

and then by observing that

$$\sum_{r>[n/2]} P[T_{0b} = r] \left\{ \sum_{s\geq 0} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1} \right\}$$

$$\leq n^{-1} |1-\theta| (ET_{0b}P[T_{0b} > n/2] + E(T_{0b}1\{T_{0b} > n/2\}))$$

$$\leq 4 |1-\theta| n^{-2} ET_{0b}^{2}$$
(1.4)

Combining the contributions of (1.2) - (1.3), we thus find that

$$\left| \begin{array}{l} d_{TV}(L(\ddot{C}[1,b]), L(\ddot{Z}[1,b])) \\ -(n+1)^{-1} \sum_{r \geq 0} P[T_{0b} = r] \left\{ \sum_{s \geq 0} P[T_{0b} = s](s-r)(1-\theta) \right\}_{+} \\ \leq \varepsilon_{[7,8]}(n,b) \\ = \frac{3}{\theta P_{\theta}[0,1]} \left\{ \varepsilon_{[10.5(2)]}(n/2,b) + 2n^{-1}ET_{0b}\varepsilon_{[10.14]}(n,b) \right\} \\ + 2n^{-2}ET_{0b}^{2} \left\{ 4 + 3\left|1-\theta\right| + \frac{24\left|1-\theta\right|\phi_{[10.8]}^{*}(n)}{\theta P_{\theta}[0,1]} \right\}$$
(1.5)

The quantity $\mathcal{E}_{\{7,8\}}(n,b)$ is seen to be of the order claimed under Conditions $(A_0), (D_1)$ and (B_{12}) , provided that $S(\infty) < \infty$; this supplementary condition can be removed if $\phi_{\{10,8\}}^*(n)$ is replaced by $\phi_{\{10,11\}}^*(n)$ in the definition of $\mathcal{E}_{\{7,8\}}(n,b)$, has the required order without the restriction on the r_i implied by assuming that $S(\infty) < \infty$. Finally, a direct calculation now shows that

$$\sum_{r \ge 0} P[T_{0b} = r] \left\{ \sum_{s \ge 0} P[T_{0b} = s](s - r)(1 - \theta) \right\}_{+}$$
$$= \frac{1}{2} |1 - \theta| E |T_{0b} - ET_{0b}|$$

Example 1.0. Consider the point $O = (0, ..., 0) \in \square^n$. For an arbitrary vector r, the coordinates of the point x = O + r are equal to the coordinates respective of the vector $r: x = (x^1, ..., x^n)$ and $r = (x^1, ..., x^n)$. The vector r such as in the example is called the position vector or the radius vector of the point x. (Or, in greater detail: r is the radius-vector of x w.r.t an origin O). Points are frequently specified by their radius-vectors. This presupposes the choice of O as the "standard origin". Let us summarize. We have considered \square^n and interpreted its elements in two ways: as points and as vectors. Hence we may say that we leading with the two copies of \square^n : $\square^n =$ $\square^n = \{\text{vectors}\}$ {points}, Operations with vectors: multiplication by a

number, addition. Operations with points and vectors: adding a vector to a point (giving a point), subtracting two points (giving a vector). \Box^{n} treated in this way is called an *n*-dimensional affine space. (An "abstract" affine space is a pair of sets, the set of points and the set of vectors so that the operations as above are defined axiomatically). Notice that vectors in an affine space are also known as "free vectors". Intuitively, they are not fixed at points and

"float freely" in space. From \Box^n considered as an affine space we can precede in two opposite directions: \Box^n as an Euclidean space $\Leftarrow \Box^n$ as an affine space $\Rightarrow \Box^n$ as a manifold.Going to the left means introducing some extra structure which will make the geometry richer. Going to the right means forgetting about part of the affine structure; going further in this direction will lead us to the so-called "smooth (or differentiable) manifolds". The theory of differential forms does not require any extra geometry. So our natural direction is to the right. The Euclidean structure, however, is useful for examples and applications. So let us say a few words about it:

Remark 1.0. Euclidean geometry. In \Box^n considered as an affine space we can already do a good deal of geometry. For example, we can consider lines and planes, and quadric surfaces like an ellipsoid. However, we cannot discuss such things as "lengths", "angles" or "areas" and "volumes". To be able to do so, we have to introduce some more definitions, making \Box^n a Euclidean space. Namely, we define the length of a

vector
$$a = (a^1, ..., a^n)$$
 to be
 $|a| := \sqrt{(a^1)^2 + ... + (a^n)^2}$ (1)

After that we can also define distances between points as follows:

$$d(A,B) := \left| \overrightarrow{AB} \right| \tag{2}$$

One can check that the distance so defined possesses natural properties that we expect: is it always nonnegative and equals zero only for coinciding points; the distance from A to B is the same as that from B to A (symmetry); also, for three points, A, B and C, we have $d(A,B) \le d(A,C) + d(C,B)$ (the "triangle inequality"). To define angles, we first introduce the scalar product of two vectors

$$(a,b) \coloneqq a^1 b^1 + \dots + a^n b^n \tag{3}$$

Thus $|a| = \sqrt{(a,a)}$. The scalar product is also denote by dot: a.b = (a,b), and hence is often referred to as the "dot product". Now, for nonzero vectors, we define the angle between them by the equality

$$\cos \alpha \coloneqq \frac{(a,b)}{|a||b|} \tag{4}$$

The angle itself is defined up to an integral multiple of 2π . For this definition to be consistent we have to ensure that the r.h.s. of (4) does not exceed 1 by the absolute value. This follows from the inequality

$$(a,b)^{2} \le |a|^{2} |b|^{2}$$
 (5)

known as the Cauchy–Bunyakovsky–Schwarz inequality (various combinations of these three names are applied in different books). One of the ways of proving (5) is to consider the scalar square of the linear combination a+tb, where $t \in R$. As $(a+tb, a+tb) \ge 0$ is a quadratic polynomial in twhich is never negative, its discriminant must be less or equal zero. Writing this explicitly yields (5). The triangle inequality for distances also follows from the inequality (5).

Example 1.1. Consider the function $f(x) = x^{i}$ (the i-th coordinate). The linear function dx^{i} (the differential of x^{i}) applied to an arbitrary vector h is simply h^{i} . From these examples follows that we can rewrite df as

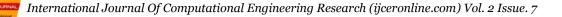
$$df = \frac{\partial f}{\partial x^1} dx^1 + \dots + \frac{\partial f}{\partial x^n} dx^n, \qquad (1)$$

which is the standard form. Once again: the partial derivatives in (1) are just the coefficients (depending on x); $dx^1, dx^2, ...$ are linear functions giving on an arbitrary vector h its coordinates $h^1, h^2, ...,$ respectively. Hence

$$df(x)(h) = \partial_{hf(x)} = \frac{\partial f}{\partial x^{1}}h^{1} + \dots + \frac{\partial f}{\partial x^{n}}h^{n}, \quad (2)$$

Theorem 1.7. Suppose we have a parametrized curve $t \mapsto x(t)$ passing through $x_0 \in \square^n$ at $t = t_0$ and with the velocity vector $x(t_0) = \upsilon$ Then $\frac{df(x(t))}{dt}(t_0) = \partial_{\upsilon} f(x_0) = df(x_0)(\upsilon)$ (1)

Proof. Indeed, consider a small increment of the parameter $t: t_0 \mapsto t_0 + \Delta t$, Where $\Delta t \mapsto 0$. On the other hand, we have $f(x_0 + h) - f(x_0) = df(x_0)(h) + \beta(h)|h|$ for an arbitrary vector h, where $\beta(h) \rightarrow 0$ when $h \rightarrow 0$. Combining it together, for the increment of f(x(t)) we obtain



$$f(x(t_0 + \Delta t) - f(x_0))$$

= $df(x_0)(\upsilon.\Delta t + \alpha(\Delta t)\Delta t)$
+ $\beta(\upsilon.\Delta t + \alpha(\Delta t)\Delta t).|\upsilon\Delta t + \alpha(\Delta t)\Delta t|$
= $df(x_0)(\upsilon).\Delta t + \gamma(\Delta t)\Delta t$

For a certain $\gamma(\Delta t)$ such that $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$ (we used the linearity of $df(x_0)$). By the definition, this means that the derivative of f(x(t)) at $t = t_0$ is exactly $df(x_0)(\upsilon)$. The statement of the theorem can be expressed by a simple formula:

$$\frac{df(x(t))}{dt} = \frac{\partial f}{\partial x^1} x^1 + \dots + \frac{\partial f}{\partial x^n} x^n$$
(2)

To calculate the value Of df at a point x_0 on a given vector v one can take an arbitrary curve passing Through x_0 at t_0 with v as the velocity vector at t_0 and calculate the usual derivative of f(x(t)) at $t = t_0$.

Theorem 1.8. For functions $f, g: U \to \Box$, $U \subset \Box^n$,

$$d(f+g) = df + dg$$
(1)
$$d(fg) = df \cdot g + f \cdot dg$$
(2)

Proof. Consider an arbitrary point x_0 and an arbitrary vector υ stretching from it. Let a curve x(t) be such that $x(t_0) = x_0$ and $x(t_0) = \upsilon$. Hence

$$d(f+g)(x_0)(v) = \frac{d}{dt}(f(x(t)) + g(x(t)))$$

at $t = t_0$ and

$$d(fg)(x_0)(\upsilon) = \frac{d}{dt}(f(x(t))g(x(t)))$$

at $t = t_0$ Formulae (1) and (2) then immediately follow from the corresponding formulae for the usual derivative Now, almost without change the theory generalizes to functions taking values in \square^m instead of \square . The only difference is that now the differential of a map $F: U \to \square^m$ at a point x will be a linear function taking vectors in \square^n to vectors in \square^m (instead of \square). For an arbitrary vector $h \in |\square^n$,

$$F(x+h) = F(x) + dF(x)(h) + \beta(h)|h|$$
(3)

Where $\beta(h) \rightarrow 0$ when $h \rightarrow 0$. We have $dF = (dF^1, ..., dF^m)$ and

$$dF = \frac{\partial F}{\partial x^{1}} dx^{1} + \dots + \frac{\partial F}{\partial x^{n}} dx^{n}$$
$$= \begin{pmatrix} \frac{\partial F^{1}}{\partial x^{1}} \dots \frac{\partial F^{1}}{\partial x^{n}} \\ \dots & \dots & \dots \\ \frac{\partial F^{m}}{\partial x^{1}} \dots \frac{\partial F^{m}}{\partial x^{n}} \end{pmatrix} \begin{pmatrix} dx^{1} \\ \dots \\ dx^{n} \end{pmatrix}$$
(4)

In this matrix notation we have to write vectors as vector-columns.

Theorem 1.9. For an arbitrary parametrized curve x(t) in \Box^n , the differential of a map $F: U \to \Box^m$ (where $U \subset \Box^n$) maps the velocity vector x(t) to the velocity vector of the curve F(x(t)) in \Box^m : $\frac{dF(x(t))}{dt} = dF(x(t))(\dot{x}(t)) \qquad (1)$

Proof. By the definition of the velocity vector,

$$x(t + \Delta t) = x(t) + x(t).\Delta t + \alpha(\Delta t)\Delta t$$
(2)

Where $\alpha(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$. By the definition of the differential,

$$F(x+h) = F(x) + dF(x)(h) + \beta(h) \left| h \right|$$
(3)

Where $\beta(h) \rightarrow 0$ when $h \rightarrow 0$. we obtain

$$F(x(t + \Delta t)) = F(x + \underbrace{x(t) \Delta t + \alpha(\Delta t)\Delta t}_{h})$$

= $F(x) + dF(x)(x(t)\Delta t + \alpha(\Delta t)\Delta t) +$
 $\beta(x(t)\Delta t + \alpha(\Delta t)\Delta t) \cdot \left| x(t)\Delta t + \alpha(\Delta t)\Delta t \right|$
= $F(x) + dF(x)(x(t)\Delta t + \gamma(\Delta t)\Delta t)$

For some $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$. This precisely means that dF(x)x(t) is the velocity vector of F(x). As every vector attached to a point can be viewed as the velocity vector of some curve

passing through this point, this theorem gives a clear geometric picture of dF as a linear map on vectors.

Theorem 1.10 Suppose we have two maps $F: U \to V$ and $G: V \to W$, where $U \subset \square^n, V \subset \square^m, W \subset \square^p$ (open domains). Let $F: x \mapsto y = F(x)$. Then the differential of the composite map $GoF: U \to W$ is the composition of the differentials of F and G:d(GoF)(x) = dG(y)odF(x) (4)

Proof. We can use the description of the differential .Consider a curve x(t) in \Box^n with the

velocity vector x. Basically, we need to know to which vector in \Box^p it is taken by d(GoF). the curve (GoF)(x(t) = G(F(x(t))). By the same theorem, it equals the image under dG of the Anycast Flow vector to the curve F(x(t)) in \Box^m . Applying the theorem once again, we see that the velocity vector to the curve F(x(t)) is the image under dF of the vector x(t). Hence d(GoF)(x) = dG(dF(x)) for an arbitrary vector x.

Corollary 1.0. If we denote coordinates in \Box^n by $(x^1, ..., x^n)$ and in \Box^m by $(y^1, ..., y^m)$, and write $dF = \frac{\partial F}{\partial x^1} dx^1 + ... + \frac{\partial F}{\partial x^n} dx^n$ (1)

$$dG = \frac{\partial G}{\partial y^1} dy^1 + \dots + \frac{\partial G}{\partial y^n} dy^n, \qquad (2)$$

Then the chain rule can be expressed as follows: $d(C_0 E) = \frac{\partial G}{\partial E^1} + \frac{\partial G}{\partial E^m} = (3)$

$$d(GoF) = \frac{\partial y^{1}}{\partial y^{1}} dF^{i} + \dots + \frac{\partial y^{m}}{\partial y^{m}} dF^{m}, \qquad (3)$$

Where dF^{i} are taken from (1). In other words, to

get d(GoF) we have to substitute into (2) the expression for $dy^i = dF^i$ from (3). This can also be expressed by the following matrix formula:

$$d(GoF) = \begin{pmatrix} \frac{\partial G^{1}}{\partial y^{1}} \cdots \frac{\partial G^{1}}{\partial y^{m}} \\ \cdots & \cdots & \cdots \\ \frac{\partial G^{p}}{\partial y^{1}} \cdots \frac{\partial G^{p}}{\partial y^{m}} \end{pmatrix} \begin{pmatrix} \frac{\partial F^{1}}{\partial x^{1}} \cdots \frac{\partial F^{1}}{\partial x^{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial F^{m}}{\partial x^{1}} \cdots \frac{\partial F^{m}}{\partial x^{n}} \end{pmatrix} \begin{pmatrix} dx^{1} \\ \cdots \\ dx^{n} \end{pmatrix}$$
(4)

i.e., if dG and dF are expressed by matrices of partial derivatives, then d(GoF) is expressed by the product of these matrices. This is often written as

$$\begin{pmatrix} \frac{\partial z^{1}}{\partial x^{1}} \cdots \frac{\partial z^{1}}{\partial x^{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial z^{p}}{\partial x^{1}} \cdots \frac{\partial z^{p}}{\partial x^{n}} \end{pmatrix} = \begin{pmatrix} \frac{\partial z^{1}}{\partial y^{1}} \cdots \frac{\partial z^{1}}{\partial y^{m}} \\ \cdots & \cdots & \cdots \\ \frac{\partial z^{p}}{\partial x^{1}} \cdots \frac{\partial y^{1}}{\partial x^{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial y^{m}}{\partial x^{1}} \cdots \frac{\partial y^{m}}{\partial x^{n}} \end{pmatrix}, \quad (5)$$
Or
$$\frac{\partial z^{\mu}}{\partial x^{a}} = \sum_{i=1}^{m} \frac{\partial z^{\mu}}{\partial y^{i}} \frac{\partial y^{i}}{\partial x^{a}},$$

Where it is assumed that the dependence of $y \in \square^m$ on $x \in \square^n$ is given by the map F, the dependence of $z \in \square^p$ on $y \in \square^m$ is given by the map G, and the dependence of $z \in \square^p$ on $x \in \square^n$ is given by the composition GoF.

(6)

Definition 1.6. Consider an open domain $U \subset \square^n$. . Consider also another copy of \square^n , denoted for distinction \square_y^n , with the standard coordinates $(y^1...y^n)$. A system of coordinates in the open domain U is given by a map $F: V \to U$, where $V \subset \square_y^n$ is an open domain of \square_y^n , such that the following three conditions are satisfied :

- (1) F is smooth;
- (2) F is invertible;
- (3) $F^{-1}: U \to V$ is also smooth

The coordinates of a point $x \in U$ in this system are the standard coordinates of $F^{-1}(x) \in \Box_y^n$

In other words,

$$F:(y^{1}..., y^{n}) \mapsto x = x(y^{1}..., y^{n})$$
 (1)

Here the variables $(y^1..., y^n)$ are the "new" coordinates of the point x

Example 1.2. Consider a curve in \square^2 specified in polar coordinates as

 $x(t): r = r(t), \varphi = \varphi(t)$ (1) We can simply use the chain rule. The map $t \mapsto x(t)$ can be considered as the composition of

the maps $t \mapsto (r(t), \varphi(t)), (r, \varphi) \mapsto x(r, \varphi)$. Then, by the chain rule, we have

$$x = \frac{dx}{dt} = \frac{\partial x}{\partial r}\frac{dr}{dt} + \frac{\partial x}{\partial \varphi}\frac{d\varphi}{dt} = \frac{\partial x}{\partial r}r + \frac{\partial x}{\partial \varphi}\frac{d\varphi}{\partial \varphi}$$
(2)

Here r and φ are scalar coefficients depending on t, whence the partial derivatives $\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi}$ are vectors depending on point in \Box^2 . We can compare this with the formula in the "standard" coordinates:

$$x = e_1 x + e_2 y \quad \text{Consider the vectors}$$

$$\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi} \text{. Explicitly we have}$$

$$\frac{\partial x}{\partial r} = (\cos \varphi, \sin \varphi) \quad (3)$$

$$\frac{\partial x}{\partial \varphi} = (-r \sin \varphi, r \cos \varphi) \quad (4)$$

From where it follows that these vectors make a basis at all points except for the origin (where r=0). It is instructive to sketch a picture, drawing vectors corresponding to a point as starting from that point. Notice that $\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi}$ are, respectively, the velocity vectors for the curves $r \mapsto x(r,\varphi)$ ($\varphi = \varphi_0$ fixed) and $\varphi \mapsto x(r,\varphi)$ ($r = r_0$ fixed). We can conclude that for an arbitrary curve given in polar coordinates the velocity vector will have components (r,φ) if

as a basis we take $e_r := \frac{\partial x}{\partial r}, e_{\varphi} := \frac{\partial x}{\partial \varphi}$: $x = e_r r + e_{\varphi} \varphi$ (5)

A characteristic feature of the basis e_r, e_{φ} is that it is not "constant" but depends on point. Vectors "stuck to points" when we consider curvilinear coordinates.

Proposition 1.3. The velocity vector has the same appearance in all coordinate systems.

Proof. Follows directly from the chain rule and the transformation law for the basis e_i . In particular, the elements of the basis $e_i = \frac{\partial x}{\partial x^i}$ (originally, a

formal notation) can be understood directly as the velocity vectors of the coordinate lines $x^i \mapsto x(x^1, ..., x^n)$ (all coordinates but x^i are fixed). Since we now know how to handle velocities in arbitrary coordinates, the best way to treat the differential of a map $F : \square^n \to \square^m$ is by its action on the velocity vectors. By definition, we set

$$dF(x_0):\frac{dx(t)}{dt}(t_0)\mapsto\frac{dF(x(t))}{dt}(t_0) \tag{1}$$

Now $dF(x_0)$ is a linear map that takes vectors attached to a point $x_0 \in \square^n$ to vectors attached to the point $F(x) \in \square^m$

$$dF = \frac{\partial F}{\partial x^{1}} dx^{1} + \dots + \frac{\partial F}{\partial x^{n}} dx^{n}$$

$$(e_{1}, \dots, e_{m}) \begin{pmatrix} \frac{\partial F^{1}}{\partial x^{1}} \dots \frac{\partial F^{1}}{\partial x^{n}} \\ \dots & \dots & \dots \\ \frac{\partial F^{m}}{\partial x^{1}} \dots \frac{\partial F^{m}}{\partial x^{n}} \end{pmatrix} \begin{pmatrix} dx^{1} \\ \dots \\ dx^{n} \end{pmatrix}, \qquad (2)$$

In particular, for the differential of a function we always have

$$df = \frac{\partial f}{\partial x^1} dx^1 + \dots + \frac{\partial f}{\partial x^n} dx^n, \qquad (3)$$

Where x^{i} are arbitrary coordinates. The form of the differential does not change when we perform a change of coordinates.

Example 1.3 Consider a 1-form in \square^2 given in the standard coordinates:

A = -ydx + xdy In the polar coordinates we will have $x = r \cos \varphi$, $y = r \sin \varphi$, hence $dx = \cos \varphi dr - r \sin \varphi d\varphi$ $dy = \sin \varphi dr + r \cos \varphi d\varphi$ Substituting into A, we get $A = -r \sin \varphi (\cos \varphi dr - r \sin \varphi d\varphi)$ $+r \cos \varphi (\sin \varphi dr + r \cos \varphi d\varphi)$ $= r^2 (\sin^2 \varphi + \cos^2 \varphi) d\varphi = r^2 d\varphi$

Hence $A = r^2 d\varphi$ is the formula for A in the polar coordinates. In particular, we see that this is again a 1-form, a linear combination of the differentials of coordinates with functions as coefficients. Secondly, in a more conceptual way, we can define a 1-form in a domain U as a linear

function on vectors at every point of U: $\omega(\upsilon) = \omega_1 \upsilon^1 + ... + \omega_n \upsilon^n$, (1) If $\upsilon = \sum e_i \upsilon^i$, where $e_i = \frac{\partial x}{\partial x^i}$. Recall that the differentials of functions were defined as linear functions on vectors (at every point), and $dx^i(e_j) = dx^i \left(\frac{\partial x}{\partial x^j}\right) = \delta_j^i$ (2) at

every point x.

Theorem 1.9. For arbitrary 1-form ω and path γ , the integral $\int_{\gamma} \omega$ does not change if we change parametrization of γ provide the orientation remains the same.

Proof: Consider
$$\left\langle \omega(x(t)), \frac{dx}{dt} \right\rangle$$
 and
 $\left\langle \omega(x(t(t'))), \frac{dx}{dt} \right\rangle$ As
 $\left\langle \omega(x(t(t'))), \frac{dx}{dt} \right\rangle = \left| \left\langle \omega(x(t(t'))), \frac{dx}{dt} \right\rangle \cdot \frac{dt}{dt} \right\rangle$

Let p be a rational prime and let $K = \Box (\zeta_p)$. We write ζ for ζ_p or this section. Recall that K has degree $\varphi(p) = p - 1$ over \Box . We wish to show that $O_K = \Box [\zeta]$. Note that ζ is a root of $x^p - 1$, and thus is an algebraic integer; since O_K is a ring we have that $\Box [\zeta] \subseteq O_K$. We give a proof without assuming unique factorization of ideals. We begin with some norm and trace computations. Let j be an integer. If j is not divisible by p, then ζ^j is a primitive p^{th} root of unity, and thus its conjugates are $\zeta, \zeta^2, ..., \zeta^{p-1}$. Therefore

$$Tr_{K/2}(\zeta^{j}) = \zeta + \zeta^{2} + \dots + \zeta^{p-1} = \Phi_{p}(\zeta) - 1 = -1$$

If p does divide j, then $\zeta^{j} = 1$, so it has only the one conjugate 1, and $Tr_{K/\Box}(\zeta^{j}) = p-1$ By linearity of the trace, we find that

$$Tr_{K/\Box} (1-\zeta) = Tr_{K/\Box} (1-\zeta^2) = \dots$$
$$= Tr_{K/\Box} (1-\zeta^{p-1}) = p$$

We also need to compute the norm of $1-\zeta$. For this, we use the factorization

$$x^{p-1} + x^{p-2} + \dots + 1 = \Phi_p(x)$$

= $(x - \zeta)(x - \zeta^2) \dots (x - \zeta^{p-1});$
ng in $x = 1$ shows that

Plugging in x = 1 shows that

 $p = (1 - \zeta)(1 - \zeta^2) \dots (1 - \zeta^{p-1})$

Since the $(1-\zeta^{j})$ are the conjugates of $(1-\zeta)$, this shows that $N_{K/\Box}(1-\zeta) = p$ The key result for determining the ring of integers O_{K} is the following.

LEMMA 1.9

$$(1-\zeta)O_{K}\cap\Box=p\Box$$

Proof. We saw above that p is a multiple of $(1-\zeta)$ in O_{κ} , so the inclusion $(1-\zeta)O_{\kappa} \cap \Box \supseteq p\Box$ is immediate. Suppose now that the inclusion is strict. Since $(1-\zeta)O_{\kappa}\cap\square$ is an ideal of \square containing $p\square$ and $p\Box$ is a maximal ideal of \Box , we must have $(1-\zeta)O_{\kappa}\cap\Box=\Box$ Thus we can write $1 = \alpha(1 - \zeta)$

For some $\alpha \in O_K$. That is, $1-\zeta$ is a unit in O_K .

COROLLARY 1.1 For any $\alpha \in O_K$, $Tr_{K/\Box} ((1-\zeta)\alpha) \in p \Box$ PROOF. We have

$$Tr_{K/\Box} ((1-\zeta)\alpha) = \sigma_1 ((1-\zeta)\alpha) + \dots + \sigma_{p-1} ((1-\zeta)\alpha)$$

= $\sigma_1 (1-\zeta)\sigma_1 (\alpha) + \dots + \sigma_{p-1} (1-\zeta)\sigma_{p-1} (\alpha)$
= $(1-\zeta)\sigma_1 (\alpha) + \dots + (1-\zeta^{p-1})\sigma_{p-1} (\alpha)$

Where the σ_i are the complex embeddings of K(which we are really viewing as automorphisms of K) with the usual ordering. Furthermore, $1-\zeta^j$ is a multiple of $1-\zeta$ in O_K for every $j \neq 0$. Thus

 $Tr_{K/\square}(\alpha(1-\zeta)) \in (1-\zeta)O_K$ Since the trace is also a rational integer.

PROPOSITION 1.4 Let p be a prime number and let $K = |\Box (\zeta_p)$ be the p^{th} cyclotomic field. Then $O_K = \Box [\zeta_p] \cong \Box [x] / (\Phi_p(x));$ Thus $1, \zeta_p, ..., \zeta_p^{p-2}$ is an integral basis for O_K .

PROOF. Let $\alpha \in O_K$ and write

 $\alpha = a_0 + a_1 \zeta + ... + a_{p-2} \zeta^{p-2}$ Then

$$\alpha(1-\zeta) = a_0(1-\zeta) + a_1(\zeta-\zeta^2) + \dots + a_{p-2}(\zeta^{p-2}-\zeta^{p-1})$$

With $a_i \in \Box$.

By the linearity of the trace and our above calculations we find that $Tr_{K/\Box} (\alpha(1-\zeta)) = pa_0$ We also have

 $Tr_{K/\Box} (\alpha(1-\zeta)) \in p\Box$, so $a_0 \in \Box$ Next consider the algebraic integer

 $(\alpha - a_0)\zeta^{-1} = a_1 + a_2\zeta + ... + a_{p-2}\zeta^{p-3}$; This is an algebraic integer since $\zeta^{-1} = \zeta^{p-1}$ is. The same argument as above shows that $a_1 \in \Box$, and continuing in this way we find that all of the a_i are in \Box . This completes the proof.

Let $K = \Box$, then the local ring Example 1.4 $\square_{(n)}$ is simply the subring of \square of rational numbers with denominator relatively prime to p. Note that this ring $\Box_{(p)}$ is not the ring \Box_p of padic integers; to get \square_p one must complete $\square_{(p)}$. The usefulness of $O_{K,p}$ comes from the fact that it has a particularly simple ideal structure. Let a be any proper ideal of $O_{K,p}$ and consider the ideal $a \cap O_K$ of O_K . We claim that $a = (a \cap O_{\kappa})O_{\kappa_n}$; That is, that a is generated by the elements of a in $a \cap O_{\kappa}$. It is clear from the definition of an ideal that $a \supseteq (a \cap O_K) O_{K,p}$. To prove the other inclusion, let α be any element of *a*. Then we can write $\alpha = \beta / \gamma$ where $\beta \in O_{K}$ and $\gamma \notin p$. In particular, $\beta \in a$ (since $\beta / \gamma \in a$ and a is an ideal), so $\beta \in O_{\kappa}$ and $\gamma \notin p$. so $\beta \in a \cap O_K$. Since $1/\gamma \in O_{K_n}$, this implies that $\alpha = \beta / \gamma \in (\alpha \cap O_K)O_{K,p}$, as claimed.We can use this fact to determine all of the ideals of $O_{K,p}$. Let *a* be any ideal of $O_{K,p}$ and consider the ideal factorization of $a \cap O_{K}$ in O_{K} . write it as $a \cap O_{\kappa} = p^{n}b$ For some *n* and some ideal b, relatively prime to p. we claim first that $bO_{K,p} = O_{K,p}$. We now find that

$$a = (a \cap O_K)O_{K,p} = p^n bO_{K,p} = p^n O_{K,p}$$

Since $bO_{K,p}$. Thus every ideal of $O_{K,p}$ has the

form $p^n O_{K_n}$ for some *n*; it follows immediately that $O_{K,p}$ is noetherian. It is also now clear that $p^n O_{K,n}$ is the unique non-zero prime ideal in $O_{K,n}$. Furthermore, the inclusion $O_K \mapsto O_{K,p} / pO_{K,p}$ Since $pO_{K,p} \cap O_K = p$, this map is also surjection, since the residue class of $\alpha / \beta \in O_{K,p}$ (with $\alpha \in O_{\kappa}$ and $\beta \notin p$) is the image of $\alpha \beta^{-1}$ in $O_{K/n}$, which makes sense since β is invertible in $O_{K/p}$. Thus the map is an isomorphism. In particular, it is now abundantly clear that every nonzero prime ideal of $O_{K,p}$ is maximal. To show that $O_{K,p}$ is a Dedekind domain, it remains to show that it is integrally closed in K. So let $\gamma \in K$ be a root of a polynomial with coefficients in $O_{K,p}$; write this polynomial as $x^m + \frac{\alpha_{m-1}}{\beta_{m-1}} x^{m-1} + \ldots + \frac{\alpha_0}{\beta_0}$ With $\alpha_i \in O_K$ and $\beta_i \in O_{K-p}$. Set $\beta = \beta_0 \beta_1 \dots \beta_{m-1}$. Multiplying by β^m we find that $\beta\gamma$ is the root of a monic polynomial with coefficients in O_{κ} . Thus $\beta \gamma \in O_{\kappa};$ $\beta \notin p$, since we have $\beta \gamma / \beta = \gamma \in O_{K,p}$. Thus $O_{K,p}$ is integrally close in K.

COROLLARY 1.2. Let K be a number field of degree n and let α be in O_K then $N_{K/\Box}^{'}(\alpha O_K) = |N_{K/\Box}(\alpha)|$

PROOF. We assume a bit more Galois theory than usual for this proof. Assume first that K/\Box is Galois. Let σ be an element of $Gal(K/\Box)$. It is $\sigma(O_{K}) / \sigma(\alpha) \cong O_{K/\alpha};$ clear that since $\sigma(O_{\kappa}) = O_{\kappa},$ this shows that $N_{K} (\sigma(\alpha) O_{K}) = N_{K} (\alpha O_{K})$. Taking the product over all $\sigma \in Gal(K/\Box)$, we have $N_{K/\Gamma} (N_{K/\Gamma} (\alpha) O_K) = N_{K/\Gamma} (\alpha O_K)^n$ Since $N_{K/\square}(\alpha)$ is a rational integer and O_K is a free \square -module of rank *n*,

 $O_{_K} / N_{_{K/\!\square}} (\alpha) O_{_K}$ Will have order $N_{_{K/\!\square}} (\alpha)^n$; therefore

$$N_{K/\Box} (N_{K/\Box} (\alpha) O_K) = N_{K/\Box} (\alpha O_K)^n$$

This completes the proof. In the general case, let L be the Galois closure of K and set [L:K] = m.

D. Feature Extraction: Preprocessing EMG Signals

The EMG signals detected by the electrodes are absolute value which is proportional to the muscle contraction level. When the operator's arm is relaxed, the signals' value is nearly zero and changes in the range of 0.01 V. The signals will be sampled by the A/D converter and the sampling frequency of each channel is 2000 Hz.

E. Feature Extraction: Processing EMG Signals

To recognize the beginning of the operator's motions, an upping-edge threshold is specified. When the change of EMG signals between 50 milliseconds exceed the prespecified motion-appearance threshold, the motion is regarded as having been initiated. And then signals in the next 200 milliseconds will be sampled as the motion input vector for processing. In order to overcome the unstable problem, the threshold can not be very small. However, if it is too big, the detecting sensitivity will decrease and valid signals may be lost. So, the threshold value is determined based on the maximum amplitude of the EMG signals. The upping-edge threshold value is specified by the following formulas:

Threshold value = Maximum EMG value 0.1

The sampled raw EMG signals can be represented in various forms or parameters by using different signal processing methods. The algorithms used in this paper are AR parametric model, wavelet transform and integral of EMG signals which will be described below. Integral of EMG is an estimation of the summation of absolute values of the EMG signals [14]. It can be used as the motor speed control signal for the driven finger. For the 2000 Hz sampling frequency and the 200 ms sampling time, N is equal to 400. AR parametric model is a kind of linear prediction. In a short time period, the EMG signals can be regarded as a stationary Gaussian process and can be represented by an AR model. The benefits of the AR parametric model are that the EMG signals can be represented by model parameters without the original waveform data. Hence, the amount of data can be enormously reduced and the specific features of signals can be reinforced. An AR model is defined by where EMG(n) is the nth output of AR model and EMG(nk) is the (n-k)th sampling data of N samples of EMG raw data. Ak (k = 1, 2, ..., P) is the AR model parameter and e(n) is the white noise signal. P is the order of AR model. The previous research [7] has shown that a fourth-order AR model is adequate for AR time series modeling of EMG signal, so an AR model contains four feature components. For three electrodes, one motion

feature vector which contains twelve AR parameters can be acquired. The motion feature vector will be used in feature classification stage. Wavelet transform is a powerful time-frequency method for non-stationary signal analysis. It can decompose signals into different scales and provide more information in time and frequency domain, thus emphasis the differences among signals and help to improve the classification accuracy. Wavelet transform is considered to be superior to FFT in getting multi-resolution analysis. Discrete wavelet transform with Mallat algorithm [23] is used to decompose a signal at various resolutions [24]. According to Englehart [25], Coiflet 4 shows better property in analyzing EMG signals, and in this paper we also take such wavelet. Four levels' decomposition of the signal was performed using algorithm. cAn (n = 1, 2, 3, 4) is low-frequency components of the signals, often called approximations. cDn is the high-frequency components, called details. At each level, we retained only one parameter from cDn according to the method of singular value decomposition (SVD) which can compress cDn to one feature vector. Thus from 3-channel surface electrode signals of each motion, 12 parameters were extracted, which will be used in feature classification stage, too.

F. Feature Classification

For discriminating the EMG patterns among feature vectors, a three-layer feedforward neural network is applied to the EMG features. Multi-layer neural networks have been successfully applied to some difficult and nonlinear problems in diverse domains. BPN were frequently used in previous research for EMG pattern recognition. Generally, the speed of training feedforward neural networks is very slow, especially for the common back propagation learning algorithm. There is considerable research on methods to accelerate the convergence of the algorithm. The research can be roughly divided into two categories. The first category involves the development of ad hoc techniques, such as variable learning rate, using momentum and rescaling variables. Another category of research has focused on standard numerical optimization techniques, such as conjugate gradient, quasi-Newton methods and nonlinear least squares. The method used in this paper is the VLR algorithm. Detailed information about this method can be found in Ref. [26]. The structure of the three-layer feedforward network applied to EMG pattern recognition is that the number of nodes for the input layer is 12 (twelve AR parameters or wavelet parameters), and the number of nodes for the output layer is 6, corresponding to three fingers' flexion/extension motion. The number of nodes for the hidden layer is decided by the experiments, not more than 30 units.

G. Hand Motion Control

The motion of the hand is determined and controlled based on the outputs of neural network, which indicates the operator's corresponding intended motions. It is executed by the motion determination part. The motion judgment rule is the maximum value of the output layer will be the recognition result, corresponding to one finger motion. The result as control signals will be sent to the motor controller. Concretely, the output layer of the network in this paper has 6 nodes, corresponding to the flexion/extension motion of the thumb, the index finger and the middle finger. The max value of the 6 nodes will be the recognition result, so only one finger motion will be controlled in each time. If you want to control more fingers, you need to continuously flex or extend corresponding fingers respectively, not at the same time. For example, continuously controlling the flexion motion of the thumb, the index finger and the middle finger, the corresponding prosthetic hand finger will move in sequence, thus we can achieve power grasp. The time delay between two contiguous motions (or control signals) is about 300 milliseconds. The driving speed is controlled proportionally to the force level. It is calculated as where Vmax is the maximum speed of the driving motor. The communication between DSP embedded in the palm and PC is via serial interface.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the system performance, we conducted experiments with the developed prosthetic hand system on one normal subject who has enough EMG control experience. We performed experiments to test the speed of the VLR algorithm BPN. And next, we performed experiments to compare the recognition capability of the network, which use different feature vectors as input vectors. The different feature vectors are 12 AR parameters and 12 wavelet parameters for each motion. In this experiment, we want to find a better EMG feature vector for the prosthetic system. In the last place, we performed experiments to control the prosthetic hand to achieve more prehensile postures.

A. Effect of Network Learning

In this experiment, a data set is used to test the training speed of the network using the VLR algorithm. The data set which comes from the normal subjects is selected randomly and contains 36 feature vectors (6 feature vectors for each finger motion). The network has 12 nodes in the input layers, 25 and 30 nodes in the hidden layers and 6 nodes in the output layers. The error goal of the network learning is 10-6 (the square sum of the output errors). For the VLR algorithm, we use 0.5 as the initial learning rate with 0.96 and 1.02 as the adjust parameter. The VLR algorithm can easily converge and the training speed of the VLR algorithm is very fast.

B. Recognition Capability of the Hand Motions

In this experiment, different feature vectors are compared for finding a better EMG feature vector of the prosthetic hand system. The initial values of the network weights are same for different feature vectors and the error goal of the network learning is 10-6. The hand motions, are the thumb flexion/extension motion (TF/TE), the index finger flexion/extension motion (IF/IE) and the middle finger flexion/extension motion (MF/ME). In the experiment, the normal subject will perform six motions for 96 times (repeating each motion 16 times, 6 for training, and 10 for testing). In order to compare two feature extraction methods, the raw EMG data will be saved and processed by AR model and wavelet transform. The nodes of hidden layer are 25 and 30. It should be noticed that the increasing nodes of hidden layer result in the decreasing of recognition ability. In this experiment, wavelet parameter feature vector has better recognition ability than AR parameter in the 25 nodes hidden layer network. The final result showed that all the different feature vectors can acquire high recognition capability. In the mass, the method of using the wavelet parameter feature vector and VLR based network (25 nodes in hidden layer) has better recognition ability.

C. More Prehensile Postures

Depending on the high recognition ability, we can control the five-fingered underactuated prosthetic hand to achieve more prehensile postures. Continuously controlling the flexion motion of the thumb, the index finger and the middle finger (in arbitrary sequences), we can achieve power grasp. Similarly, continuously controlling the flexion motion of the thumb and the index finger (in arbitrary sequences), we can achieve fingertip grasp. Via continuously controlling single finger's flexion motion, centralized grip and cylindrical grasp can be achieved, too. The five-fingered underactuated prosthetic hand, using automatic shape adaptation theory and power grasp method to grasp a glass.

V. CONCLUSION

This paper proposed and developed a new five-fingered underactuated prosthetic hand system based on the EMG signals. The feature of our system is that it uses a VLR based neural network with AR and wavelet parameter to discriminate the EMG patterns. We conducted experiments using the developed system for one normal subject. The experimental results showed that using wavelet parameter and VLR based neural network has high recognition ability and fast learning speed, even for several samples of each motion. Based on the high accuracy, the operators can control the prosthetic hand to achieve more prehensile postures such as power grasp, centralized grip, fingertip grasp, cylindrical grasp, etc. In our future research, we would like to develop a portable system and the algorithm will be implemented in the DSP which is embedded in the prosthetic hand palm.

A. Authors and Affiliations

Dr Akash Singh is working with IBM Corporation as an IT Architect and has been designing Mission Critical System and Service Solutions; He has published papers in IEEE and other International Conferences and Journals.

He joined IBM in Jul 2003 as a IT Architect which conducts research and design of High Performance Smart Grid Services and Systems and design mission critical architecture for High Performance Computing Platform and Computational Intelligence and High Speed Communication systems. He is a member of IEEE (Institute for Electrical and Electronics Engineers), the AAAI (Association for the Advancement of Artificial Intelligence) and the AACR (American Association for Cancer Research). He is the recipient of numerous awards from World Congress in Computer Science, Computer Engineering and Applied Computing 2010, 2011, and IP Multimedia System 2008 and Billing and Roaming 2008. He is active research in the field of Artificial Intelligence and advancement in Medical Systems. He is in Industry for 18 Years where he performed various role to provide the Leadership in Information Technology and Cutting edge Technology.

REFERENCES

- X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, "A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems," J. Peripher. Nerv. Syst., vol. 10, pp. 229–258, Sep 2005.
- [2] G. R. M^{*}uller-Putz, R. Scherer, G. Pfurtscheller, and R. Rupp, "EEGbased neuroprosthesis control: a step towards clinical practice," Neurosci Lett, vol. 382, no. 1-2, pp. 169–174, 2005.
- [3] M. A. Nicolelis, "Actions from thoughts," Nature, vol. 409, pp. 403–407, Jan 2001.
- [4] A. B. Schwartz, "Cortical neural prosthetics," Annu Rev Neurosci, vol. 27, pp. 487–507, 2004.
- [5] G. S. Dhillon, T. B. Krger, J. S. Sandhu, and K. W. Horch, "Effects of short-term training on sensory and motor function in severed nerves of long-term human amputees," J Neurophysiol, vol. 93, pp. 2625–2633, May 2005.
- [6] S. Micera, J. Carpaneto, M. Umilt`a, M. Rochat, L. Escola, V. Gallese, M. Carrozza,

J. Krueger, G. Rizzolatti, and P. Dario, "Preliminary analysis of multi-channel recordings for the development of a highlevel cortical neural prosthesis," in 2nd IEEE Int. Conf. Neural Eng. (NER 2005), pp. 136–139, 2005.

- [7] S. Micera, M. Carrozza, L. Beccai, F. Vecchi, and P. Dario, "Hybrid bionic systems for the replacement of hand function." Unpublished, 2005.
- [8] M. Zecca, S. Micera, M. Carrozza, and P. Dario, "Control of multifunctional prosthetic hands by processing the electromyographic signal," Crit Rev Biomed Eng, vol. 30, no. 4-6, pp. 459–485, 2002.
- [9] S. Roccella, M. Carrozza, G. Cappiello, P. Dario, J. Cabibihan, M. Zecca, H. Miwa, K. Itoh, and M. Marsumoto, "Design, fabrication and preliminary results of a novel anthropomorphic hand for humanoid robotics: Rch-1," in IEEE/RSJ IROS Inter. Conf., vol. 1, pp. 266–271 vol.1, 2004.
- [10] T. Elbert, A. Sterr, H. Flor, B. Rockstroh, S. Knecht, C. Pantev, C. Wienbruch, and E. Taub, "Input-increase and input-decrease types of cortical reorganization after upper extremity amputation in humans," Exp Brain Res, vol. 117, pp. 161–164, Oct 1997.
- [11] G. L. Widener and P. D. Cheney, "Effects on muscle activity from microstimuli applied to somatosensory and motor cortex during voluntary movement in the monkey," J Neurophysiol, vol. 77, pp. 2446–65, May 1997.
- [12] M. Tarler and J. Mortimer, "Selective and independent activation of four motor fascicles using a four contact nerve-cuff electrode," IEEE Trans Neur Sys Rehab Eng, vol. 12, no. 2, pp. 251–257, 2004.
- [13] N. Lago, D. Ceballos, F. J. Rodriguez, T. Stieglitz, and X. Navarro, "Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve," Biomaterials, vol. 26, pp. 2021–2031, May 2005.
- [14] K. Yoshida and R. B. Stein. "Characterization of signals and noise rejection longitudinal with bipolar intrafascicular electrodes," IEEE Trans Biomed Eng, vol. 46, pp. 226-234, Feb 1999.
- [15] S. M. Lawrence, G. S. Dhillon, W. Jensen, K. Yoshida, and K. W. Horch, "Acute peripheral nerve recording characteristics of polymerbased longitudinal intrafascicular electrodes," IEEE Trans Neural Syst Rehabil Eng, vol. 12, pp. 345–348, Sep 2004.
- [16] S. Bossi, S. Micera, A. Menciassi, L. Beccai, K. P. Hoffmann, K. P. Koch, and P.

Dario, "On the actuation of thin film longitudinal intrafascicular electrodes." This conference.

- [17] K. P. Hoffmann and K. P. Koch, "Final report on design consideration of tLIFE2," tech. rep., IBMT, 2005.
- [18] G. S. Dhillon, S. M. Lawrence, D. T. Hutchinson, and K. W. Horch, "Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs," J Hand Surg-AM, vol. 29, pp. 605–18, Jul 2004.
- [19] A. Diedrich, W. Charoensuk, R. J. Brychta, A. C. Ertl, and R. Shiavi, "Analysis of raw microneurographic recordings based on wavelet denoising technique and classification algorithm: wavelet analysis in microneurography," IEEE Trans Biomed Eng, vol. 50, pp. 41–50, Jan 2003.
- [20] M. H. Ahn, S. Micera, K. Yoshida, M. C. Carrozza, and P. Dario, "Application of spike sorting techniques for chronic assessment of longitudinal intra-fascicular electrodes in neuroprosthetic and neurorobotic systems," J Neural Eng, vol. (accepted), 2005.
- [21] U. Maulik and S. Bandyopadhyay, "Performance evaluation of some clustering algorithms and validity indices," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, no. 12, pp. 1650– 1654, 2002.
- [22] P. Schratzberger, D. H. Walter, K. Rittig, F. H. Bahlmann, R. Pola, C. Curry, M. Silver, J. G. Krainin, D. H. Weinberg, A. H. Ropper, and J. M. Isner, "Reversal of experimental diabetic neuropathy by VEGF gene transfer," J Clin Invest, vol. 107, pp. 1083–1092, May 2001.