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Abstract 
 Understanding the etiology and evolution 

of the vulnerable coronary plaque is important 

for the early detection, treatment, and prevention 

of coronary artery disease. Intravascular optical 

coherence tomography (OCT) enables imaging of 

the coronary arteries in vivo with sufficient 

resolution to accurately differentiate arterial 

pathology, however, the clinical utility of this 

technology has been limited due to slow image 

acquisition rates. The development of high-speed 

Fourier-domain OCT techniques, including 

optical frequency-domain imaging, enables 

comprehensive microstructural imaging of long 

coronary artery segments. Other OCT 

advancements, including polarization sensitive 

OCT provides complementary birefringence 

information that is related to tissue composition. 

Together with new image processing, acquisition, 

and display techniques, these advances have 

enhanced the usability and utility of 

intracoronary OCT, bringing it closer to 

becoming a mainstream imaging modality in 

interventional cardiology.  

 

Keywords- Cardiovascular, coronary arteries, 

intravascular imaging, optical coherence 

tomography (OCT), optical frequencydomain 

imaging (OFDI), polarization sensitive optical 

coherence tomography (PS-OCT). 

 

I.  INTRODUCTION  
 The human eye occupies a unique place in 

clinical medicine. Physiologically, the eye represents 

the most complex sensory input to the central 

nervous system. The significance of visual 

information means that ocular disease and visual 

function impairment can have a devastating impact 

on a patient’s quality of life. Structurally, the unique 

and specialized anatomy of the eye provides a level 

of accessibility to internal structure not available in 

any other organ in the body. Both the anterior and 

posterior chambers of the eye are amenable to direct 

visual observation, facilitating the diagnosis of 

ocular pathology. The uninterrupted optic pathway 

to the posterior eye allows non-invasive inspection 

of nervous and vascular tissue, making the eye an 

important indicator of not only ophthalmic but also 

systemic vascular and neurologic disease. A basic 

ophthalmic exam relies on standardized visual 

function tests and slitlamp observation to assess 

visual integrity and to evaluate ocular manifestations 

of systemic disease. Current clinical evaluation often 

rests on direct and sometimes subjective  

 

visualization of ocular anatomy and reduced 

performance on visual function tests. In some cases, 

however, observable loss of visual function only 

occurs after irreversible microscopic changes in 

ocular anatomy. Micron scale high resolution 

tomographic imaging of the anterior and posterior 

eye would be a powerful diagnostic in these cases, 

by providing quantitive evaluation of ocular 

microstructure and the potential for early diagnosis 

and treatment of disease before visual function loss. 

In the anterior segment, high resolution imaging 

would permit the evaluation of pathologies of the 

cornea, iris, lens, and anterior chamber angle. 

Accurate, non-invasive measurements of corneal 

curvature and thickness would also be useful in 

treatments where precise biometry is necessary, such 

contact lens fitting, intraocular lens implant power 

calculation, and real-time monitoring of corneal 

refractive surgery. In the posterior segment, 

tomographic imaging of the retina and optic nerve 

head would allow quantitative evaluation and early 

treatment of degenerative retinal diseases such as 

open-angle glaucoma, macular degeneration, and 

macular edema. Several techniques for ocular 

imaging are currently being used or investigated for 

implementation in clinical practice. Fundus 

photography is routinely performed to document 

changes in optic disk appearance associated with 

glaucoma [11]. Fluorescein angiography, which 

involves systemic intravenous injection of 

fluorescein dye prior to fundus photography, is able 

to delineate vascular alterations such as aneurysm, 

neovascularization, ischemia, occlusion, 

hemorrhage, and edema [11]. A and B scan 

ultrasonography are currently employed in the 

evaluation of intraocular masses and tumors, and the 

measurement of axial eye length. In typical clinical 

instruments, however, the depth resolution of 

ultrasound is limited by the wavelength of sound in 

ocular tissue to about 150 pm [2,3]. Recent advances 

in high-frequency ultrasound have reduced the 

minimum resolution to about 20 pm, but with a 

penetration depth limited to the first 4 mm of the 

anterior segment [4]. Ultrasonic imaging also 

requires either physical contact between the eye and 

the ultrasonic transducer or saline immersion of the 

eye. X-ray computed tomography (CT) and 

magnetic resonance imaging (MRI) are useful in the 

evaluation of ocular neoplasms, inflammatory 

masses, orbital fractures, and foreign body detection. 

Like ultrasound, both imaging techniques are 

important in a variety of clinical settings; however, 

their resolution is currently limited to hundreds of 
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microns [1] ,SI. By applying laser confocal imaging 

to the eye, scanning laser opthalmoscopy (SLO) [6] 

and scanning laser tomography (SLT) [7] can 

accurately profile changes in the contour of the 

fundus surface and quantify cupping of the optic 

disk with micron scale lateral resolution. However, 

direct depth resolved tomographic imaging of the 

fundus is limited to about 300 pm accuracy by 

ocular aberrations and the numerical aperture 

available through the pupil. Indirect thickness 

measurements of the birefringent retinal nerve fiber 

layer may be obtained by coupling a Fourier 

ellipsometer to an SLO in order to also measure the 

polarization state of reflected light [8]. We have 

developed a new technique for micron scale 

resolution cross-sectional imaging of ocular and 

other biological tissue, called optical coherence 

tomography (OCT) [9,10]. OCT is similar to Bscan 

ultrasonic imaging, except that image contrast relies 

on differences in optical rather than acoustic 

backscattering characteristics of tissue. In contrast to 

ultrasound and nonlinear optical gating techniques, 

low-coherence interferometry is used to resolve the 

position of reflective or optical backscattering sites 

within a sample. Two-dimensional tomographic 

images of a thin, optical slice of tissue may be 

obtained with 10 ym longitudinal and lateral 

resolution. Optical heterodyne detection and the 

application of noise-reduction techniques originally 

developed for optical communication achieve a 

sensitivity to reflected light as small as 10-''of the 

incident optical power. OCT is non-contact, non-

invasive, and has superior resolution to conventional 

clinical ultrasound. Unlike SLO and SLT, the optical 

sectioning capability of OCT is not limited by the 

pupil aperture and ocular aberrations. OCT may be 

implemented in a compact, low-cost, fiber-optic 

based interferometer that is easily coupled to 

existing ophthalmic instrumentation. In this article, 

we demonstrate high-speed in vivo OCT imaging in 

both the anterior and posterior eye, and highlight the 

system's potential 

usefulness for the early diagnosis and quantitative 

monitoring of a variety of ocular diseases and 

treatments. 

 

II. OPTICAL COHERENCE TOMOGRAPHY 
 OCT is a two-dimensional extension of 

optical coherence-domain reflectometry (OCDR), a 

technique originally developed for high resolution 

and high sensitivity characterization of optical 

waveguides and fiber components [ll-141. More 

recently, low-coherence reflectometry has been 

applied to single axis profiling of optical reflectivity 

versus depth in a variety of biological tissues [ 15-

20]. We have implemented a high-speed fiber-optic 

low-coherence interferometer that forms the basis of 

the OCT scanner [lo]. As depicted in Fig. 1, broad 

bandwidth, lowcoherence light from a 

superluminescent diode (SLD) source is coupled into 

a fiberoptic Michelson interferometer. The 843 nm 

light is divided at a 50/50 fiber beamsplitter into 

reference and sample paths. Light retroreflected 

from a variable distance reference mirror is 

recombined in the beamsplitter with light 

backscattered from the patient's eye. Coherent 

interference between the reference and sample 

beams is detected by a silicon photodiode, followed 

by signal processing electronics and computer data 

acquisition. The temporal coherence of the light 

source determines the resolvability of backscattering 

or reflective sites located at different depths within 

the eye. A coherent interference signal is evident at 

the detector only when the reference arm distance 

matches the optical length of a reflective path 

through the eye to within the source coherence 

length, typically 10-20 ym. A longitudinal profile of 

reflectivity versus depth into the sample is obtained 

by rapidly translating the reference arm mirror and 

synchronously recording the magnitude of the 

resulting interference signal. Since the scanning 

reference mirror traces out the convolution of the 

source field autocorrelation function with the sample 

reflectivity profile, the minimum depth resolution 

depends entirely on the source spectral bandwidth 

and not on the available numerical aperture, as in 

confocal imaging systems such as SLO and SLT. 

Assuming a gaussian lineshape, the fullwidth- half-

maximum (FWHM) autocorrelation width or 

ranging resolution AL, may be calculated from the 

inverse Fourier transform of the source spectrum As  

ΔΔL=λ ,where λ is the source wavelength and AIL is 

its FWHM spectral bandwidth. The current OCT 

scanner employs an SLD source with a bandwidth of 

30 nm, leading to a measured ranging resolution of 

14 ym FWHM. The SLD is advantageous compared 

to other low-coherence sources, since it is compact, 

low-cost, and emits much of its light into a single 

spatial mode. Analogous to the ultrasound B mode, 

two-dimensional images of optical backscattering 

from within the eye are created from a sequence of 

single, uniaxial OCDR scans. As depicted in Fig. 2, 

crosssectional OCT images are obtained by 

repetitively translating the reference mirror while 

scanning the probe beam across fluctuations in 

signal power are dominated by the quantum statistics 

of light returning from the reference arm. The 

signal-tonoise ratio (SNR) in this optical shot noise 

limit determines the minimum detectable reflectivity 

in the eye, and can be mathematically described by: 

where q is the detector quantum efficiency, A o is 

the photon energy, NEB is the noise-equivalent 

bandwidth of the demodulation filter, and Ps is the 

power incident on the sample. The sensitivity to 

weakly reflected light depends only on the detection 

filter bandwidth and the available optical power, 

which is ultimately limited by tissue damage 

thresholds. The filter bandwidth is chosen wide 

enough to accommodate the maximum signal 

andwidth AA where: Equations 1-3 demonstrate that 
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detection sensitivity, or SNR, trades-off linearly with 

both depth resolution and scanning velocity. To 

facilitate real-time in vivo imaging, a reference 

mirror scanning velocity of v = 156 m d s is 

employed in the current system, leading to a doppler 

shift frequency of f~=-400 kHz. With a detection 

bandwidth of about 40 kHz and 175 pW incident 

power on the eye, a sensitivity to reflected light 

smaller than 50 femtowatts is obtained (95 dB 

equivalent SNR). Fast image acquisition is 

especially important to minimize motion induced 

image degradation for in vivo ocular tomography. 

The total image acquisition time is given by: where 

L is the axial scan length, n is the number of 

transverse pixels in each tomograph, and g is the 

reference mirror translator duty cycle (gz0.8). In our 

current system, a typical 100 transverse pixel retinal 

tomograph with a scan depth of 3 mm may be 

obtained in about 2.4 s. A typical tomograph of the 

full anterior chamber containing 200 axial 8 mm 

length scans requires 12.8 s. Proportionately faster 

image acquisition times may be obtained by either 

reducing the number of transverse pixels, or by 

linearly increasing both the scanning velocity and 

incident optical power according to Eqs. 2 and 3. 

The current incident power of 175 mW meets a 

conservative interpretation of the ANSI exposure 

standard, which limits the power for permanent 

ocular exposure with a full pupil aperture and a non-

scanning probe beam to 200 pW at 830 nm [21]. 

This extended viewing limit is raised to 1.3 mW if 

one accounts for the fact that the OCT system 

employs a relatively narrow scanning probe beam. 

Thus, future increases in incident power should 

allow markedly increased scanning velocities and 

corresponding sub-second image acquisition times.  

 

III. in vivo imaging of the retina 

 The high resolution and high sensitivity of 

OCT in the posterior eye makes it uniquely suited 

among existing ophthalmic imaging techniques for 

clinically relevant tomography of the human retina. 

Micron scale anatomic changes in the retina are 

potentially pathognomonic, limiting the applicability 

of comparatively low resolution imaging techniques 

such as CT, MRI, and conventional ultrasound for 

nuclear layers, respectively, which both consist of 

neuron cell bodies and appear as unlabeled darker 

layers indicative of low scattering. The bright red 

layer below the retina corresponds to the 

choriocapillark, a dense interconnected network of 

small, highly scattering blood vessels. The retinal 

image acquisition time of 2.4 s is too slow to 

completely eliminate image artifacts due to patient 

eye motion during scanning. To compensate, the 

tomography was digitally processed to remove 

artifacts due to involuntary motion. The original 

uncorrected tomograph, shows that ocular motion 

causes small oscillations in the contour of the 

nominally flat macular region. The image artifacts 

due to scan-toscan axial variation may be corrected 

by a cross-correlation scan re-registration technique. 

An estimate of the axial ocular motion is obtained by 

selecting the longitudinal indices, which correspond 

to the locations of the peak values of the 

crosscorrelation between adjacent axial scans. The 

peak indices, interpreted as the actual retinal contour 

corrupted by motion artifact, are then digitally low-

pass filtered to evaluating diseases such as 

glaucoma, macular edema, and macular 

degeneration. The available numerical aperture and 

ocular aberration limit the resolution at the retina of 

scanning confocal imaging devices, while acoustic 

attenuation makes remove the presumably artifactual 

high spatial frequency variations in axial position. A 

comparison of the original noisy and filtered 

contours permits re-registration of shifted scans to 

form an uncorrupted image. The posterior segment 

unreachable by high frequency ultrasound. 100 

(horizonta1)x 250 (vertical) pixel OCT tomograph 

obtained from the macular region of a volunteer. The 

foveal region of the macula, specialized for 

maximum visual acuity, is visible as a characteristic 

thinning of the retina. At the foveal depression, most 

of the retina anterior to the photoreceptor layer 

(PRL) is displaced laterally to allow free passage of 

light and to maximize the concentration of cones in 

the area of central vision. The photoreceptor layer, 

which consists of the photoactive segments of the 

retinal rods and cones, appears to be minimally 

backscattering in the tomograph. Alternating layers 

of high and low scattering in the parafoveal region 

reveal the stratified structure of the retina. The 

retinal nerve fiber layer (RNFL), consisting of 

horizontally propagating bundles of nerve axons, is 

visible as a bright backscattering layer adjacent to 

the vitreoretinal interface. The inner and outer 

plexiform layers (IPL, OPL) which, like the RNFL, 

correspond to axonic connections between neurons, 

also appear as regions of enhanced scattering. The 

IPL and OPL lie anterior to the the inner and outer 

result of the contour estimation and filtering process 

for the retinal image. It is evident that the spatial cut-

off frequency of the low-pass filter determines the 

extent to which real contour variations are 

interpreted as unwanted motion, and vice versa. A 

spatial frequency cutoff of 0 cycleslimage was 

selected for the nominally flat macular region 

displayed. Although the cross-correlation scan 

reregistration technique does not compensate for 

transverse ocular motion, these variations are most 

likely small compared to the transverse pixel size in 

all the tomographs presented in this article. High 

resolution OCT imaging of the foveal region, as 

shown in Fig. 4, is promising for the diagnosis and 

monitoring of macular disease. Macular edema, for 

example, manifested as increased retinal thickness, 

is the leading cause of blindness in diabetic 

retinopathy, and is commonly associated with 

vascular occlusions, postcataract extraction, and 
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uveitis. Current diagnostic techniques, including slit-

lamp observation and fundus photography, are 

relatively insensitive to increases in retinal thickness 

[22]. Fluorescein leakage is also a poor indicator of 

fluid accumulation and subsequent loss in visual 

acuity [23]. OCT can provide images of retinal 

thickness with micron scale lateral and transverse 

resolution, potentially permiting increased 

diagnostic sensitivity and quantitative assessment of 

the degree and localization of retinal thickening. 

Age-related macular degeneration is the leading 

cause of new blindness in the ederly in industrialized 

countries [24]. Clinical diagnosis depends on the 

early detection of choroidal neovascular membranes, 

which often form before the onset of vision loss 

[25]. Although fluorescein angiography is highly 

sensitive to leakage through these permeable 

membranes, angiography may not always accurately 

localize the leakage source, thus preventing the 

accurate delivery of photocoagulation therapy [26]. 

The high transverse resolution of OCT may provide 

a useful adjunct to angiography by pinpointing the 

location of the anatomic defect and aiding in the 

delivery of efficient therapy. OCT imaging of the 

optic nerve head and peripapillary region shows 

significant promise for the early diagnosis and 

monitoring of glaucoma, the leading cause of 

blindness in the United States. A series of OCT 

tomographs taken at different radial planes through 

the optic nerve head and surrounding retina of a 

volunteer. The contour of each image has been 

filtered with a cutoff of 10 cycles/image to remove 

motion artifacts. In the 90 degree tomograph (taken 

perpendicular to the papillomacular axis), high 

backscattering is again visible from the RNFL and 

choroid. The RNFL expands towards the optic disk 

to occupy nearly the entire retinal thickness, and 

demonstrates the presence of the inferior and 

superior arcuate nerve fiber bundles. In comparison, 

the 0 degree tomograph (taken parallel to the 

papillomacular axis) exhibits a markedly thinner 

RNFL, consistent with the absence of well-defined 

fiber bundles. Additionally, the predominance of 

nerve fibers emerging from high density ganglion 

cells in the parafoveal region causes the temporally 

located nerve fiber layer to appear thicker than the 

opposite nasal RNFL, because an increased 

convergence of rods onto ganglion cells in the 

peripheral retina leads to a thinner nerve fiber layer. 

In all the radial tomographs, the surface contour and 

cupping of the optic disk are well visualized. The 

termination of the choroid at the lamina cribosa is 

also clearly delineated, providing a convenient 

landmark which one could use to make reproducible 

measurements of RNFL and retinal thickness at the 

nerve head margin. Quantitation of retinal and 

RNFL thickness in the peripapillary region is 

directly relevant to the early diagnosis and treatment 

of glaucoma. Tonometry and visual field testing, the 

current mainstays of diagnosis, are complicated by 

the fact that intraocular pressure often does not 

reliably predict disease progression [27], and visual 

field defects occur only after irreversible damage to 

the nerve fiber layer [28]. Clinical observations of 

the eye using ophthalmoscopy are extremely 

subjective, and variability among observers is often 

great, even among experienced specialists [29]. 

Stereo fundus photography reduces this variability 

somewhat, but still lacks the quantitative measures 

necessary to track interval changes in the optic disc, 

which may be necessary for accurate diagnosis. 

Changes in RNFL and retinal thickness may be a 

sensitive indicator of glaucoma onset and may 

precede other indicators such as optic nerve head 

appearance or cupping [30]. Histological studies 

have shown that 50 percent of the retinal nerve fiber 

layer may atrophy before detection by standard 

clinical methods [31]. Thus, the unique capability of 

OCT for high-resolution tomography in the posterior 

eye and direct measurement of RNFL thickness 

could provide a significant advance in the early 

diagnosis, monitoring, and treatment of 

glaucomatous patients. and penetration depth of the 

photocoagulation bum. Several important features of 

the healing process are also documented. Regrowth 

and thickening of the epithelium are clearly seen 

above the lesion, while the endothelial cell layer 

remains intact and undamaged just below the 

photocoagulation. The capability of OCT for non-

invasive assessment of histopathology in vivo may 

be important in the clinical evaluation and 

longitudinal study of diverse ocular disease in both 

humans and animal models. OCT can record both 

changes at the cellular level and differences in large 

scale morphology, showing significant promise as a 

potential adjunct to keratorefractive therapies such 

as LTK, where both realtime monitoring of the 

surgery in progress and post- operative follow-up 

may require evaluation of the gross corneal 

curvature as well as cell damage and 

photocoagulation penetration depth. As a research 

tool, OCT may be also beneficial in determining the 

LTK exposure parameters that provide stable 

alterations in corneal profile without endothelial cell 

damage. 

 We consider the following anycast field 

equations defined over an open bounded piece of 

network and /or feature space 
dR . They 

describe the dynamics of the mean anycast of each 

of p node populations. 

|

1

( ) ( , ) ( , ) [( ( ( , ), ) )]
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 We give an interpretation of the various 

parameters and functions that appear in (1),   is 

finite piece of nodes and/or feature space and is 
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represented as an open bounded set of 
dR . The 

vector r  and r  represent points in   . The 

function : (0,1)S R  is the normalized sigmoid 

function: 

 

 
1

( ) (2)
1 z

S z
e




  

 It describes the relation between the input 

rate iv  of population i  as a function of the packets 

potential, for example, [ ( )].i i i i iV v S V h    

We note V  the p   dimensional vector 

1( ,..., ).pV V The p  function , 1,..., ,i i p   

represent the initial conditions, see below. We note 

  the  p   dimensional vector 1( ,..., ).p   The 

p  function , 1,..., ,ext

iI i p  represent external 

factors from other network areas. We note 
extI  the 

p   dimensional vector 
1( ,..., ).ext ext

pI I The p p  

matrix of functions , 1,...,{ }ij i j pJ J   represents the 

connectivity between populations i  and ,j  see 

below. The p  real values , 1,..., ,ih i p  

determine the threshold of activity for each 

population, that is, the value of the nodes potential 

corresponding to 50% of the maximal activity. The 

p real positive values , 1,..., ,i i p   determine 

the slopes of the sigmoids at the origin. Finally the 

p real positive values , 1,..., ,il i p   determine the 

speed at which each anycast node potential 

decreases exponentially toward its real value. We 

also introduce the function : ,p pS R R  defined 

by 1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     

and the diagonal p p  matrix 

0 1( ,..., ).pL diag l l Is the intrinsic dynamics of 

the population given by the linear response of data 

transfer. ( )i

d
l

dt
  is replaced by 

2( )i

d
l

dt
  to use 

the alpha function response. We use ( )i

d
l

dt
  for 

simplicity although our analysis applies to more 

general intrinsic dynamics. For the sake, of 

generality, the propagation delays are not assumed to 

be identical for all populations, hence they are 

described by a matrix ( , )r r  whose element 

( , )ij r r is the propagation delay between 

population j  at r  and population i  at .r  The 

reason for this assumption is that it is still unclear 

from anycast if propagation delays are independent 

of the populations. We assume for technical reasons 

that   is continuous, that is 
20( , ).p pC R 

   

Moreover packet data indicate that   is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r r   thus 

no assumption is made about this symmetry unless 

otherwise stated. In order to compute the righthand 

side of (1), we need to know the node potential 

factor V  on interval [ ,0].T  The value of T  is 

obtained by considering the maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r r 


   

Hence we choose mT   

 

A. Mathematical Framework 

 A convenient functional setting for the non-

delayed packet field equations is to use the space 
2 ( , )pF L R   which is a Hilbert space endowed 

with the usual inner product: 

 
1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history 

space 
0 ([ ,0], )mC C F   with 

[ ,0]sup ( ) ,
mt t F    which is the Banach 

phase space associated with equation (3). Using the 

notation ( ) ( ), [ ,0],t mV V t        we write 

(1) as  

.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


    


 
  

Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r dr  





  
  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the papers 

on this subject assume   infinite, hence requiring 

.m      

 

Proposition 1.0  If the following assumptions are 

satisfied. 

1. 
2 2( , ),p pJ L R     

2. The external current 
0 ( , ),extI C R F   

3. 
2

0 2( , ),sup .p p

mC R  

 
     

 Then for any ,C  there exists a unique 

solution 
1 0([0, ), ) ([ , , )mV C F C F      to 

(3) 
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Notice that this result gives existence on ,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 

 

B. Boundedness of Solutions 

 A valid model of neural networks should 

only feature bounded packet node potentials.  

 

Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
    

Proof :Let us defined :f R C R   as 

2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
    

  

We note 1,...min i p il l   

 
2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t    

  

Thus,  if 

 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l


 
     

   Let us show that the open route of F  of 

center 0 and radius , ,RR B  is stable under the 

dynamics of equation. We know that ( )V t  is defined 

for all 0t s  and that 0f   on ,RB  the 

boundary of RB . We consider three cases for the 

initial condition 0.V If 
0 C

V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose that 

,T R  then ( )V T  is defined and belongs to ,RB  

the closure of ,RB  because  
RB is closed, in effect to 

,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts the 

definition of T. Thus T R  and 
RB is stable. 

 Because f<0 on , (0)R RB V B   implies that 

0, ( ) Rt V t B   . Finally we consider the case 

(0) RV CB . Suppose that   0, ( ) ,Rt V t B    

then 
2

0, 2 ,
F

d
t V

dt
     thus ( )

F
V t  is 

monotonically decreasing and reaches the value of R 

in finite time when ( )V t  reaches .RB  This 

contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity of 

  shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r

i i r

n

i i r r

r i r

E A E A E

A E E

    

  



  

 

  

   

  

  

 

  

Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    If 

,ij i jE A B   

the ( ) ( ) ( )
ij

i j ij
E

s t d E        

and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with ijE  in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 

K is empty, then part of the hypothesis is vacuously 

satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 

Proof: By Tietze’s theorem, f  can be extended to a 

continuous function in the plane, with compact 

support. We fix one such extension and denote it 
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again by f . For any 0,   let ( )   be the 

supremum of the numbers 
2 1( ) ( )f z f z  Where 

1z  and 2z  are subject to the condition 

2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on, 

  will be fixed. We shall prove that there is a 

polynomial P  such that  

( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      

By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

 

 



 

 
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z


    

 


    



  Where X  is the set of all points in the 

support of   whose distance from the complement 

of K  does not  . (Thus  X contains no point 

which is “far within” K .) We construct  as the 

convolution of f  with a smoothing function A. Put 

( ) 0a r   if ,r  put  

2
2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r 

 
   

  
And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . We 

claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
 



 

  







    

 The constants are so adjusted in (6) that (8) 

holds.  (Compute the integral in polar coordinates), 

(9) holds simply because A  has compact support. 

To compute (10), express A  in polar coordinates, 

and note that 0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since f  and A  have compact support, so does  . 

Since  

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
 

And ( ) 0A    if ,    (3) follows from (8). 

 The difference quotients of A  converge 

boundedly to the corresponding partial derivatives, 

since 
' 2( )cA C R . Hence the last expression in (11) 

may be differentiated under the integral sign, and we 

obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   The last equality depends on (9). Now (10) 

and (13) give (4). If we write (13) with x  and 

y  in place of ,  we see that   has continuous 

partial derivatives, if we can show that 0   in 

,G  where G  is the set of all z K  whose distance 

from the complement of K  exceeds .  We shall do 

this by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior of 

K  for all   with .   The mean value 

property for harmonic functions therefore gives, by 

the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 

  For all z G  , we have now proved (3), 

(4), and (5) The definition of X  shows that X is 

compact and that X  can be covered by finitely 

many open discs 1,..., ,nD D  of radius 2 ,  whose 

centers are not in .K  Since 
2S K  is connected, 

the center of each jD  can be joined to   by a 

polygonal path in 
2S K . It follows that each 

jD contains a compact connected set ,jE  of 

diameter at least 2 ,  so that 
2

jS E  is connected 
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and so that .jK E     with 2r  . There are 

functions 
2( )j jg H S E   and constants jb  so 

that the 

inequalities.

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z    

 And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 





 Since, 

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


  

 (18) shows that F  is a finite linear combination of 

the functions jg  and 
2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



  

 Observe that the inequalities (16) and (17) 

are valid with R  in place of jQ  if X   and 

.z   Now fix  .z   , put ,iz e     and 

estimate the integrand in (22) by (16) if 4 ,   by 

(17) if 4 .    The integral in (22) is then seen to 

be less than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  
2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

 Since ( ), ,F H K    and 
2S K  is 

connected, Runge’s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 

Hence (3) and (25) show that (2) can be satisfied. 

This completes the proof. 

 

Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of all 

continuously differentiable functions in the plane, 

with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

Then the following “Cauchy formula” holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green’s theorem. 

However, here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  The right side of (2) is therefore equal to 

the limit, as 0,   of 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

 

 

 For each 0,r   is periodic in ,  with 

period 2 . The integral of /    is therefore 0, 

and (4) becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
  

As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  

 If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


 and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a   , is an 

ideal. The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one 

to one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 
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 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write |X A   for the ideal corresponding to 

A  (subspace generated by the ,X a   ). 

 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S    is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is 

divisible by one of the , |X S    

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A   is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as 

the ideal generated by the leading monomials (rather 

than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in 

 1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g  where 1,..., sg g are any 

elements of a  whose leading terms generate 

( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in it 

is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 

implies that every monomial occurring in r  is 

divisible by one in ( )iLT g . Thus 0r  , and 

1( ,..., )sg g g . 

 

DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard 

(
..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, 

S is a standard basis if the leading term of every 

element of a is divisible by at least one of the 

leading terms of the ig . 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 

 

PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated 

by single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every 

polynomial f  in n  variables 1,... nX X  can be 

expressed uniquely as a polynomial in nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X   

  

Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a     

 r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in [ ]A X . The 
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leading coefficients of the polynomials in a  form an 

ideal 
'a  in A ,  and since A  is Noetherian, 

'a will 

be finitely generated. Let 1,..., mg g  be elements of 

a  whose leading coefficients generate 
'a , and let 

r be the maximum degree of ig . Now let ,f a  

and suppose f  has degree s r , say, 

...sf aX   Then 
'a a  , and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let 

da  be the subset of A  consisting of 0 and the 

leading coefficients of all polynomials in a  of 

degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose 

leading coefficients generate da . Then the same 

argument as above shows that any polynomial df  in 

a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   of 

degree 1d  . On applying this remark repeatedly 

we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

 

 and so the polynomials 
01 0,,..., mg g  generate a   

 One of the great successes of category 

theory in computer science has been the 

development of a “unified theory” of the 

constructions underlying denotational semantics. In 

the untyped  -calculus,  any term may appear in 

the function position of an application. This means 

that a model D of the  -calculus must have the 

property that given a term t  whose interpretation is 

,d D  Also, the interpretation of a functional 

abstraction like x . x  is most conveniently defined 

as a function from Dto D  , which must then be 

regarded as an element of D. Let 

 : D D D    be the function that picks out 

elements of D to  represent elements of  D D  

and  : D D D    be the function that maps 

elements of D to functions of D.  Since ( )f  is 

intended to represent the function f  as an element 

of D, it makes sense to require that ( ( )) ,f f    

that is, 
 D D

o id 


   Furthermore, we often 

want to view every element of D as representing 

some function from D to D and require that elements 

representing the same function be equal – that is   

( ( ))

D

d d

or

o id

 

 





  

 The latter condition is called extensionality. 

These conditions together imply that and   are 

inverses--- that is, D is isomorphic to the space of 

functions from D to D  that can be the interpretations 

of functional abstractions:  D D D   .Let us 

suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D    where A is some 

predetermined domain containing interpretations for 

elements of C.  Each element of D corresponds to 

either an element of A or an element of  ,D D  

with a tag. This equation can be solved by finding 

least fixed points of the function 

 ( )F X A X X    from domains to domains 

--- that is, finding domains X  such that 

 ,X A X X    and such that for any domain 

Y also satisfying this equation, there is an embedding 

of X to Y  --- a pair of maps 

R

f

f

X Y   

Such that   
R

X

R

Y

f o f id

f o f id




  

 Where f g  means that 

f approximates g  in some ordering representing 

their information content. The key shift of 

perspective from the domain-theoretic to the more 

general category-theoretic approach lies in 

considering F not as a function on domains, but as a 

functor on a category of domains. Instead of a least 

fixed point of the function, F. 

 

Definition 1.3: Let K be a category and 

:F K K  as a functor. A fixed point of F is a 

pair (A,a), where A is a K-object and 

: ( )a F A A  is an isomorphism. A prefixed 

point of F is a pair (A,a), where A is a K-object and 

a is any arrow from F(A) to A 
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Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       

Recall that a cocone   of an chain    is a K-

object X and a collection of K –arrows 

 : | 0i iD X i    such that 1i i io f    for 

all 0i  . We sometimes write : X   as a 

reminder of the arrangement of ' s  components 

Similarly, a colimit : X  is a cocone with 

the property that if 
': X   is also a cocone 

then there exists a unique mediating arrow 
':k X X  such that for all 0,, i ii v k o  . 

Colimits of chains  are sometimes referred to 

as limco its . Dually, an 
op chain   in K is 

a diagram of the following form: 
1 2

1 2 .....
of f f

oD D D    
 
A cone 

: X   of an 
op chain    is a K-object X 

and a collection of K-arrows  : | 0i iD i   such 

that for all 10, i i ii f o    . An  
op -limit of 

an 
op chain     is a cone : X   with 

the property that if 
': X  is also a cone, then 

there exists a unique mediating arrow 
':k X X  

such that for all 0, i ii o k    . We write k  

(or just  ) for the distinguish initial object of K, 

when it has one, and A  for the unique arrow 

from   to each K-object A. It is also convenient to 

write 
1 2

1 2 .....
f f

D D    to denote all of   

except oD  and 0f . By analogy,  
 is  | 1i i  . 

For the images of   and   under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of F 

– that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. 

  With these definitions we can state that 

every monitonic function on a complete lattice has a 

least fixed point: 

 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 

2
! ( ) (! ( )) (! ( ))

2
( ) ( ) .........

F F F F F

F F
     

        

If both : D 
 
and 

( ) : ( ) ( )F F F D   are colimits, then (D,d) is 

an intial F-algebra, where : ( )d F D D
 
 is the 

mediating arrow from ( )F 
 
 to the cocone 



 
 

 Theorem 1.4 Let a DAG G given in which 

each node is a random variable, and let a discrete 

conditional probability distribution of each node 

given values of its parents in G be specified. Then 

the product of these conditional distributions yields a 

joint probability distribution P of the variables, and 

(G,P) satisfies the Markov condition. 

 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

 Where iPA is the set of parents of iX of in 

G and ( | )i iP x pa is the specified conditional 

probability distribution. First we show this does 

indeed yield a joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x   for all values of the 

variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the 

conditional distributions they notationally represent 

in the joint distribution. Finally, we show the 

Markov condition is satisfied. To do this, we need 

show for 1 k n   that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of 

in G. Since k kPA ND , we need only show 

( | ) ( | )k k k kP x nd P x pa . First for a given k , 

order the nodes so that all and only nondescendents 

of kX precede kX in the ordering. Note that this 

ordering depends on k , whereas the ordering in the 

first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X
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follows 
kd    

 We define the 
thm cyclotomic field to be 

the field   / ( ( ))mQ x x
 
Where ( )m x is the 

thm cyclotomic polynomial.   / ( ( ))mQ x x  

( )m x  has degree ( )m over Q since 

( )m x has degree ( )m . The roots of ( )m x  

are just the primitive 
thm roots of unity, so the 

complex embeddings of   / ( ( ))mQ x x are 

simply the ( )m maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it follows 

that ( ) ( )k

m mQ Q  for all k relatively prime to 

m . In particular, the images of the i coincide, so 

  / ( ( ))mQ x x is Galois over Q . This means that 

we can write ( )mQ  for   / ( ( ))mQ x x without 

much fear of ambiguity; we will do so from now on, 

the identification being .m x  One advantage of 

this is that one can easily talk about cyclotomic 

fields being extensions of one another,or 

intersections or compositums; all of these things 

take place considering them as subfield of .C  We 

now investigate some basic properties of cyclotomic 

fields. The first issue is whether or not they are all 

distinct; to determine this, we need to know which 

roots of unity lie in ( )mQ  .Note, for example, that 

if m is odd, then m is a 2 thm root of unity. We 

will show that this is the only way in which one can 

obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have 

( ),m nQ  so the result is clear 

 

LEMMA 1.6   If m and n are relatively prime, then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that 

( , )m nQ   has degree ( )mn
 
over  Q , so we 

must have  

  ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2  For any m and n  

 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 

 

PROOF.    Write 

1 1

1 1...... ....k ke fe f

k km p p and p p where the ip are 

distinct primes. (We allow i ie or f to be 

zero)

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q
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 An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 Mutual information measures the 

information transferred when ix  is sent and iy  is 

received, and is defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

In a noise-free channel, each iy is uniquely 

connected to the corresponding ix  , and so they 

constitute an input –output pair ( , )i ix y  for which 

 2

1
( ) 1 ( , ) log

( )
i

i j
j i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the 

self-information that corresponds to the input ix
 
In a 

very noisy channel, the output iy and input ix would 

be completely uncorrelated, and so 

( ) ( )i
i

j

x
P P x

y
  and also ( , ) 0;i jI x y  that is, 

there is no transference of information. In general, a 

given channel will operate between these two 

extremes. The mutual information is defined 

between the input and the output of a given channel. 

An average of the calculation of the mutual 

information for all input-output pairs of a given 

channel is the average mutual information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 

 bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful 

for modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 
2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  

is usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in 

the noisy channel, and is a function of the backward 

conditional probability. The observation of an output 

symbol jy provides ( ) ( )XH X H
Y

  bits of 

information. This difference is the mutual 

information of the channel. Mutual Information: 

Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

 The mutual information fits the condition 

( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y

  

 This last entropy is usually called the noise 

entropy. Thus, the information transferred through 

the channel is the difference between the output 

entropy and the noise entropy. Alternatively, it can 

be said that the channel mutual information is the 

difference between the number of bits needed for 

determining a given input symbol before knowing 

the corresponding output symbol, and the number of 

bits needed for determining a given input symbol 
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after knowing the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

   

 As the channel mutual information 

expression is a difference between two quantities, it 

seems that this parameter can adopt negative values. 

However, and is spite of the fact that for some 

, ( / )j jy H X y  can be larger than ( )H X , this is 

not possible for the average value calculated over all 

the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 

Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

The above expression can be applied due to the 

factor ( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity iQ , 

which in this expression is a dummy variable that 

fits the condition 1ii
Q  . It can be concluded 

that the average mutual information is a non-

negative number. It can also be equal to zero, when 

the input and the output are independent of each 

other. A related entropy called the joint entropy is 

defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 

Theorem 1.5: Entropies of the binary erasure 

channel (BEC) The BEC is defined with an alphabet 

of two inputs and three outputs, with symbol 

probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the 

state s , let n be a fixed positive integer, and 

( )p x an arbitrary probability density function on 

Euclidean n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

 Then for each positive integer u , there is a 

code ( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F     

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 
 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

Set ( )

1

1
k

k

k ix i
B A B




  , If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets 

, 1, 2,..., ,iB i u form the desired code. Thus 

assume that the process terminates after t  steps. 

(Conceivably 0t  ). We will show t u  by 

showing that  

   ( , )ate P X Y A P X F      . We 

proceed as follows.  
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Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 

C. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in A 

is a subset such that a is subgroup of A regarded as a 

group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is 

easy to verify that this is in fact an ideal, and that it 

consist of all finite sums of the form 
i i

rs  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by 

a b . The ideal generated by  

 | ,ab a a b b  is denoted by ab . Note that 

ab a b  . Clearly ab consists of all finite sums 

i i
a b  with ia a  and ib b , and if 

1( ,..., )ma a a  and 1( ,..., )nb b b , then 

1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an ideal 

of A. The set of cosets of a in A forms a ring 

/A a , and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b   is a one to 

one correspondence between the ideals of /A a  and 

the ideals of A  containing a An ideal p  if prime if 

p A  and ab p a p    or b p . Thus p  

is prime if and only if /A p  is nonzero and has the 

property that  0, 0 0,ab b a      i.e., 

/A p is an integral domain. An ideal m  is 

maximal if |m A  and there does not exist an ideal 

n  contained strictly between m and A . Thus m is 

maximal if and only if /A m  has no proper nonzero 

ideals, and so is a field. Note that m  maximal   

m prime. The ideals of A B  are all of the form 

a b , with a  and b  ideals in A  and B . To see 

this, note that if c  is an ideal in  A B  and 

( , )a b c , then ( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 Let A  be a ring. An A -algebra is a ring B  

together with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all a A . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , i.e., 

such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring 

homomorphism A B  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let 

A be a k -algebra. If 1 0  in A , then the map 

k A  is injective, we can identify k with its 

image, i.e., we can regard k as a subring of A  . If 

1=0 in a ring R, the R is the zero ring, i.e., 

 0R  . Polynomial rings.  Let  k  be a field. A 

monomial in 1,..., nX X  is an expression of the 

form 1

1 ... ,naa

n jX X a N  . The total degree 

of the monomial is 
ia . We sometimes 

abbreviate it by 1, ( ,..., ) n

nX a a   
. 

The 

elements of the polynomial ring  1,..., nk X X  are 

finite 

sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X  is irreducible if it is 

nonconstant and has only the obvious factorizations, 

i.e., f gh g   or h  is constant. Division in 

 k X . The division algorithm allows us to divide a 

nonzero polynomial into another: let f  and g  be 
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polynomials in  k X with 0;g   then there exist 

unique polynomials  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding whether 

( )f g , namely, find r and check whether it is 

zero. Moreover, the Euclidean algorithm allows to 

pass from finite set of generators for an ideal in 

 k X to a single generator by successively 

replacing each pair of generators with their greatest 

common divisor. (Pure) lexicographic ordering 

(lex). Here monomials are ordered by 

lexicographic(dictionary) order. More precisely, let 

1( ,... )na a   and 1( ,... )nb b   be two 

elements of 
n ; then     and  

X X  (lexicographic ordering) if, in the vector 

difference    , the left most nonzero entry 

is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn’t quite how the dictionary would order them: 

it would put XXXYYZZZZ  after XXXYYZ . 

Graded reverse lexicographic order (grevlex). Here 

monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

   if 
i ia b  , or 

i ia b   and in 

   the right most nonzero entry is negative. For 

example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on  1,... nk X X  . Fix an ordering on 

the monomials in  1,... nk X X . Then we can write 

an element f  of  1,... nk X X  in a canonical 

fashion, by re-ordering its elements in decreasing 

order. For example, we would write 
2 2 3 2 24 4 5 7f XY Z Z X X Z   

  
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    
  

or 
2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 

0 ;  

 The leading coefficient of 
f

to be 

LC(
f

)=
0

a ; 

 The leading monomial of  
f

to be LM(
f

) 

= 0X


; 

 The leading term of 
f

to be LT(
f

) = 

0

0
a X



   

 For the polynomial 
24 ...,f XY Z   the 

multidegree is (1,2,1), the leading coefficient is 4, 

the leading monomial is 
2XY Z , and the leading 

term is  
24XY Z . The division algorithm in 

 1,... nk X X . Fix a monomial ordering in 
2 . 

Suppose given a polynomial f  and an ordered set 

1( ,... )sg g  of polynomials; the division algorithm 

then constructs polynomials 1,... sa a  and r   such 

that 1 1 ... s sf a g a g r      Where either 

0r   or no monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 

1( ) | ( )LT g LT f , divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , and 

so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 1 

with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, the 

ideal 
2 3( )a Y X   contains 

2 3Y X but not 

2Y  or 
3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, 

and let  |A X a  . Then A satisfies the 
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condition , ( )nA           

And a  is the k -subspace of  1,..., nk X X  

generated by the ,X A   . Conversely, of A  is 

a subset of 
n  satisfying   , then the k-subspace  

a  of  1,..., nk X X  generated by 

 |X A  is a monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

   
If a permutation is chosen uniformly and at 

random from the !n  possible permutations in ,nS  

then the counts 
( )n

jC  of cycles of length j  are 

dependent random variables. The joint distribution 

of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy’s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
    

for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

Proof.   This can be established directly by 

exploiting cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    when ,j jc m  which 

occurs between the ingredients in Cauchy’s formula 

and the falling factorials in the moments. Write 

jm jm . Then, with the first sum indexed by 

1( ,... ) n

nc c c    and the last sum indexed by  

1( ,..., ) n

nd d d    via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 0jd   

for ,j n m   and a random permutation in n mS   must 

have some cycle structure 1( ,..., )n md d  . The moments of 

( )n

jC   follow immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  Where the jZ  are independent Poisson-

distribution random variables that satisfy 

( ) 1/jE Z j   

 

The marginal distribution of cycle counts provides 

a formula for the joint distribution of the cycle 

counts ,n

jC  we find the distribution of 
n

jC  using a 

combinatorial approach combined with the 

inclusion-exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the “property” G  of having ;  that is,  

G is the set of permutations nS   such that   

is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  

not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term ,rS  which is the sum of the 

probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 

are two cases to consider. If the r properties are 

indexed by r cycles having no elements in common, 

then the intersection specifies how rj  elements are 

moved by the permutation, and there are 

( )!1( )n rj rj n   permutations in the intersection. 
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There are 
[ ] / ( !)rj rn j r  such intersections. For the 

other case, some two distinct properties name some 

element in common, so no permutation can have 

both these properties, and the r -fold intersection is 

empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for the 

number of permutations having exactly k  properties 

is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

Which simplifies to (1.1) Returning to the original 

hat-check problem, we substitute j=1 in (1.1) to 

obtain the distribution of the number of fixed points 

of a random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

  The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for 

each fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with 

mean 1/ ;j  we use the notation 
( )n

j d jC Z  

where (1/ )j oZ P j   to describe this. Infact, the 

limit random variables are independent. 

 

Theorem 1.6   The process of cycle counts 

converges in distribution to a Poisson process of   

with intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  

 Where the , 1, 2,...,jZ j   are 

independent Poisson-distributed random variables 

with  
1

( )jE Z
j

   

Proof.  To establish the converges in distribution 

one shows that for each fixed 1,b   as ,n   

( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

 The proof of Theorem says nothing about 

the rate of convergence. Elementary analysis can be 

used to estimate this rate when 1b  . Using 

properties of alternating series with decreasing 

terms, for 0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

  It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  


 Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  We see from (1.11) that the total variation 

distance between the distribution 
( )

1( )nL C  of 
( )

1

nC  

and the distribution 1( )L Z  of 1Z
 

 Establish the asymptotics of 
( )( )n

nA C     under conditions 0( )A  and 01( ),B  

where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir
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'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



   

and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



  

 Where 
 
'

1,2,7
( )n  refers to the quantity 

derived from 
'Z . It thus follows that 

( ) (1 )[ ( )]n d

nP A C Kn    for a constant K , 

depending on Z  and the 
'

ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  and 

01( )B  are satisfied and if 
'

( )g

i O i    from some 

' 0,g   since, under these circumstances, both 

 
1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to zero as 

.n   In particular, for polynomials and square 

free polynomials, the relative error in this asymptotic 

approximation is of order 
1n

 if 
' 1.g    

For 0 /8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where 
 7,7

( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n





 

  
 

 



 

  

Suppressing the argument Z  from now on, we thus 

obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0

0 0

[ ]
[ ] 1

[ ]

bn
b

r n

P T n r
P T r

P T n 

  
   

 
  

[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n

b
b

r n r b

P T r
P T r

P T n 


  


   

0

0

[ ]( [ ] [ ]
n

b bn bn

s

P T s P T n s P T n r
 

 
       
 


 
[ /2]

0 0

/2 0

[ ] [ ]
n

b b

r n r

P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET
the third is 

bound by 

 

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P





 
 


  

 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n

b b

r s

b

n
n n P T r P T s r s

P

n ET

P n












 

 



  



 

  

Hence we may take 

 

 

 

10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P
















  

  
  



  

 Required order under Conditions 

0 1( ), ( )A D  and 11( ),B  if ( ) .S    If not, 

   10.8
n

 can be replaced by 
   10.11

n
in the 

above, which has the required order, without the 

restriction on the ir  implied by ( )S   . 

Examining the Conditions  0 1( ), ( )A D  and 11( ),B it 

is perhaps surprising to find that 11( )B  is required 

instead of just 01( );B  that is, that we should need 

1

2
( )

a

ill
l O i 


   to hold for some 1 1a  . A 

first observation is that a similar problem arises with 

the rate of decay of 1i  as well. For this reason, 1n  
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is replaced by 1n


. This makes it possible to replace 

condition 1( )A  by the weaker pair of conditions 

0( )A and 1( )D in the eventual assumptions needed 

for 
   7,7

,n b  to be of order ( / );O b n   the 

decay rate requirement of order 
1i  

 is shifted from 

1i  itself to its first difference. This is needed to 

obtain the right approximation error for the random 

mappings example. However, since all the classical 

applications make far more stringent assumptions 

about the 1, 2,i l   than are made in 11( )B . The 

critical point of the proof is seen where the initial 

estimate of the 

difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The 

factor 
 10.10

( ),n  which should be small, contains a 

far tail element from 1n


 of the form 

1 1( ) ( ),n u n   which is only small if 1 1,a   

being otherwise of order 11( )aO n  
 for any 

0,   since 2 1a   is in any case assumed. For 

/ 2,s n  this gives rise to a contribution of order  

11( )aO n   
 in the estimate of the difference 

[ ] [ 1],bn bnP T s P T s     which, in the 

remainder of the proof, is translated into a 

contribution of order 11( )aO tn   
for differences 

of the form [ ] [ 1],bn bnP T s P T s     finally 

leading to a contribution of order 1abn  
 for any 

0   in 
 7.7

( , ).n b  Some improvement would 

seem to be possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of 

the form [ ] [ ]bn bnP T s P T s t     can be 

directly estimated, at a cost of only a single 

contribution of the form 1 1( ) ( ).n u n   Then, 

iterating the cycle, in which one estimate of a 

difference in point probabilities is improved to an 

estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        

 for any 0   could perhaps be attained, leading to 

a final error estimate in order  11( )aO bn n    for 

any 0  , to replace 
 7.7

( , ).n b  This would be 

of the ideal order ( / )O b n for large enough ,b  but 

would still be coarser for small .b   

 With b and n  as in the previous section, 

we wish to show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



 

 Where 

 
121 1

7.8
( , ) ( [ ])n b O n b n b n        for any 

0   under Conditions 0 1( ), ( )A D  and 

12( ),B with 12 . The proof uses sharper estimates. 

As before, we begin with the formula  

 

0

0 0

( ( [1, ]), ( [1, ]))

[ ]
[ ] 1

[ ]

TV

bn
b

r n

d L C b L Z b

P T n r
P T r

P T n 

  
   

 


 

  

Now we observe that  

 

[ /2]

0
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0

[ /2] 1

2 2

0 0 0
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10.5(2)2 2
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b bn bn
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b
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P T s P T n s P T n r
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n ET
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0
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P T s P T n

n
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0 10.14

2 2

0 0 10.8

( , )
[0,1]

4 1 4 ( )

3
( ) , (1.2)

[0,1]

b

b

ET n b
nP

n ET K n

nP








  



   

  The approximation in (1.2) is further 

simplified by noting that  
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[ /2] [ /2]

0 0

0 0
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[ ] [ ]
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P T r P T s

n



 

  
  

 
 

0

0

( )(1 )
[ ]

1
b

s

s r
P T s

n



 

  
  

 
  

 

[ /2]

0 0

0 [ /2]

1 2 2

0 0 0

( ) 1
[ ] [ ]

1

1 ( 1 / 2 ) 2 1 , (1.3)

n

b b

r s n

b b b

s r
P T r P T s

n

n E T T n n ET



 

 

 

 
  



    

 

and then by observing that  

 

0 0

[ /2] 0

1

0 0 0 0

2 2

0

( )(1 )
[ ] [ ]

1

1 ( [ / 2] ( 1 / 2 ))

4 1 (1.4)

b b

r n s

b b b b

b

s r
P T r P T s

n

n ET P T n E T T n

n ET







 





  
  

 

    

 

 

Combining the contributions of (1.2) –(1.3), we thus 

find 

tha

 

    

 

1

0 0

0 0

7.8

1

010.5(2) 10.14

10.82 2

0

( ( [1, ]), ( [1, ]))

( 1) [ ] [ ]( )(1 )

( , )

3
( / 2, ) 2 ( , )

[0,1]

24 1 ( )
2 4 3 1 (1.5)
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b b
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b

b
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n P T r P T s s r

n b
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P

n
n ET
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 The quantity 
 7.8

( , )n b is seen to be of 

the order claimed under Conditions 0 1( ), ( )A D  and 

12( )B , provided that ( ) ;S     this 

supplementary condition can be removed if 

 10.8
( )n

 is replaced by 
 10.11

( )n
   in the 

definition of 
 7.8

( , )n b , has the required order 

without the restriction on the ir  implied by assuming 

that ( ) .S   Finally, a direct calculation now 

shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
1

2

b b

r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 

Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The vector 

r such as in the example is called the position vector 

or the radius vector of the point x  . (Or, in greater 

detail: r  is the radius-vector of x  w.r.t an origin 

O). Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the 

“standard origin”.   Let us summarize. We have 

considered 
n  and interpreted its elements in two 

ways: as points and as vectors. Hence we may say 

that we leading with the two copies of  :n  
n = 

{points},      
n = {vectors}  

Operations with vectors: multiplication by a number, 

addition. Operations with points and vectors: adding 

a vector to a point (giving a point), subtracting two 

points (giving a vector). 
n treated in this way is 

called an n-dimensional affine space. (An “abstract” 

affine space is a pair of sets , the set of points and 

the set of vectors so that the operations as above are 

defined axiomatically). Notice that vectors in an 

affine space are also known as “free vectors”. 

Intuitively, they are not fixed at points and “float 

freely” in space. From 
n considered as an affine 

space we can precede in two opposite directions: 
n  as an Euclidean space   

n as an affine 

space   
n as a manifold.Going to the left means 

introducing some extra structure which will make 

the geometry richer. Going to the right means 

forgetting about part of the affine structure; going 

further in this direction will lead us to the so-called 

“smooth (or differentiable) manifolds”. The theory 

of differential forms does not require any extra 

geometry. So our natural direction is to the right. 

The Euclidean structure, however, is useful for 

examples and applications. So let us say a few words 

about it: 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can 

consider lines and planes, and quadric surfaces like 

an ellipsoid. However, we cannot discuss such 

things as “lengths”, “angles” or “areas” and 

“volumes”. To be able to do so, we have to introduce 

some more definitions, making 
n a Euclidean 

space. Namely, we define the length of a vector 
1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a     

After that we can also define distances between 

points as follows: 

( , ) : (2)d A B AB


  

 One can check that the distance so defined 

possesses natural properties that we expect: is it 

always non-negative and equals zero only for 

coinciding points; the distance from A to B is the 

same as that from B to A (symmetry); also, for three 

points, A, B and C, we have 
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( , ) ( , ) ( , )d A B d A C d C B   (the “triangle 

inequality”). To define angles, we first introduce the 

scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also 

denote by dot: . ( , )a b a b , and hence is often 

referred to as the “dot product” . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral 

multiple of 2  . For this definition to be consistent 

we have to ensure that the r.h.s. of (4) does not 

exceed 1 by the absolute value. This follows from 

the inequality 
2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three 

names are applied in different books). One of the 

ways of proving (5) is to consider the scalar square 

of the linear combination ,a tb  where t R . As  

( , ) 0a tb a tb    is a quadratic polynomial in t  

which is never negative, its discriminant must be 

less or equal zero. Writing this explicitly yields (5). 

The triangle inequality for distances also follows 

from the inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  

is simply 
ih .From these examples follows that we 

can rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  

which is the standard form. Once again: the partial 

derivatives in (1) are just the coefficients (depending 

on x ); 
1 2, ,...dx dx  are linear functions giving on 

an arbitrary vector h  its coordinates 
1 2, ,...,h h  

respectively. Hence 

  

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 0

nx   at 

0t t  and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

 

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t  , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   

when 0h  . Combining it together, for the 

increment of ( ( ))f x t   we obtain 

0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

 For a certain ( )t   such that 

( ) 0t   when 0t   (we used the linearity 

of 0( )df x ). By the definition, this means that the 

derivative of ( ( ))f x t  at 0t t  is 

exactly 0( )( )df x  . The statement of the theorem 

can be expressed by a simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  To calculate the value Of df  at a point 0x  

on a given vector   one can take an arbitrary curve 

passing Through 0x  at 0t  with   as the velocity 

vector at 0t and calculate the usual derivative of 

( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions 

, :f g U   , ,nU     

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and an 

arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt
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at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the 

usual derivative Now, almost without change the 

theory generalizes to functions taking values in  
m  

instead of  . The only difference is that now the 

differential of a map : mF U    at a point x  

will be a linear function taking vectors in 
n  to 

vectors in 
m (instead of  ) . For an arbitrary 

vector | ,nh    

 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  In this matrix notation we have to write 

vectors as vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      

  

Where ( ) 0t    when 0t  . By the 

definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h   

  

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a point 

can be viewed as the velocity vector of some curve 

passing through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 

   

Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the 

differential .Consider a curve ( )x t  in 
n  with the 

velocity vector 
.

x . Basically, we need to know to 

which vector in  
p it is taken by ( )d GoF . the 

curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the same 

theorem, it equals the image under dG  of the 

Anycast Flow vector to the curve ( ( ))F x t  in 
m . 

Applying the theorem once again, we see that the 

velocity vector to the curve ( ( ))F x t is the image 

under dF of the vector 
.

( )x t . Hence 

. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary 

vector 
.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y
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 Then the chain rule can be expressed as 

follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

 Where 
idF  are taken from (1). In other 

words, to get ( )d GoF  we have to substitute into 

(2) the expression for 
i idy dF  from (3). This can 

also be expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       

 

 

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

 Where it is assumed that the dependence of 
my  on 

nx  is given by the map F , the 

dependence of 
pz  on 

my  is given by the 

map ,G  and the dependence of  
pz on 

nx is given by the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU   . 

Consider also another copy of 
n , denoted for 

distinction 
n

y , with the standard coordinates 

1( ... )ny y . A system of coordinates in the open 

domain U  is given by a map : ,F V U  where 

n

yV    is an open domain of 
n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

 The coordinates of a point x U  in this 

system are the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y

  

Here the variables 
1( ..., )ny y  are the “new” 

coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  

( ) : ( ), ( ) (1)x t r r t t     

We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 

the maps  ( ( ), ( )), ( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   

Here 
.

r  and 
.

  are scalar coefficients depending on 

t , whence the partial derivatives ,x x
r 

 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the “standard” coordinates: 
. . .

1 2x e x e y  . Consider the vectors   

,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

 From where it follows that these vectors 

make a basis at all points except for the origin 

(where 0r  ). It is instructive to sketch a picture, 

drawing vectors corresponding to a point as starting 

from that point. Notice that  ,x x
r 

 
 

 are, 

respectively, the velocity vectors for the curves 

( , )r x r    0( )fixed   and 

0( , ) ( )x r r r fixed   . We can conclude 

that for an arbitrary curve given in polar coordinates 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 

Issn 2250-3005(online)                                                             November| 2012            Page 55 

 
       

 

 

the velocity vector will have components 
. .

( , )r   if 

as a basis we take : , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

 A characteristic feature of the basis ,re e  

is that it is not “constant” but depends on point. 

Vectors “stuck to points” when we consider 

curvilinear coordinates. 

 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In particular, 

the elements of the basis ii
xe

x



 (originally, a 

formal notation) can be understood directly as the 

velocity vectors of the coordinate lines 
1( ,..., )i nx x x x   (all coordinates but 

ix  are 

fixed). Since we now know how to handle velocities 

in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt


  Now 0( )dF x  is a linear map that takes 

vectors attached to a point 0

nx   to vectors 

attached to the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  In particular, for the differential of a 

function we always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

 Where 
ix  are arbitrary coordinates. The 

form of the differential does not change when we 

perform a change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in 

the standard coordinates: 

 

A ydx xdy     In the polar coordinates we will 

have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

 Hence  
2A r d  is the formula for A  in 

the polar coordinates. In particular, we see that this 

is again a 1-form, a linear combination of the 

differentials of coordinates with functions as 

coefficients. Secondly, in a more conceptual way, 

we can define a 1-form in a domain U  as a linear 

function on vectors at every point of U : 
1

1( ) ... , (1)n

n         

If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path 

 , the integral 



  does not change if we change 

parametrization of   provide the orientation 

remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 Let p  be a rational prime and let 

( ).pK    We write   for p  or this section. 

Recall that K  has degree ( ) 1p p    over .  

We wish to show that  .KO    Note that   is 

a root of 1,px   and thus is an algebraic integer; 

since K  is a ring we have that   .KO   We 

give a proof without assuming unique factorization 

of ideals. We begin with some norm and trace 

computations. Let j  be an integer. If j is not 

divisible by ,p  then 
j  is a primitive 

thp  root of 

unity, and thus its conjugates are 
2 1, ,..., .p   

 

Therefore 
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2 1

/ ( ) ... ( ) 1 1j p

K pTr            

  

 If p  does divide ,j  then 1,j   so it 

has only the one conjugate 1, and  

/ ( ) 1j

KTr p    By linearity of the trace, we 

find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

 We also need to compute the norm of 

1  . For this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of 

(1 ), this shows that  / (1 )KN p   The 

key result for determining the ring of integers KO  is 

the following. 

 

LEMMA 1.9 

  (1 ) KO p      

Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose 

now that the inclusion is strict. Since 

(1 ) KO  is an ideal of   containing p  

and p is a maximal ideal of  , we must have  

(1 ) KO   
 
Thus we can write 

 1 (1 )     

For some .KO   That is, 1   is a unit in .KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have  

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

Where the i  are the complex embeddings 

of K  (which we are really viewing as 

automorphisms of K ) with the usual ordering.  

Furthermore, 1
j  is a multiple of 1   in KO  

for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number and 

let | ( )pK    be the 
thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 

2

0 1 2... p

pa a a   

      With .ia   

Then 

 

2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

 By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next consider 

the algebraic integer  
1 3

0 1 2 2( ) ... ;p

pa a a a    

      This is 

an algebraic integer since 
1 1p    is. The same 

argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 

  

Example 1.4   Let K   , then the local ring 

( )p  is simply the subring of   of rational 

numbers with denominator relatively prime to p . 

Note that this ring   ( )p is not the ring p of p -

adic integers; to get  p one must complete ( )p . 

The usefulness of ,K pO  comes from the fact that it 

has a particularly simple ideal structure. Let a be 

any proper ideal of ,K pO  and consider the ideal 

Ka O  of .KO  We claim that 

,( ) ;K K pa a O O     That is, that a  is generated 

by the elements of a  in .Ka O  It is clear from 

the definition of an ideal that ,( ) .K K pa a O O   

To prove the other inclusion, let   be any element 

of a . Then we can write /    where 

KO   and .p   In particular, a   (since 

/ a    and a  is an ideal), so KO   and 
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.p   so .Ka O    Since ,1/ ,K pO   this 

implies that ,/ ( ) ,K K pa O O      as 

claimed.We can use this fact to determine all of the 

ideals of , .K pO  Let a  be any ideal of ,K pO and 

consider the ideal factorization of Ka O in .KO  

write it as 
n

Ka O p b   For some n  and some 

ideal ,b  relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  
, , ,( ) n n

K K p K p K pa a O O p bO p O      

Since , .K pbO  Thus every ideal of ,K pO  has the 

form 
,

n

K pp O  for some ;n  it follows immediately 

that ,K pO is noetherian. It is also now clear that 

,

n

K pp O is the unique non-zero prime ideal in 

,K pO . Furthermore, the inclusion 

, ,/K K p K pO O pO  Since , ,K p KpO O p   

this map is also surjection, since the residue class of 

,/ K pO    (with KO   and p  ) is the 

image of 
1 

 in / ,K pO  which makes sense since 

  is invertible in / .K pO  Thus the map is an 

isomorphism. In particular, it is now abundantly 

clear that every non-zero prime ideal of ,K pO is 

maximal.  To show that ,K pO is a Dedekind 

domain, it remains to show that it is integrally closed 

in K . So let K   be a root of a polynomial with 

coefficients in  , ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x
 

 





    With i KO   and 

.i K pO   Set 0 1 1... .m      Multiplying by 

m  we find that   is the root of a monic 

polynomial with coefficients in .KO  Thus 

;KO   since ,p   we have 

,/ K pO    . Thus  ,K pO is integrally close 

in .K   

 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free -

module of rank ,n    

// ( )K K KO N O   Will have order 
/ ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     

 This completes the proof.  In the general 

case, let L  be the Galois closure of K  and set 

[ : ] .L K m   

 Since only a few axial scans at selected 

radii from the visual axis are needed to determine 

corneal profile, thickness, and refractive power.  Full 

cross-sectional images of the anterior chamber may 

be helpful in visualizing intraocular tumors, foreign 

bodies, or angle-closure glaucoma. OCT tomographs 

of the crystalline lens have the potential to provide a 

new imaging technique and objective grading 

diagnostic for cataracts. OCT may have advantages 

over other optical methods of cataract evaluation 

because the relatively low scattering of 830 nm light 

relative to visible light and the high detection 

sensitivity of OCT allow image formation even 

through dense cataracts. For an initial demonstration 

of cataract evaluation with OCT, a nuclear cataract 

was induced in a fresh, enucleated bovine eye by 

immersion in a temperature-controlled saline bath. 

Cold induces reversible cataractous changes by the 

accumulation of crystalline droplets in the lens 

nucleus and the phase separation of proteins in the 

lens cell cytoplasm [32]. OCT tomographs of the 

cataract taken at 10, 15, and 20 degrees C, clearly 

displaying the disappearance of the cataract with 

increasing temperature. Cataract densities, blindly 

graded ophthalmoscopically prior to image 

acquisition, were 4+, 1+, and 0, respectively. The 

nuclear cataract at 10 degrees C is visible as a bright 

scatterer of incident light; however, light penetration 

through the cataract remains sufficient to reveal the 

posterior capsule and a central decrease in opacity 

which was not visible ophthalmoscopically until the 

temperature is raised to 14 degrees. To provide 

increased sensitivity to weakly backscattered light, 

the reference mirror scanning velocity is reduced to 

39 mm/s and each image is averaged 10 times, 

resulting in an image acquisition time of 10 min. 

Although high sensitivity is necessary to detect and 

quantify the scattering from early-developing 

cataracts, high resolution and a large image area are 

probably not necessary for clinical cataract grading. 

Thus, a substantial reduction in image acquisition 
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time may be achieved for clinical application. The 

tornographs in Figs. 8 and 9 provide information on 

the large scale morphology of anterior segment 

structures. By narrowing the field of view, one can 

obtain high resolution images of ocular 

microstructure in the anterior eye which may 

provide important histopathological information 

concerning disease progression and the healing 

process in vivo. To demonstrate the ability of OCT 

to visualize cellular changes noninvasively in tissue 

morphology, we used OCT to evaluate the damage 

and healing due to laser induced photocoagualation 

of the cornea [33]. Laser thermokeratoplasty (LTK) 

of the cornea is a relatively new therapy currently 

under study for the treatment of keratoconus, 

refractive errors of the eye, and astigmatism [34]. In 

this technique, laser coagulations are placed in the 

corneal stroma circumferentially around the visual 

axis. Thermally induced collagen shrinkage [35] at 

each coagulation point leads to alterations in the 

mechanical properties of the cornea and 

modification of the corneal profile. Figure 10 shows 

an in vivo OCT tomography taken one month post-

operatively of a thermal photocoagulation lesion in a 

rabbit cornea. An Ho:YSGG laser was used to 

deliver 100 mJ of 2.1 pm light to the cornea through 

a 200 pm diameter fiber. During post-operative 

imaging, the rabbit was anesthestized to minimize 

the effects of ocular motion. The reference mirror 

scanning velocity was reduced to 39 mm/s to obtain 

a corresponding factor of four increase in detection 

sensitivity. In the normal cornea surrounding the 

lesion, both the stratified corneal epithelium and the 

single-cell layer endothelium are well visualized in 

the tomograph as distinct thick and thin layers of 

high backscattering surrounding the less reflective 

stroma. The thermally induced collagen shrinkage in 

the stroma appears as an area of increased 

reflectivity, clearly demarcating the radial extent and 

penetration depth of the photocoagulation bum. 

Several important features of the healing process are 

also documented. Regrowth and thickening of the 

epithelium are clearly seen above the lesion, while 

the endothelial cell layer remains intact and 

undamaged just below the photocoagulation. The 

capability of OCT for non-invasive assessment of 

histopathology in vivo may be important in the 

clinical evaluation and longitudinal study of diverse 

ocular disease in both humans and animal models. 

OCT can record both changes at the cellular level 

and differences in large scale morphology, showing 

significant promise as a potential adjunct to 

keratorefractive therapies such as LTK, where both 

realtime monitoring of the surgery in progress and 

post- operative follow-up may require evaluation of 

the gross corneal curvature as well as cell damage 

and photocoagulation penetration depth. As a 

research tool, OCT may be also beneficial in 

determining the LTK exposure parameters that 

provide stable alterations in corneal profile without 

endothelial cell damage.  

 OCT is a novel biomedical imaging 

technique that provides cross-sectional tomographs 

of optical backscattering within tissue with micron 

scale resolution in all dimensions and extremely 

high sensitivity. We have developed a fiber-optic 

implementation of the interferometric system, which 

uses a compact and inexpensive continuous-wave 

super-luminescent diode source. The beam-steering 

galvanometers and fiber-optics are easily retrofitted 

to standard slit-lamp examination systems, allowing 

facile alignment and operator visualization of the 

scanning probe beam in the eye. A real-time display 

of the tomograph in progress is provided on a 

computer monitor. Several features make OCT 

particularly attractive for imaging ocular tissue. 

OCT has superior resolution to conventional clinical 

ultrasound, which is limited by the acoustic 

wavelength in tissue to about 150 pm, and unlike 

ultrasound does not require contact with or saline 

immersion of the eye. Non-contact measurements 

increase patient comfort during examination and are 

necessary for realtime intra-operative monitoring of 

corneal refractive surgeries. High-resolution imaging 

is possible even in the posterior eye, where signal 

attenuation limits the application of high-frequency 

ultrasound and ocular optics prevent high depth-

resolution in scanning laser confocal imaging 

systems. In contrast to both SLT and SLO. the axial 

resolution of OCT only depends on the temporal 

coherence properties of the source, and not on the 

pupil-limited numerical aperture of the eye or on 

ocular aberrations. Micron scale axial resolution is 

particularly important for the early diagnosis and 

monitoring of degenerative retinal diseases. 

 ACUTE myocardial infarction (AMI), most 

frequently caused by the disruption of a vulnerable 

atherosclerotic plaque, is the leading cause of death 

in the western world [10]. Thin-cap fibroatheromas 

(TCFAs), the predominant form of vulnerable 

plaques resulting in sudden cardiac death [11], [12], 

have been defined as plaques with a large lipid pool, 

a thin fibrous cap  <65 μm), and activated 

macrophages near or within the fibrous cap [13]–

[15]. The rupture of a TCFA, which may be 

precipitated by biomechanical stresses [16], [17], 

causes the bloodstream to be exposed to 

procoagulant factors, forming a nidus for thrombus. 

In some instances, the thrombus can impede blood 

flow to downstream myocardium, trigging an acute 

coronary event [18]. In addition to TCFA, coronary 

artery thrombosis has also be been attributed to 

eroded plaques and superficial calcific nodules [6], 

[19], [20]. Regardless of the underlying pathologic 

substrate, we do not understand which plaques will 

give rise to coronary thrombosis in any given 

patient. For this reason, current vulnerable plaque 

research is focused on the detection and study of the 

natural history of these high-risk lesions. Data 
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gained from this research will provide clinicians 

with the information and tools required to guide 

pharmacologic and/or interventional management. 

Patients presenting with stenotic coronary lesions 

may be treated with stent implantation during 

percutaneous coronary intervention (PCI). The role 

of stent placement is to restore and maintain blood 

flow through the artery. While effective for this 

purpose, in-stent restenosis, caused by aggressive 

neointimal hyperplasia, is a significant problem with 

bare metal stents (BMS), leading to the need for a 

repeat PCI in a substantial number of patients. Drug-

eluting stents (DES), coated with an agent designed 

to attenuate neointimal growth, reduce this problem, 

but may result in delayed endothelial healing and 

rare cases of late stent thrombosis [21]–[24] The 

potential risk of stent thrombosis in patients with 

DES mandates long-term administration of 

anticlotting drugs, which are expensive and have 

their own bleeding-associated complications. Given 

these difficulties encountered with coronary stenting, 

there is a need for a tool to evaluate the stent healing 

process, which may be used to tailor antiplatelet 

regimen durations on an individual patient basis. A 

number of imaging modalities have been 

investigated for studying vulnerable plaques in the 

hope of uncovering new knowledge regarding this 

disease process [25]. Both conventional and 

experimental intravascular imaging modalities 

include intravascular ultrasound (IVUS) [26]–[30], 

magnetic resonance imaging (MRI) [31]–[33], 

optical coherence tomography (OCT) [34], [35], 

angioscopy [6], [36]–[40], thermography [41], [42] 

and near-infrared [43], fluorescence [44], [45], and 

Raman spectroscopy [9], [46], [47]. Of these, OCT 

is the only imaging modality with sufficient 

resolution to visualize the majority of the pathologic 

features currently associated with the vulnerable 

plaque [4]. OCT has been utilized as an investigative 

imaging tool for the assessment of coronary artery 

pathology for a number of years [48], and has 

additionally been effective in evaluating the effects 

of coronary stenting [49]. Early OCT imaging 

studies were performed using systems based on 

timedomain OCT (TD-OCT) technology [5], [7], 

[35], [48]–[53]. One difficulty with conducting 

coronary OCT in vivo is the need to remove blood 

from the imaging field in order to clearly visualize 

the artery wall. Methods employed to displace blood 

during OCT imaging include flushing the artery with 

saline both with and without proximal balloon 

occlusion. The prolonged balloon occlusion or flush 

times necessary for TD-OCT increased the risk of 

myocardial ischemia during the procedure, and 

together with the increased procedural complexity, 

may have limited the widespread clinical adoption of 

this technology. With extensive training expert users 

were able to mitigate these risks while acquiring 

pullbacks of up to 3–5 cm in length [54], [55]. As a 

result, thousands of coronary patients have been 

imaged with OCT at several hundred sites around 

the world with commercially available TD-OCT 

systems and over 200 studies have been published, 

mostly in clinical journals. With the advent of 

second generation Fourier-domain OCT (FD-OCT), 

which enables high-quality imaging at speeds up to 

100× that of TD-OCT, 3-D imaging of long 

coronary segments during a brief transparent media 

flush is now possible. This paper addresses the 

imaging principles of OCT that make it an ideal tool 

for interrogating coronary microstructure, in addition 

to the recent developments in the technology, which 

have increased the likelihood that this imaging 

modality will be widely adopted in cardiology. 

 

IV. TIME-DOMAIN OPTICAL COHERENCE 
 Intravascular OCT is a structural imaging 

modality that is similar in principle to IVUS. With 

OCT, the echo time delay of the incident light, rather 

than acoustic waves, is measured using low-

coherence interferometry [35]. In TD-OCT systems, 

a broadband light source is split into two arms, a 

reference arm and a sample arm. The reference arm 

light typically illuminates a reflector and the sample 

arm light is directed toward the coronary wall. Light 

returned from both arms is then recombined and 

detected. When the optical path length traveled by 

the light in each arm is within the coherence length 

of the source, the cross correlation of the two 

electromagnetic fields results in an interference 

pattern, the amplitude of which may be mapped to a 

pixel intensity value. By scanning the optical delay 

of the reference arm, interference fringes from 

discrete locations within the tissue are obtained and 

may be assembled to form profiles of reflectivity as 

a function of depth or A-lines. 2-D and 3-D OCT 

images are obtained by scanning the sample arm 

beam across the sample and recording A-lines at 

each scan position. OCT systems are based on fiber-

optic technology, and therefore, are highly 

conducive to catheter-based imaging required for 

many clinical applications [56]. OCT imaging of the 

coronary artery  

was first demonstrated in early in vitro studies, 

where investigators described the visualization of 

coronary microstructure including the adventitia, 

media, and intima [48], [50] Image criteria for the 

differentiation of coronary artery microstructures 

have been developed and validated in 

histopathologic correlative imaging studies, 

conducted on autopsy specimens ex vivo (see Table 

I). The classification criteria that are currently 

utilized to interpret lesion morphology in the clinical 

setting were developed and prospectively tested by 

Yabushita et al. [7]. In this study, 357 OCT-

histology correlated images of atherosclerotic 

lesions were obtained from 90 cadavers. The 

investigators found that fibrous plaques could be 

identified by homogeneous signal-rich regions, 

fibrocalcific plaques by signal-poor regions with 
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sharp borders, and lipid-rich plaques by signal-poor 

regions with diffuse borders (see Fig. 1). The 

sensitivity and specificity for plaque characterization 

based on these criteria were reported to range from 

71% to 79% and 97% to 98% for fibrous plaques, 

95% to 96% and 97% for fibrocalcific plaques, and 

90% to 94% and 90% to 92% for lipid-rich plaques 

[7] In addition to the discrimination of plaque type, 

the capability of OCT to identify arterial 

macrophages has also been reported [2]. This study 

showed that macrophage density measured by OCT 

was correlated to immunohistochemical CD68 

staining of macrophages from corresponding 

histopathologic slides (r = 0.84,P <0.0001) [2]. 

Given that the presence of activated macrophages in 

the atherosclerotic plaque are thought to increase 

plaque vulnerability and probability of rupture [57]–

[59]. The knowledge of macrophage distribution and 

density that may be determined by intracoronary 

OCT, may prove useful for evaluating arterial 

inflammation and plaque vulnerability. In 1999, the 

first in vivo intravascular OCT study was performed 

in the abdominal aorta of New Zealand white rabbits 

[51]. Using a 2.9 Fr OCT catheter in conjunction 

with a nonocclusive saline flush, the normal arterial 

wall microstructure, including the media and 

adventitia, were identified [51]. Following this initial 

demonstration, in vivo OCT imaging of coronary 

arteries was demonstrated in five swine [60]. The 

study revealed that intravascular OCT images 

provided superior resolution when compared to 

IVUS images obtained from the same locations, and 

enabled the visualization of features, such as the 

intima, including intimal flaps and defects, 

disruptions in the media, and stent strut apposition 

that could not be identified by IVUS [60] Based on 

the ability of OCT to discriminate between various 

intracoronary plaque microstructures and the 

potential of this imaging modality to have significant 

clinical impact, the first intravascular clinical studies 

with TD-OCT were published in 2002, 

demonstrating the safety and feasibility of this 

technique [5], [7], [52], [53]. Intracoronary OCT 

imaging in living patients enabled the visualization 

of coronary artery walls with unprecedented 

resolution. As in prior animal studies, in vivo OCT 

in the clinical setting was found to provide 

additional, more detailed structural information 

when compared to corresponding images obtained 

with IVUS [5]. In the years, since this initial 

demonstration, OCT has been used extensively by a 

number of investigators in the clinical realm for 

assessing coronary plaque features [61]–[65], stent 

placement [49], [66], [67], apposition [49], [68]–

[70], stent strut coverage [71]–[75], and thrombus 

[76] While early studies demonstrated a niche for 

TD-OCT during PCI, the clinical utility of the 

technology was hampered by relatively low-image 

acquisition rates (2–4 kHz, A-line rates), which is 

because of the need for mechanical actuation of the 

reference arm, and as a consequence of the inverse 

relationship between TD-OCT imaging speed and 

signal-to-noise ratio. The relatively slow image 

acquisition rates of TD-OCT was problematic as 

flushing blood from the field of view was the only 

practical solution to obtaining clear images of the 

artery wall and the duration of a bolus of saline 

within the coronary artery was limited to 

approximately 2 s. The recognition that the 

combination of a substantial increase in acquisition 

speed with a short nonocclusive flush could solve 

the blood problem and enable screening of long 

coronary segments [77], was the key advance that 

has taken intracoronary OCT to the next level 

required for widespread clinical adoption. 

 

V. OPTICAL FREQUENCY DOMAIN 

IMAGING  
 FD-OCTwas the critical technical advance 

that enabled imaging at sufficient speeds for 

coronary screening during a brief, nonocclusive 

flush. One form of FD-OCT, optical 

frequencydomain imaging (OFDI) [78] also called 

swept-source OCT (SS-OCT) [79], is the particular 

implementation of FD-OCT, used in most state of 

the art intracoronary OCT systems. With OFDI, the 

cross correlation of the optical signal returning from 

the sample and reference arms is sampled as a 

function of wavenumber rather than time. The 

spectrally resolved interference between the sample 

and reference arms is generated using a rapidly 

tuned wavelength-swept light source with a narrow 

instantaneous linewidth. A square-law 

photodectector is used to acquire the interference 

signal between the two arms, while the optical path-

length of the arms remain constant. Each frequency 

component of the interference signal is associated 

with a discrete depth location within the tissue. To 

generate an A-line, the Fourier transform of the 

interference fringe is calculated [78]. As in TD-

OCT, 2-D and 3-D OFDI images are acquired by 

scanning the light from the sample arm over the 

tissue. By detecting all depths of the A-line 

simultaneously during a single sweep of the light 

source, the detection sensitivity of OFDI is 

theoretically increased to a maximum of several 

orders of magnitude over TD-OCT [78], [79] This 

increased sensitivity may be leveraged to increase 

the imaging speed, enabling 3-D imaging of 

coronary artery segments during a short 

nonocclusive saline/radiocontrast purge. An 

additional advantage of OFDI technology is that it is 

possible to double the interferometric ranging depth 

by creating a very narrow instantaneous linewidth 

[80], [81] or by utilizing both the positive and 

negative differential delays [82]–[86]. This extended 

ranging depth can be achieved by shifting the 

frequency of the detector signal by a constant value, 

using an acoustooptical frequency shifter in the 

interferometer [86], or by acquiring both the in-
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phase (real) and quadrature (imaginary) components 

of the interferometric signal [82]–[85]. The 

increased ranging depths (>7 mm) now obtained 

with OFDI allow imaging of even the largest human 

coronary arteries [77] Intracoronary OFDI was first 

demonstrated in swine studies in vivo in 2006, 

where comprehensive microscopy of long segments 

of coronary arteries was presented [77]. Forty-four 

in vivo swine intracoronary OFDI datasets were 

acquired at 108 frames per second with pullback 

speeds of 5 mm/s in segments up to 6 cm in length 

[77]. The imaging system used in this study had a 

source tuning range of 111 nm at a 54-kHz A-line 

rate corresponding to an image acquisition rate of 

108 frames per second [77]. The system utilized 

dual-balanced, polarization diverse detection, in 

addition to frequency shifting to remove the depth 

degeneracy providing a ranging depth of 7.3 mm 

[77], [86]. To highlight the volumetric capabilities of 

the imaging technology, the investigators performed 

angioplasty followed by stenting in the circumflex 

artery of one swine. The corresponding cross-

sectional OFDI images revealed clear stent strut 

visualization in addition to dissected intimia and 

media as a result of the balloon angioplasty [77]. By 

presenting the volumetric data in 3-D, a greater 

appreciation of the artery structure was realized. In 

2008, the same group translated this technology to 

the clinical setting and published the first 

demonstration of intracoronary OFDI in three human 

patients undergoing PCI [87]. Intracoronary OFDI 

datasets from three patients were presented, with 

imaging rates of 100 frames per second, and 

pullback speeds ranging from 5 to 20 mm/s [87] Fig. 

2 highlights the long arterial segments that can be 

successfully imaged with OFDI. The imaging core 

was translated at a speed of 20 mm/s with a frame 

rate of 100 frames per second (frame size: 1536 

axial points × 512 A-lines) resulting in a longitudinal 

imaging pitch of 200 μm. During image acquisition, 

the raw data was continuously streamed to a hard 

disk drive at a rate of 320 MB/s. The volumetric 

OFDI data of a right coronary artery was obtained 

during a single limited duration flush at 3 mL/s 

through a 7 Fr guide catheter. Using these 

parameters, a 7-cm longitudinal OFDI pullback of 

clear blood-free imaging was obtained in under 4 s. 

The single pullback shows a proximal BMS that was 

placed nine years prior to imaging, and a DES 

placed immediately prior to imaging. The wealth of 

information obtained in the single pullback is 

highlighted by the volumetric renderings. These 

renderings were created offline by manually 

segmenting the images according to previously vali-

dated image criteria [1], [2], [7], [49] for the 

identification of the artery wall, lipid pools, calcific 

nodules, and stent struts. The macrophages 

highlighted in the renderings were automatically 

segmented with previously validated normalized 

image intensity metrics [2], together with the manual 

removal of outliers. Each of the segmented features 

was rendered in a different color according to the 

following scheme: red = artery wall, yellow = lipid 

pool, white = calcific nodule, blue = stent, grey = 

guide wire, and green = macrophage. The individual 

renderings were then recombined to form the final 3-

D image. Due to the manual segmentation process, 

the time required to construct the final volume 

renderings approached a couple of hours, however, 

with the development of automated and 

semiautomated image processing algorithms, these 

times may be considerable reduced. The volume 

renderings clearly show a high degree of tissue 

coverage on the BMS. In addition, the placement of 

the DES over a lipid-rich plaque can be visualized. 

Together with Figs. 2 and 3 highlights the high level 

of detail that can be observed with OFDI. Of specific 

interest in coronary intervention are issues relating 

to the use and effectiveness of stents, particularly 

stent placement including individual stent strut 

apposition, and tissue coverage over the struts. 

 

 

 

VI. POLARIZATION SENSITIVE OPTICAL 

COHERENCE TOMOGRAPHY 
 Polarization sensitive OCT (PS-OCT), 

another embodiment of OCT, provides a measure of 

tissue birefringence by detecting polarization 

changes in the light returning from the tissue   

sample being imaged [88], [89] When light travels 

through tissues that exhibit form birefringence, 

orthogonal polarization components of the light will 

undergo phase retardation with respect to one 

another. This degree of phase retardation is 

dependent on the orientation of the polarization state 

with respect to the organized linear structures within 

the tissue, such as collagen fibers [90]. The detected 

birefringence increases in tissues containing highly 

organized linear structures. PS-OCT provides 

complementary image information to structural OCT 

images that may assist in the identification of the 

intravascular tissue composition, and may 

additionally provide insight to the mechanical 

stability of atherosclerotic plaques [91] PS-OCT has 

been demonstrated in histopathologic correlative 

studies conducted ex vivo to provide a quantitative 

measure of the collagen content, collagen fiber 

thickness, and smooth muscle content in 

atherosclerotic plaques [91]. In 2006, using a 

spectral-domain PS-OCT imaging system, Nadkarni 

et al. imaged aortic plaques and compared the PS-

OCT spatially averaged birefringence with the 

plaque collagen content and thickness, and smooth 

muscle cell content measured from histologic 

sections stained with picrosirius red and alpha-

smooth muscle actin, respectively [91]. This ex vivo 

study revealed a high-positive correlation between 

the PS-OCT measured birefringence and the total 

collagen content (r = 0.67, p = 0.001), the thick 
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collagen fiber content (r = 0.76, p = 0.001), and the 

smooth muscle cell content (r = 0.74, p = 0.01) [91], 

providing compelling evidence that the measurement 

of artery birefringence may aid in determining the 

tissue composition of plaques, information that may 

be used to assess mechanical stability. In 

intravascular and other catheter-based PS-OCT 

systems, it is necessary to use optical fibers to 

transmit the imaging signal to the tissue of interest. 

Maintaining the polarization state of the transmitted 

light in fiber-based systems is difficult, even with 

polarization maintaining fibers, as the polarization 

state is susceptible to stresses acting on the fiber. 

One method for circumventing this issue is to 

modulate the polarization state of the source incident 

on the sample tissue between two perpendicular 

states in successive A-line pairs. This modulation 

ensures that the polarization state of the light source 

differs for at least one of a successive pair of A-

lines, from that of the linear birefringence axis of the 

sample. Each A-line pair is subsequently combined 

to form a single axial profile, using either Stokes 

vector [92] or Jones matrix [93] analysis. This 

method of fiber-based PS-OCT has been 

demonstrated in both spectraldomain PS-OCT [94]–

[96] and OFDI systems [97]. Recently however, a 

novel approach to PS-OCT unique to OFDI has been 

demonstrated that utilizes frequency multiplexing to 

enable illumination and detection of two polarization 

states simultaneously [98]. This new implementation 

of PS-OFDI obviates the need for modulating the 

polarization state of the source between successive 

A-lines. PS-OFDI with frequency multiplexing has 

been demonstrated in ex vivo studies through an 

intracoronary catheter at an A-line rate of 62 kHz 

[98]. Fig. 4 shows both a structural and a PS-OFDI 

image acquired from a human coronary artery in 

vivo. The PS-OFDI image adds additional detail 

regarding the structural integrity of the artery that 

can be inferred from the tissue birefringence strength 

map. 

 

VII. CONCLUSION 
 Many of the early challenges faced with the 

use of intravascular OCT in the clinical setting were 

overcome with the development of OFDI, the most 

significant being imaging speed. While the laser and 

detection electronics are capable of operating faster 

still, the ability of acquisition electronics and data 

processing to keep pace, remains a challenge. 

Recently however, newer acquisition electronic 

systems have been developed enabling the 

acquisition and storage of data at rates approaching 1 

GB/s. Additionally, solutions to alleviate CPU 

processing requirements have been implemented, 

using hardware components, such as digital signal 

processors (DSPs) [99] and field programmable gate 

arrays (FPGAs) [100]. These hardware solutions 

may be integrated into OFDI systems to handle 

much of the pre and postacquisition processing, thus 

enabling both real-time display and an increase in 

the data transfer rates achievable [99]–[102]. Bit-

depth reduction with aminimal associated loss in the 

signalto- noise ratio of the OCT images, may also 

result in an increase in image acquisition rates due to 

the reduced bandwidth and storage requirements at 

lower bit-depths [80], [103] Coupled with the 

rapidly increasing use of intravascular OCT in 

catheterization laboratories, is a pressing need for 

automated and semiautomated image processing 

techniques for the evaluation of coronary features 

including classification based on tissue pathology, 

stent strut identification and quantification of strut 

tissue coverage. To date the vast majority of this 

type of evaluation is manually performed by expert 

intracoronary OCT readers. This process involves an 

extremely large time commitment and is subject to 

interobserver variations. In the case of quantitative 

feature analyses, such as stent strut coverage or 

lumen diameter analysis, well-defined and validated 

protocols are required in addition to controlled 

image processing steps to account for variances in 

the refractive indexes of both the tissue and flushing 

media. While preliminary studies have been 

conducted describing semiautomated analyses of 

OCT image data [104], the development of 

appropriate automated and semiautomated image 

analysis tools could improve the ease of use of 

intravascular OCT, particularly in nonspecialized 

catheterization centers that may have little or no 

intravascular OCT expertise. With the evolution of 

OFDI and PS-OFDI, there is also an increasing need 

for improved visual display techniques that can 

highlight relevant features, provide an enhanced 

appreciation of the 3-D morphology, and can 

amalgamate the complementary information into 

user-friendly maneuverable 3-D displays. In order to 

fully appreciate the complex 3-D morphology of the 

artery, investigators are exploring various display 

techniques ranging from standard longitudinal and 

transverse cross-sectional displays to intensity-based 

volume rendering, and more complex methods 

involving segmentation and pseudocoloring based 

on tissue characterization with subsequent 3-D 

volume rendering [87]. While preliminary work has 

been demonstrated by some investigators in the 

manipulation, analysis, and display of intravascular 

OCT datasets, further work in this field is needed, 

which may be leveraged from the extensive research 

performed with other imaging modalities, such as 

IVUS [105], [106] The potential clinical utility of 

intravascular OCT has no doubt increased as a direct 

result of the development of highspeed OFDI 

technology. OFDI enables imaging of long coronary 

segments, previously difficult with the first 

generation TD-OCT, during a brief flush with an 

optically transparent media. Based on the status of 

currently available imaging modalities for 

interrogating the coronary arteries, intravascular 

OCT is uniquely situated to play a critical role in 
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improving our understanding of the vulnerable 

plaque, in addition to possibly guiding patient 

management and monitoring the response to PCI. 

 

A. Authors and Affiliations 

Dr Akash Singh is working with IBM 

Corporation as an IT Architect and has been 

designing Mission Critical System and Service 

Solutions; He has published papers in IEEE and other 

International Conferences and Journals. 

He joined IBM in Jul 2003 as a IT Architect 

which conducts research and design of High 

Performance Smart Grid Services and Systems and 

design mission critical architecture for High 

Performance Computing Platform and Computational 

Intelligence and High Speed Communication 

systems. He is a member of IEEE (Institute for 

Electrical and Electronics Engineers), the AAAI 

(Association for the Advancement of Artificial 

Intelligence) and the AACR (American Association 

for Cancer Research). He is the recipient of 

numerous awards from World Congress in Computer 

Science, Computer Engineering and Applied 

Computing 2010, 2011, and IP Multimedia System 

2008 and Billing and Roaming 2008. He is active 

research in the field of Artificial Intelligence and 

advancement in Medical Systems. He is in Industry 

for 18 Years where he performed various role to 

provide the Leadership in Information Technology 

and Cutting edge Technology. 

 

REFERENCES 
 

[1]  B. D. MacNeill, I. K. Jang, B. E. Bouma, 

N. Iftimia, M. Takano,H. Yabushita, M. 

Shishkov, C. R. Kauffman, S. L. Houser, 

H. T. Aretz, D.DeJoseph, E. F. 

Halpern, and G. J. Tearney, “Focal and 

multi-focal plaque macrophage 

distributions in patients with acute and 

stable presentations of coronary artery 

disease,” J. Amer. Coll. Cardiol., vol. 44, 

pp. 972–979, Sep. 1, 2004. 

[2]  G. J. Tearney, H. Yabushita, S. L. 

Houser, H. T. Aretz, I. K. Jang,K. H. 

Schlendorf, C. R. Kauffman, M. 

Shishkov, E. F. Halpern, and B. E. 

Bouma, “Quantification of macrophage 

content in atherosclerotic plaques by 

optical coherence tomography,” 

Circulation, vol. 107, pp. 113–119, Jan. 

7, 2003. 

[3]  G. J. Tearney, I. K. Jang, and B. E. 

Bouma, “Evidence of cholesterol crystals 

in atherosclerotic plaque by optical 

coherence tomographic (OCT) imaging,” 

Eur. Heart J., vol. 24, p. 1462, 2003. 

[4]  G. J. Tearney, I. K. Jang, and B. E. 

Bouma, “Optical coherence tomography 

for imaging the vulnerable plaque,” J. 

Biomed. Opt., vol. 11,pp. 021002-1–

021002-10, Mar./Apr. 2006. 

[5]  I. K. Jang, B. E. Bouma, D. H. Kang, S. 

J. Park, S.W. Park, K. B. Seung, K. B. 

Choi, M. Shishkov, K. Schlendorf, E. 

Pomerantsev, S. L. Houser, H. T. Aretz, 

and G. J. Tearney, “Visualization of 

coronary atherosclerotic plaques in 

patients using optical coherence 

tomography: Comparison with 

intravascular ultrasound,” J. Amer. Coll. 

Cardiol., vol. 39, pp. 604–609, Feb. 20, 

2002. 

[6]  T. Kume, T. Akasaka, T. Kawamoto, Y. 

Ogasawara, N. Watanabe,

 E.Toyota,Y. Neishi,R. 

Sukmawan,Y. Sadahira, andK.Yoshida, 

“Assessment of coronary arterial 

thrombus by optical coherence 

tomography,” Amer J. Cardiol., vol. 97, 

pp. 1713–1717, Jun. 15, 2006. 

[7]  H. Yabushita, B. E. Bouma, S. L. Houser, 

H. T. Aretz, I. K. Jang, K. H. Schlendorf, 

C. R. Kauffman, M. Shishkov, D. H. 

Kang, 

 E. F. Halpern, and G. J. Tearney, 

“Characterization of human 

atherosclerosis 

 by optical coherence tomography,” 

Circulation, vol. 106, pp. 1640– 1645, 

Sep. 24, 2002. 

[8]  J. Rieber, O. Meissner, G. Babaryka, S. 

Reim, M. Oswald, A. Koenig, T. M. 

Schiele, M. Shapiro, K. Theisen, M. F. 

Reiser, V. Klauss, and U. Hoffmann, 

“Diagnostic accuracy of optical 

coherence tomography and intravascular 

ultrasound for the detection and 

characterization of 

 atherosclerotic plaque composition in ex 

vivo coronary specimens: A comparison 

with histology,” Coron. Artery Dis., vol. 

17, pp. 425–430, Aug. 2006. 

[9]  T. Kume, H. Okura, T. Kawamoto, T. 

Akasaka, E. Toyota, N. Watanabe,Y. 

Neishi, R. Sukmawan, Y. Sadahira, and 

K. Yoshida, “Relationship between 

coronary remodeling and plaque 

characterization in patients without 

clinical evidence of coronary artery 

disease,” Atherosclerosis, vol. 197, pp. 

799–805, 2008. 

[10]  A. H. Association, Heart Disease and 

Stroke Statistics – 2009 Update. Dallas, 

TX: American Heart Association, 2009. 

[11]  J. A. Schaar, J. E. Muller, E. Falk, R. 

Virmani, V. Fuster, P. W. Serruys,A. 

Colombo, C. Stefanadis, S.Ward 

Casscells, P. R. Moreno, A. Maseri, and 

A. F. van der Steen, “Terminology for 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 

Issn 2250-3005(online)                                                             November| 2012            Page 64 

 
       

 

 

high-risk and vulnerable coronary artery 

plaques. Report of a meeting on the 

vulnerable plaque, June 

 17 and 18, 2003, Santorini, Greece,” Eur. 

Heart J., vol. 25, pp. 1077–1082, Jun. 

2004.  

[12]  F. D. Kolodgie, A. P. Burke, A. Farb, H. 

K. Gold, J. Yuan, J. Narula, A. V. Finn, 

and R. Virmani, “The thin-cap 

fibroatheroma: A type of vulnerable 

plaque: The major precursor lesion to 

acute coronary syndromes,”Curr. Opin. 

Cardiol., vol. 16, pp. 285–292, Sep. 2001. 

[13] E. Falk, P. K. Shah, and V. Fuster, 

“Coronary plaque disruption,” 

Circulation, vol. 92, pp. 657–671, Aug. 1, 

1995. 

[14]  R. T. Lee and P. Libby, “The unstable 

atheroma,” Arterioscler. Thromb.Vasc. 

Biol., vol. 17, pp. 1859–1867, Oct. 1997. 

[15]  R. Virmani, F. D. Kolodgie, A. P. Burke, 

A. Farb, and S. M. Schwartz,“Lessons 

from sudden coronary death: A 

comprehensive morphological 

classification scheme for atherosclerotic 

lesions,” Arterioscler. Thromb.Vasc. 

Biol., vol. 20, pp. 1262–1275, May 2000. 

[16]  G. C. Cheng, H. M. Loree, R. D. Kamm, 

M. C. Fishbein, and R. T. 

Lee,“Distribution of circumferential 

stress in ruptured and stable 

atherosclerotic lesions. A structural 

analysis with histopathological 

correlation,” 

 Circulation, vol. 87, pp. 1179–1187, Apr. 

1993. 

[17]  R. T. Lee, A. J. Grodzinsky, E. H. Frank, 

R. D. Kamm, and F. J. 

Schoen,“Structure-dependent dynamic 

mechanical behavior of fibrous caps from 

human atherosclerotic plaques,” 

Circulation, vol. 83, pp. 1764–1770, May 

1991. 

[18]  P. R. Moreno, V. H. Bernardi, J. Lopez-

Cuellar, A. M. Murcia, I. F.Palacios, H. 

K. Gold, R. Mehran, S. K. Sharma, Y. 

Nemerson, V. Fuster, and J. T. Fallon, 

“Macrophages, smooth muscle cells, and 

tissue factor in unstable angina. 

Implications for cell-mediated 

thrombogenicity in acute coronary 

syndromes,” Circulation, vol. 94, pp. 

3090–3097, Dec. 15, 1996. 

[19]  A. Farb, A. P. Burke, A. L. Tang, T. Y. 

Liang, P. Mannan, J. Smialek, and R. 

Virmani, “Coronary plaque erosion 

without rupture into a lipid core.A 

frequent cause of coronary thrombosis in 

sudden coronary death,”Circulation, vol. 

93, pp. 1354–1363, Apr. 1, 1996. 

[20]  A. C. van derWal, A. E. Becker, C.M. 

van der Loos, and P. K. Das, “Site 

 of intimal rupture or erosion of 

thrombosed coronary atherosclerotic 

plaques is characterized by an 

inflammatory process irrespective of the 

dominant plaque morphology,” 

Circulation, vol. 89, pp. 36–44, Jan.

 1994. 

[21] P. Meier, R. Zbinden, M. Togni, P. 

Wenaweser, S. Windecker, B. Meier, 

 and C. Seiler, “Coronary collateral 

function long after drug-eluting stent 

implantation,” J. Amer. Coll. Cardiol., 

vol. 49, pp. 15–20, Jan. 2, 2007. 

[22]  J. R. Nebeker, R. Virmani, C. L. Bennett, 

J. M. Hoffman, M. H. Samore, J. 

Alvarez, C. J. Davidson, J. M. McKoy, 

D.W. Raisch, B. K.Whisenant, P. R. 

Yarnold, S. M. Belknap, D. P. West, J. E. 

Gage, R. E. Morse, G. Gligoric, L. 

Davidson, and M. D. Feldman, 

“Hypersensitivity cases associated with 

drug-eluting coronary stents: A review of 

available cases from the Research on 

Adverse Drug Events and Reports 

(RADAR) project,” J. Amer. Coll. 

Cardiol., vol. 47, pp. 175–181, Jan. 3, 

2006. 

[23]  M. Togni, S. Windecker, R. Cocchia, P. 

Wenaweser, S. Cook, M. Billinger, B. 

Meier, and O. M. Hess, “Sirolimus-

eluting stents associated with paradoxic 

coronary vasoconstriction,” J. Amer. 

Coll. Cardiol., vol. 46, pp. 231–236, Jul. 

19, 2005. 

[24]  A. K. Hassan, S. C. Bergheanu, T. 

Stijnen, B. L. van der Hoeven, J. 

D.,Snoep, J.W. Plevier,M. J. Schalij, and 

J.W. Jukema. (2009, Jan. 21). Late stent 

malapposition risk is higher after drug-

eluting stent compared with bare-metal 

stent implantation and associates with 

late stent thrombosis.Eur. Heart J. 

[Online]. 

[25]  B. D. MacNeill, H. C. Lowe, M. Takano, 

V. Fuster, and I. K. Jang, “Intravascular 

modalities for detection of vulnerable 

plaque: Current status,” Arterioscler. 

Thromb. Vasc. Biol., vol. 23, pp. 1333–

1342, Aug. 1, 2003. 

[26]  A. J. Martin, L. K. Ryan, A. I. Gotlieb, R. 

M. Henkelman, and F. S. Foster, 

“Arterial imaging: Comparison of high-

resolution US and MR imaging with 

histologic correlation,” Radiographics, 

vol. 17, pp. 189–202, Jan./Feb. 1997. 

[27]  F. Prati, E. Arbustini, A. Labellarte, B. 

Dal Bello, L. Sommariva, M. T. Mallus, 

A. Pagano, and A. Boccanelli, 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 

Issn 2250-3005(online)                                                             November| 2012            Page 65 

 
       

 

 

“Correlation between high frequency 

intravascular ultrasound and 

histomorphology in human coronary 

arteries,” Heart, vol. 85, pp. 567–570, 

May 2001. 

[28] P. Schoenhagen and S. Nissen, 

“Understanding coronary artery 

disease:Tomographic imaging with 

intravascular ultrasound,” Heart, vol. 

88,pp. 91–96, Jul. 2002. 

[29]  J. M. Tobis, J. Mallery, D. Mahon, K. 

Lehmann, P. Zalesky, J. Griffith, J. 

Gessert, M. Moriuchi, M. McRae, M. L. 

Dwyer, N. Greep, and W.L. Henry, 

“Intravascular ultrasound imaging of 

human coronary arteries in vivo. Analysis 

of tissue characterizations with 

comparison to in vitro histological 

specimens,” Circulation, vol. 83, pp. 

913–926, Mar. 1991. 

[30] P. G. Yock and P. J. Fitzgerald, 

“Intravascular ultrasound: State of the art 

and future directions,” Amer. J. Cardiol., 

vol. 81, pp. 27E–32E, Apr. 9, 1998. 

[31]  L. C. Correia, E. Atalar, M. D. Kelemen, 

O. Ocali, G. M. Hutchins, J. L. Fleg, G. 

Gerstenblith, E. A. Zerhouni, and J. A. 

Lima, “Intravascular magnetic resonance 

imaging of aortic atherosclerotic plaque 

composition,” Arterioscler. Thromb. 

Vasc. Biol., vol. 17, pp. 3626–3632, 

Dec.1997. 

[32] A. J. Martin and R. M. Henkelman, 

“Intravascular MR imaging in a porcine 

animal model,” Magn. Reson. Med., vol. 

32, pp. 224–229, Aug.1994. 

[33]  W. J. Rogers, J. W. Prichard, Y. L. Hu, P. 

R. Olson, D. H. Benckart, C. M. Kramer, 

D. A. Vido, and N. Reichek, 

“Characterization of signal properties in 

atherosclerotic plaque components by 

intravascular MRI,” Arterioscler. 

Thromb. Vasc. Biol., vol. 20, pp. 1824–

1830, Jul. 2000. 

[34]  M. E. Brezinski, G. J. Tearney, B. E. 

Bouma, S. A. Boppart, M. R. Hee, E. A. 

Swanson, J. F. Southern, and J. G. 

Fujimoto, “Imaging of coronary 

arterymicrostructure (in vitro) with 

optical coherence tomography,” Amer. J. 

Cardiol., vol. 77, pp. 92–93, Jan. 1, 1996. 

[35]  D. Huang, E. A. Swanson, C. P. Lin, J. S. 

Schuman, W. G. Stinson, W. Chang, M. 

R. Hee, T. Flotte, K. Gregory, C. A. 

Puliafito, and J. G. Fujimoto, “Optical 

coherence tomography,” Science, vol. 

254, pp. 1178– 

 1181, Nov. 22, 1991. 

[36]  M. Asakura, Y. Ueda, O. Yamaguchi, T. 

Adachi, A. Hirayama, M. Hori, and K. 

Kodama, “Extensive development of 

vulnerable plaques as a pancoronary 

process in patients with myocardial 

infarction: An angioscopic study,” J. 

Amer. Coll. Cardiol., vol. 37, pp. 1284–

1288, Apr. 2001. 

[37]  K. Kodama, A. Hirayama, and Y. Ueda, 

“Usefulness of coronary angioscopy For 

the evaluation of hyperlipidemia,” 

Nippon Rinsho, vol. 60, pp. 927–932, 

May 2002. 

[38]  K. Mizuno and H. Nakamura, 

“Percutaneous coronary angioscopy: 

Present role and future direction,” Ann. 

Med., vol. 25, pp. 1–2, Feb. 1993. 

[39]  Y. Ueda, M. Asakura, O. Yamaguchi, A. 

Hirayama, M. Hori, and K. Kodama, 

“The healing process of infarct-related 

plaques. Insights from 18 months of 

serial angioscopic follow-up,” J. Amer. 

Coll. Cardiol., vol. 38, pp. 1916–1922, 

Dec. 2001. 

[40] S.Waxman, “Characterization of the 

unstable lesion by angiography, 

angioscopy,and intravascular 

ultrasound,” Cardiol. Clin., vol. 17, pp. 

295–305, May 1999. 

[41]  W. Casscells, B. Hathorn, M. David, T. 

Krabach, W. K. Vaughn, H. A. 

McAllister, G. Bearman, and J. 

T.Willerson, “Thermal detection of 

cellular infiltrates in living 

atherosclerotic plaques: Possible 

implications for plaque rupture and 

thrombosis,” Lancet, vol. 347, pp. 1447–

1451, May 25, 1996. 

[42]  C. Stefanadis, K. Toutouzas, E. Tsiamis, 

C. Stratos, M. Vavuranakis, I. 

Kallikazaros, D. Panagiotakos, and P. 

Toutouzas, “Increased local temperature 

in human coronary atherosclerotic 

plaques: An independent predictor of 

clinical outcome in patients undergoing a 

percutaneous coronary intervention,” J. 

Amer. Coll. Cardiol., vol. 37, pp. 1277–

1283, Apr. 2001. 

[43] P. R. Moreno, R. A. Lodder, K. R. 

Purushothaman, W. E. Charash, W. N. 

O’Connor, and J. E. Muller, “Detection 

of lipid pool, thin fibrous cap, and 

inflammatory cells in human aortic 

atherosclerotic plaques by near-

infrared spectroscopy,” Circulation, vol. 

105, pp. 923–927, Feb. 26, 2002. 

[44]  A. Christov, R. M. Korol, E. Dai, L. Liu, 

H. Guan, M. A. Bernards,P. B. Cavers, 

D. Susko, and A. Lucas, “In vivo optical 

analysis of quantitative changes in 

collagen and elastin during arterial 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 

Issn 2250-3005(online)                                                             November| 2012            Page 66 

 
       

 

 

remodeling,” Photochem. Photobiol., vol. 

81, pp. 457–466, Mar./Apr. 2005. 

[45]  L. Marcu, Q. Fang, J. A. Jo, T. 

Papaioannou, A. Dorafshar, T. Reil, J. H. 

Qiao, J. D. Baker, J. A. Freischlag, and 

M. C. Fishbein, “In vivo detection 

ofmacrophages in a rabbit atherosclerotic 

model by time-resolved laser-induced 

fluorescence spectroscopy,” 

Atherosclerosis, vol. 181,  pp. 

295–303, Aug. 2005. 

[46]  H. P. Buschman, G. Deinum, J. T. Motz, 

M. Fitzmaurice, J. R. Kramer, A. van der 

Laarse, A. V. Bruschke, and M. S. Feld, 

“Raman microspectroscopy of human 

coronary atherosclerosis: Biochemical 

assessment of cellular and extracellular 

morphologic structures in situ,” 

Cardiovasc. 

 Pathol., vol. 10, pp. 69–82, Mar./Apr. 

2001. 

[47] T. J. Romer, J. F. Brennan, 3rd, M. 

Fitzmaurice, M. L. Feldstein, G. Deinum, 

J. L. Myles, J. R. Kramer, R. S. Lees, and 

M. S. Feld, “Histopathology of human 

coronary atherosclerosis by quantifying 

its 

 chemical composition with Raman 

spectroscopy,” Circulation, vol. 97, pp. 

878–885, Mar. 10, 1998. 

[48]  M. E. Brezinski, G. J. Tearney, B. E. 

Bouma, J. A. Izatt, M. R. Hee, E. A. 

Swanson, J. F. Southern, and J. G. 

Fujimoto, “Optical coherence 

tomography for optical biopsy. Properties 

and demonstration of vascular  

pathology,” Circulation, vol. 93, pp. 

1206–1213, Mar. 15, 1996. 

[49]  B. E. Bouma, G. J. Tearney, H. 

Yabushita, M. Shishkov, C. R. 

Kauffman, D. DeJoseph Gauthier, B. D. 

MacNeill, S. L. Houser, H. T. Aretz,

 E. F. Halpern, and I. K. Jang, 

“Evaluation of intracoronary stenting by 

intravascular optical coherence 

tomography,” Heart, vol. 89, pp. 317–

320, Mar. 2003. 

[50] G. J. Tearney, M. E. Brezinski, S. A. 

Boppart,B. E.Bouma, N.Weissman, J. F. 

Southern, E. A. Swanson, and J. G. 

Fujimoto, “Images in cardiovascular  

medicine. Catheter-based optical imaging 

of a human coronary artery,” Circulation, 

vol. 94, pp. 3013–3013, Dec. 1, 1996. 

[51]  J. G. Fujimoto, S. A. Boppart, G. J. 

Tearney, B. E. Bouma, C. Pitris, and M. 

E. Brezinski, “High resolution in vivo 

intra-arterial imaging with optical 

coherence tomography,” Heart, vol. 82, 

pp. 128–133, Aug. 1999. 

[52]  I. K. Jang, G. Tearney, and B. Bouma, 

“Visualization of tissue prolapse  

between coronary stent struts by optical 

coherence tomography: Comparison 

 with travascular ultrasound,” 

Circulation, vol. 104, pp. 2754–2759, 

Nov. 27, 2001. 

[53]  E. Grube, U. Gerckens, L. Buellesfeld, 

and P. J. Fitzgerald, “Images in 

cardiovascular medicine. Intracoronary 

imaging with optical coherence 

tomography: A new high-resolution 

technology providing striking 

visualization in the coronary artery,” 

Circulation, vol. 106, pp. 2409–2410, 

Oct. 29, 2002. 

[54]  H. M. Garcia-Garcia, N. Gonzalo, E. 

Regar,and P. W. Serruys, “Virtual  

histology and optical coherence 

tomography: From research to broad 

clinical application,” eart, vol. 95, pp. 

1362–1374, 2009. 

[55] N. Gonzalo, P. W. Serruys, T. Okamura, 

H. M. van Beusekom, H. M.Garcia-

Garcia, G. van Soest,W. van der Giessen, 

and E. Regar, “Optical coherence 

tomography patterns of stent restenosis,” 

Amer. Heart J., 

 vol. 158, pp. 284–293, Aug. 2009. 

[56] G. J. Tearney, M. E. Brezinski, B. E. 

Bouma, S. A. Boppart, C. Pitris, J. F. 

Southem, and J. G. Fujimoto, “In vivo 

endoscopic optical biopsy with 

optical coherence tomography,” Science, 

vol. 276, pp. 2037–2039, 1997. 

[57] V. Fuster, “Lewis A. Conner Memorial 

Lecture. Mechanisms leading to 

myocardial infarction: Insights from 

studies of vascular biology,” Circulation, 

vol. 90, pp. 2126–2146, Oct. 1994. 

[58]  C. L. Lendon, M. J. Davies, G. V. Born, 

and P. D. Richardson, “Atherosclerotic 

plaque caps are locally weakened when 

macrophages density is increased,” 

Atherosclerosis, vol. 87, pp. 87–90, Mar. 

1991. 

[59]  P. R. Moreno, E. Falk, I. F. Palacios, J. 

B. Newell, V. Fuster, and J. T.Fallon, 

“Macrophage infiltration in acute 

coronary syndromes. Implications for 

plaque rupture,” Circulation, vol. 90, pp. 

775–778, Aug. 1994. 

[60]  G. J. Tearney, I. K. Jang, D. H. Kang, H. 

T. Aretz, S. L. Houser, T. J. Brady, K. 

Schlendorf, M. Shishkov, and B. E. 

Bouma, “Porcine coronary imaging in 

vivo by optical coherence tomography,” 

Acta Cardiol., vol. 55, pp. 233–237, Aug. 

2000. 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 

Issn 2250-3005(online)                                                             November| 2012            Page 67 

 
       

 

 

[61]  P. Barlis, P.W. Serruys,N.Gonzalo,W. J. 

van derGiessen, P. J. de Jaegere,and E. 

Regar, “Assessment of culprit and remote 

coronary narrowings using optical 

coherence tomography with long-term 

outcomes,” Amer. J. Cardiol., vol. 102, 

pp. 391–395, Aug. 15, 2008. 

[62]  I. K. Jang, G. J. Tearney, B. MacNeill, 

M. Takano, F. Moselewski, N. Iftima, M. 

Shishkov, S. Houser, H. T. Aretz, E. F. 

Halpern, and B. E. Bouma, “In vivo 

characterization of coronary 

atherosclerotic 

 plaque by use of optical coherence 

tomography,” Circulation, vol. 111, pp. 

1551–1555, Mar. 29, 2005. 

[63]  S. Chia, O. C. Raffel, M. Takano, G. J. 

Tearney, B. E. Bouma, and I. K. Jang, 

“In vivo comparison of coronary plaque 

characteristics using optical coherence 

tomography in women vs. men with 

acute coronary  syndrome,” Coron. 

Artery Dis., vol. 18, pp. 423–427, Sep. 

2007. 

[64]  T. Kubo, T. Imanishi, S. Takarada, A. 

Kuroi, S. Ueno, T. Yamano,T. Tanimoto, 

Y.Matsuo, T. Masho, H. Kitabata, K. 

Tsuda, Y. Tomobuchi, and T. Akasaka, 

“Assessment of culprit lesion 

morphology in acute myocardial 

infarction: Ability of optical coherence 

tomography compared 

 with intravascular ultrasound and 

coronary angioscopy,” J. Amer. Coll. 

Cardiol., vol. 50, pp. 933–939, Sep. 4, 

2007. 

[65]  O. C. Raffel, G. J. Tearney, D. D. 

Gauthier, E. F. Halpern, B. E. Bouma, 

and I. K. Jang, “Relationship between a 

systemic inflammatory marker, plaque 

inflammation, and plaque characteristics 

determined by intravascular optical 

coherence tomography,” Arterioscler. 

Thromb. Vasc. Biol., vol. 27, pp. 1820–

1827, Aug. 2007. 

[66]  K. Toutouzas, S. Vaina, M. I. Riga, and 

C. Stefanadis, “Evaluation of dissection 

after coronary stent implantation by 

intravascular optical coherence 

tomography,” Clin. Cardiol., vol. 32, pp. 

E47–E48,2009. 

[67]  E. Regar, J. Schaar, and P. W. Serruys, 

“Images in cardiology. Acute recoil in 

sirolimus eluting stent: Real time, in vivo 

assessment with optical coherence 

tomography,” Heart, vol. 92, p. 123, Jan. 

2006. 

[68]  O. C. Raffel, J. C. Hannan, and I. K. 

Jang, “Coronary stent malapposition as a 

result of a post-stenotic aneurysm 

detected by optical coherence 

tomography,” J. Invasive Cardiol., vol. 

18, pp. 561–562, Nov. 2006. 

[69]  T. Sawada, J. Shite, T. Shinke, S. 

Watanabe, H. Otake, D. Matsumoto,Y. 

Imuro, D. Ogasawara, O. L. Paredes, and 

M. Yokoyama, “Persistent malapposition 

after implantation of sirolimus-eluting 

stent into intramural coronary hematoma: 

Optical coherence tomography 

observations,”  Circ. J., vol. 70, pp. 

1515–1519, Nov. 2006. 

[70] M. Takano, I. K. Jang, and K. Mizuno, 

“Neointimal proliferation around 

malapposed struts of a sirolimus-eluting 

stent: Optical coherence tomography  

findings,” Eur. Heart J., vol. 27, pp. 

1763–1763, Aug. 2006. 

[71]  E. Regar, H. M. van Beusekom,W. J. van 

der Giessen, and P.W. Serruys, “Images 

in cardiovascular medicine. Optical 

coherence tomography findings at 5-year 

follow-up after coronary stent 

implantation,” Circulation, vol. 112, pp. 

e345–e346, Dec. 6, 2005. 

[72]  P. Barlis, J. Tanigawa, and C. Di Mario, 

“Coronary bioabsorbable magnesium  

stent: 15-month intravascular ultrasound 

and optical coherence tomography 

findings,” Eur. Heart J., vol. 28, p. 2319, 

May 7, 2007. 

[73]  R. Gupta, O. C. Raffel, and I. K. Jang, 

“Severe intimal hyperplasia after 

sirolimus eluting stent deployment: 

Evaluation by optical coherence 

tomography,” Heart, vol. 93, p. 754, Jun. 

2007. 

[74]  J. Tanigawa, P. Barlis, and C. Di Mario, 

“Do unapposed stent struts 

endothelialise?In vivo demonstration 

with optical coherence 

tomography,”Heart, vol. 93, pp. 378–378, 

Mar. 2007. 

[75] M. Takano, S. Inami, I. K. Jang, M. 

Yamamoto, D. Murakami, K. 

Seimiya, T. Ohba, and K. Mizuno, 

“Evaluation by optical coherence 

tomography of neointimal coverage of 

sirolimus-eluting stent three months after 

implantation,” Amer. J. Cardiol., vol. 99, 

pp. 1033–1038,       Apr. 15, 2007. 

[76] E. Camenzind, P. G. Steg, and W. Wijns, 

“Stent thrombosis late after implantation 

of first-generation drug-eluting 

stents:Acause for concern,”Circulation, 

vol. 115, pp. 1440–1455, Mar. 20, 2007. 

[77] S. H. Yun, G. J. Tearney, B. J. Vakoc, M. 

Shishkov, W. Y. Oh, A. E.

 Desjardins,M. J. Suter,R.C.Chan, 

J. A. Evans, I. K. Jang, N. S. Nishioka,J. 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 

Issn 2250-3005(online)                                                             November| 2012            Page 68 

 
       

 

 

F. de Boer, and B. E. Bouma, 

Comprehensive volumetric optical 

microscopy in vivo,” Nat. Med., vol. 12, 

pp. 1429–1433, 2006. 

[78]  S. H. Yun, G. J. Tearney, J. F. de Boer, 

N. Iftima, and B. E. Bouma,“High-speed 

optical frequency-domain imaging,” Opt. 

Exp., vol. 11, pp. 2953–2963, 2003. 

[79] M. Choma, M. Sarunic, C. Yang, and J. 

Izatt, “Sensitivity advantage of swept 

source and Fourier-domain optical 

coherence tomography,” Opt. Exp., vol. 

11, pp. 2183–2189, Sep. 8, 2003. 

[80]  R. Huber, D. C. Adler, and J. G. 

Fujimoto, “Buffered Fourier-domain  

mode locking: Unidirectional swept laser 

sources for optical coherence tomography 

imaging at 370000 lines/s,” Opt. Lett., 

vol. 31, pp. 2975–2977, Oct. 15, 2006. 

[81] R. Huber, M. Wojtkowski, and J. G. 

Fujimoto, “Fourier-Domain Mode 

Locking (FDML): A new laser operating 

regime and applications for optical 

coherence tomography,” Opt. Exp., vol. 

14, pp. 3225–3237, Apr. 17, 2006. 

[82] Y. Mao, S. Sherif, C. Flueraru, and S. 

Chang, “3×3 Mach–Zehnder 

interferometer 

 with unbalanced differential detection for 

full-range sweptsource optical coherence 

tomography,” Appl. Opt., vol. 47, pp. 

2004– 2010, Apr. 20, 2008. 

[83]  M. Sarunic, M. A. Choma, C. Yang, and 

J. A. Izatt, “Instantaneous complex 

conjugate resolved spectral domain and 

swept-source OCT using 3 × 3 fiber 

couplers,” Opt. Exp., vol. 13, pp. 957–

967, Feb. 7, 2005. 

[84]  M. V. Sarunic, B. E. Applegate, and J. A. 

Izatt, “Real-time quadrature projection 

complex conjugate resolved Fourier-

domain optical coherence

 tomography,” pt. Lett., vol. 31, pp. 

2426–2428, Aug. 15,2006. 

[85]  B. J. Vakoc, S. H. Yun, G. J. Tearney, 

and B. E. Bouma, “Elimination of depth 

degeneracy in optical frequency-domain 

imaging through polarization-based 

optical demodulation,” Opt. Lett., vol. 

31, pp. 362– 

 364, Feb. 1, 2006. 

[86] S. Yun, G. Tearney, J. de Boer, and B. 

Bouma, “Removing the depthdegeneracy 

in optical frequency-domain imaging 

with frequency shifting,” Opt. Exp., vol. 

12, pp. 4822–4828, Oct. 4, 2004. 

[87]  G. J. Tearney, S. Waxman, M. Shishkov, 

B. J. Vakoc, M. J. Suter, M. I. Freilich, 

A. E. Desjardins, W. Y. Oh, L. A. 

Bartlett, M. Rosenberg, and B. E. Bouma, 

“3-D coronary artery microscopy by 

intracoronary optical frequency-domain 

imaging,” JACC Cardiovasc. Imag., vol. 

1, pp. 752–761, Nov. 2008. 

[88]  J. F. de Boer, T. E. Milner, M. J. C. van 

Gemert, and J. S. Nelson, 2-D 

birefringence imaging in biological tissue 

by polarization-sensitive optical 

coherence tomography,” Opt. Lett., vol. 

22, pp. 934–936, 1997. 

[89]  M. J. Everett, K. Schoenenberger, B. W. 

Colston, and L. B. da 

Silva,“Birefringence characterization of 

biological tissue by use of optical 

coherence tomography,” Opt. Lett., vol. 

23, pp. 228–230, 1998. 

[90]  J. F. de Boer and T. E. Milner, “Review 

of polarization sensitive optical 

coherence tomography and Stokes vector 

determination,” J. Biomed. Opt., vol. 7, 

pp. 359–371, Jul. 2002. 

[91]  S. K. Nadkarni, M. C. Pierce, B. H. Park, 

J. F. de Boer, P. Whittaker, B. E. Bouma, 

J. E. Bressner, E. Halpern, S. L. Houser, 

and G. J. Tearney, “Measurement of 

collagen and smooth muscle cell content 

in atherosclerotic plaques using 

polarization-sensitive optical coherence 

tomography,” J. Amer. Coll. Cardiol., 

vol. 49, pp. 1474–1481, Apr. 3, 2007. 

[92]  B. Park,M. Pierce, B. Cense, and J. de 

Boer, “Real-time multifunctional optical 

coherence tomography,” Opt. Exp., vol. 

11, pp. 782–793, Apr. 7, 2003. 

[93]  B. H. Park, M. C. Pierce, B. Cense, and J. 

F. de Boer, “Jones matrix analysis for a 

polarization-sensitive optical coherence 

tomography system using fiber-optic 

components,” Opt. Lett., vol. 29, pp. 

2512–2514, Nov. 1, 2004. 

[94]  B. H. Park, M. C. Pierce, B. Cense, S. H. 

Yun, M. Mujat, G. J. Tearney, B. E. 

Bouma, and J. F. de Boer, “Real-time 

fiber-based multifunctional spectral-

domain optical coherence tomography at 

1.3 um,” Opt. Exp., vol. 13, pp. 3931–

3944, 2005. 

[95]  C. E. Saxer, J. F. de Boer, B. H. Park, Y. 

Zhao, Z. Chen, and J. S. Nelson, “High-

speed fiber-based polarization-sensitive 

optical coherence tomgoraphy of in vivo 

human skin,” Opt. Lett., vol. 25, pp. 

1355–1357, 2000. 

[96]  B. H. Park, C. Saxer, S. M. Srinivas, J. S. 

Nelson, and J. F. de Boer, “In vivo burn 

depth determination by high-speed fiber-

based polarization sensitive optical 

coherence tomography,” J. Biomed. Opt., 

vol. 6, pp. 474–479, Oct. 2001. 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 

Issn 2250-3005(online)                                                             November| 2012            Page 69 

 
       

 

 

[97]  J. Zhang, W. Jung, J. S. Nelson, and Z. 

Chen, “Full range polarizationsensitive 

Fourier-domain optical coherence 

tomography,” Opt. Exp., vol. 12, pp. 

6033–6039, 2004. 

[98] W. Y. Oh, S. H. Yun, B. J. Vakoc, M. 

Shishkov, A. E. Desjardins, B. H. Park, J. 

F. de Boer, G. J. Tearney, and B. E. 

Bouma, “High-speed polarization 

sensitive optical frequency-domain 

imaging with frequency multiplexing,” 

Opt. Exp., vol. 16, pp. 1096–1103, 2008. 

[99]  J. Su, J. Zhang, L. Yu, H. G. Colt, M. 

Brenner, and Z. Chen, “Realtime swept 

source optical coherence tomography 

imaging of the human airway using a 

microelectromechanical system 

endoscope and digital signal processor,” 

J. Biomed. Opt., vol. 13, pp. 030506-1–

030506-3, May/Jun. 2008. 

[100] A. Desjardins,B.Vakoc,M. Suter,G. 

Tearney, andB.Bouma, “Real-time FPGA 

processing for high-speed optical 

frequency-domain imaging,” IEEE Trans. 

Med. Imag., vol. 28, no. 9, pp. 1468–

1472, Sep. 2009. 

[101]  V. Westphal, S. Yazdanfar, A. M. 

Rollins, and J. A. Izatt, “Real-time, high 

velocity-resolution color Doppler optical 

coherence tomography,” Opt. Lett., vol. 

27, pp. 34–36, Sep. 2009. 

[102]  S. Yan, D. Piao, Y. Chen, and Q. Zhu, 

“Digital signal processor-based real-time 

optical Doppler tomography system,” J. 

Biomed. Opt., vol. 9, pp. 454–463, 

May/Jun. 2004. 

[103]  Y. Yasuno, S. Makita, T. Endo, G. Aoki, 

H. Sumimura, M. Itoh, and T. Yatagai, 

“One-shot-phase-shifting Fourier-domain 

optical coherence tomography by 

referencewavefront tilting,” Opt. Exp., 

vol. 12, pp. 6184– 6191, Dec. 13, 2004. 

[104]  G. T. Bonnema, K. O. Cardinal, S. K. 

Williams, and J. K. Barton, “An 

automatic algorithm for detecting stent 

endothelialization from volumetric 

optical coherence tomography datasets,” 

Phys. Med. Biol., vol. 53, pp. 3083–3098, 

Jun. 21, 2008. 

[105]  A.Wahle, J. J. Lopez, M. E. Olszewski, 

S. C.Vigmostad,K. B. Chandran, J. D. 

Rossen, andM. Sonka, “Plaque 

development, vessel curvature, and wall 

shear stress in coronary arteries assessed 

by X-ray angiography and intravascular 

ultrasound,” Med. Image Anal., vol. 10, 

pp. 615–631, Aug. 2006. 

[106]  A. Wahle and M. Sonka, “Coronary 

plaque analysis by multimodality fusion,” 

Stud. Health Technol. Inf., vol. 113, pp. 

321–359 , 2005. 

 


