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ABSTRACT

In the present paper analytical expressions of the arc-length between two arbitrary points lying on
hyperbola are obtained in terms of Gauss’ hypergeometric function, Clausen’s hypergeometric function
and Kampé de Fériet’s double hypergeometric function.
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l. INTRODUCTION AND PRELIMINARIES
For the sake of conciseness of the paper we have used the following notations
N=1{123..}5; Ny:==Nu{0}={0,1.23,..}; Z:={0,+1,42,43,..}; Z ={-1,-2,-3,..};
Zo:=7Z u{0}={0,—-1,-2,-3,..}y and Z: =Z; UN;

where the symbols N and Z are the set of natural numbers and set of integers respectively, the symbols R and C
are the set of real numbers and set of complex numbers respectively.

The Pochhammer symbol (a),,, (a,p € C), is defined by

1, (p = 0;x € C\{0})
a(a+ 1) (a+n—-1), (p=n€eN;aeC\Zy)
@ _T+p) | E;l_)nl)(: (a=-kp=mnkeN,;0<n<k)
g I'(w) 0, (o ==k;p=n;n,k € Nyn>k)
k(i__li)n, (p = —n;n € N;a € C\Z).

(11)
It being understood conventionally that (0), = 1, and assumed tacitly that the Gamma quotient exists.

If a,p € C and r =0,1,2,3, ..., then

a2
a+pr= # such that each Pochhammer symbol is well defined. (1.2)
p/y
(@ min = @m(a +m)y = (@n(a+ 1)y, (1.3)
I['(z+1) =zl (2). (1.4)

The generalized hypergeometric function of one variable ,F, is defined by
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F S 72 |= .F () z =32 M. (@)n zn
pra pra "= YL, (Bn
B1.Bay - By (ﬁq); ’
where, (ap) is a set of parameters ay, ay, -+, &, With similar interpretation for (84). By convention the empty
product is treated as unity and empty sum is treated as zero, p,q € N,.

(1.5)

Convergence conditions of ,F,

1. when p < qthen|z| < oo,

2. when p = q + 1then|z| <1,

3. when p=gq+1and|z| =1thenR(w) > 0,

4. whenp=q+1,|z| =1landz # 1then -1 < R(w) <0,

where, w:=X7_, B; —¥¥_; aj,and a; € C(Jj = 1,2,3,...,p); B € C\Zy (j = 1,2,3, ..., q).

The Binomial expansion in terms of hypergeometric function can be written as
a;
(1-2)""= 1k

n!

VA l = Z;'Ozo (a)nzn‘ (16)

’

where, a € C and |z] < 1.

Kummer’s first summation theorem [2,p. 9, eq 2.3(1)]

a , b; _ a
|- @

1+a-—b; z “

where, R(b) <1 and 1+a—b € C\Z;.
Kampé de Fériet’s double hypergeometric function ([1,p. 150, eq 29], [3,p. 112], see also [4])
a,): (by); cr);
Pk @p): (bg)i - (c) eyl =32, 3o [Ty (@raes [Ty Br [Tas (65 x7 8 18)
tmn 24 =0 SS=0 L (@))ras Ty (B)r [Ty (r)s T4 sV '

(af): (ﬂm); (Vn);

where denominator parameters (a;), (B:), (¥x) are neither zero nor negative integers.

Convergence conditions of FPTk ([7, pp. 153-157, sections 3 & 4] see also [9,pp. 423-424, eqs. 26-27])

£ m;n

1. whenp+qg<f+m+1L,p+k<fL+n+1then |x| <o and |y| < oo,

1 1
2. whenp+qg=¢f+m+1Lp+k=L+n+1p>¢then |x|p-? + |y|p—¢ < 1,
3. whenp+qg=¢+m+1Lp+k=£+n+1p<£ then max{lx| |y|} <1,

The following results will be required in our present investigation.

Some basic integrals and reduction formula

[ sect dt = C +In(sect +tant) = C +In (tan (% + %)), (1.9)
[ sec’tdt = C + tant, (1.10)
[ sec3tdt=C +% In(sect + tant) + % (1.12)
where C is the constant of the integration.
The following reduction formula is available in all textbooks of integral calculus
n—2 _
[ sechx dx = C 4 20X X ( z)f sec™ 2x dx, (1.12)

(n-1) (n-1)
where n is positive integer greater than or equal to 2.

From reduction formula (1.12) we can write
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dt = C + tant sec?™ 3t  (2r-3)

1 2r-3 .
| == sy (2r—2)f sec?3tdt; r=>2. (1.13)

By the successive applications of reduction formula (1.12) in the right hand side of eqg. (1.13) we can find same
integral in finite series form containing Pochhammer symbol,

1 1 .
[——dt=cC+ G),., Iniectrant + G).., Smt( r2_ ); r>2. (114)

cos2T-1t (r-1)! (r—1)!cos2t \ &n=0 (%) cos2nt
n

The integral (1.14) can be verified with the reduction formula (1.13) by taking r = 2,3,4 ...

1
y = sech(x) = —cush(x]

(0.1)

x' (0,0) x

!

y

Figure 1: Graph of ﬁ

O)p= = = = = == — =

x' (0,0) x

--------- (0,-1)

’

y

Figure 2: Graph of tanhx
From Figs.(1, 2) itis clear that values of (coshx)~! and tanh x lies inthe interval (0,1) for all values of x > 0.

In egs. (1.9), (1.14) replace t by (it), use the properties of hyperbolic functions and formula:
In(a + ib) = éln(a2 +b?) +itan? (3) (where a and b are positive real numbers), we get

1) Codstht = C + tan"!(sinht), (1.15)
1 1 .
dt _ (5)1-_1 -1 . (E)T—l sinht r—=2 n! .
I commzr1g =~ ¢ F (r-1)! tan™"(sinh ¢) + (r-1)!cosh2t Zn=0 W porz2 (1.16)

Double series identity ([8,p. 100,eq 2.1(2)],[6,p. 57,eq 2])
2rto Zm=o P(r,n) = X7 Lo P(r +n,n), (1.17)
provided that series involved are absolutely convergent.

In this paper any values of parameters and variables leading to the results which do not make sense are tacitly
excluded.
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Il MAIN FORMULA FOR ARC-LENGTH OF HYPERBOLA
The exact arc- Iength AB between two arbitrary points A(a cosht,,bsinht,) and B(acosht,,bsinht,) lying

2
on hyperbola — —— =1 is obtained in terms of Clausen’s hypergeometric function 3;F, and Kampé de Fériet’s

double hypergeometrlc function F 552

13 3
5050

AB = { aesinht, — —tan I(sinht,) — Tega tan~ 1(sinht,) 3F, 1

|
| g
l

33, : 1
25 L 11
__asinht, F212 1
16e3cosh?t, 201 e2 e coshztz
| 3
32 = 5 )
[1,§.§: |
. a " a . [72’2 |
—{ aesinht, —z—etan‘ (sinht;) —@tan‘ (sinht;) 3F2|[ inI
e
| 2,3;
33
22014 1 )
53 1 1 |
asinht; F21 | 1 1 |}
" 16e3cosh?t, Fzo e2’ e2cosh?t,
3 |
—; E }

(2.1)
where a is the length of semi transverse axis and e is the eccentricity of the hyperbola. Both the series ;F, and
F220112 are convergent since - < 1 and < 1. Therefore our expression (2.1) is convergent and is believed
to be new.

Derivation of formula (2.1)

Consider the equation of hyperbola

x2 Z
primior i =1 (Cartesian form) (2.2)
where, b% = a?(e? — 1) or “HE5 — o2 o 2+b2 = eiz <1, a and b are semi-transverse and semi-conjugate

axes of the hyperbola and e(> 1) is called the eccentricity of hyperbola.

Its parametric form is given by
x =acosht, y=bsinht. (2.3)

Since given hyperbola (2.2) is symmetrical about x — axis and y — axis both, without any loss of generality,
we shall find the arc-length between two arbitrary points lying in positive quadrant only.

T _'“‘\ "‘—Btaco..htq.bsmht )
\ A(acoshtl sinhzy)

(- 40)| (00? |(GU) x

2
Figure 3: Hyperbola ——2’—2 =1
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The arc-length between two arbitrary points A and B lying on any parametric curve is given by
1 = [ () + () e @)
ty dt dt '
Put % = asinht, % = b cosht, in eq. (2.4), and integrating over the interval [t;,t,] st. 0 <t; <t, < oo,

ty ta

AB = f \/(a?sinh2t + b2cosh2t)dt = J. J((az + b2) cosh?t — a2)dt

t1
ty
- /@159 f cosht <1 - ;) dt
e?cosh?t
t1

ta
=,/ (a? + b?) f cosht 1FJ
ty |l ezcosthJI
© 1
(-3),

rle2"cosh?"t

Nl»—k

' 1
1 }dt; since ———<1, V ¢t
e2cosh?t

)

=,/(a? +b?) fcosht

r=0

t2
(-3). 1
2 2
dt + /(@ + b Z fCOShZT_ltdt,

r! le
ty

cosht

t2
2 + bZ
= /@ +b2)f cosh ¢ dt — 3 (a J
ty
(2.5)
Using integrals (1.15) and (1.16) in eg. (2.5) we get,
© 1 1
(-2,6)..,

1
sinht — ——tan~!(sinh t) + z
2e?

2/, “1 ) tan~1(si ht)+Sinht§ n!
—=r 11 Jtan~!(sin
L (r=Dir! ezr cosh?t (i) cosh2nt
2/n

AB = /(@ ¥ b?)

n=0
t

1
sinht — ﬁtan‘1 (sinht)

() inh ¢ z !
sin n!
r+2 r+1 t —1(: ht
z (r+ 1)' (r+2)e 2”4{ an™(sinh &) + cosh?t 4 (i) cosh2"t
n=0 \z/,

- J@TE

(2.6)
() e 0,6 o
AB = ./(a? + b?) smht—ﬁtan (sinh¢) + 2ot Z(; r!1(2),(3), e?"
( = smht () Wn :
T 2etcoshit 26 COShZ ; nzo (Z)r(3)rezr z) cosh?t
" @.7)

Now using double series identity (1.17) in eq. (2.7), we get
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133
AB = \/(a? + b?)|sinht —itan‘l(sinh t) —m 3F 22 1
2e? 16e* =
2,3;
3 —|t2

sinht Z Z Hn (;)Hn (Dn I
16e4cosh2tr: (2)T+n(3)r+n e2r+an G) cosh2nt|
n

ty

(2.8)
( [ 3 3. 1
. '2'2
AB =< ae smht—z—tan (sinh t)— stan~!(sinht) 3F, 1
| e’
33 \
S5 1L ]
B asinht F212 1
16e3cosh?t 201 e2 e cosh2
3 I
320 = 5 }
(2.9)

After simplification we get the formula (2.1).

I, MAIN FORMULAS FOR ARC-LENGTH OF RECTANGULAR HYPERBOLA
The exact arc-length AB between two arbitrary points A (ctl,ti) and B (ctz,ti) lying on rectangular hyperbola
1 2

xy = c? is given in terms of Gauss’ hypergeometric function ,F;

((Y)When 0 <t; <t,<1and c>0

1 1 1 1
- [_E’_Z’ [_E’_Z' ]
then AB=—,F, —tt| == ,F, —t#|, (3.1)
L - i |
(iWhen 0 <t; <1<t, <o (Ort; <1 andt—<1)and c>0
[ 11 1 f_l _1
Ty 2’ 4’ ] 312
_ 1 )
then AB :i 2F1 [3 _tf +Ct2 zFll tg‘|26( \/4;) )y (3.2)
. 3
1 1 +’
(ili) When 1 <t; <t, <o (ort—<t—< 1)and ¢ >0
_1_1 _1_1
[ 2l 4I ] [ 2l 4) ]
then AP =cC tz 2F1 _é - Ctl 2F1 _é . (3.3)
3 3
The right hand side of equations (3.1), (3.2) and (3.3) are convergent under associated conditions.
Derivations of formulas (3.1), (3.2) and (3.3)
Consider the equation of rectangular hyperbola
xy = c? (Cartesian form) (3.4)
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yH

— (0.0) ¥ x

| '

y

Figure 4: Rectangular Hyperbola xy = c?
Its parametric form is given by

X = ct, y =% (35)
dx _ d_y _ _ <
Put Zoo = @in (2.4) we get
— t 2 t 1
AB = [ (c2+5)dt=c I (1+3)a. (3.6)

Since no standard formula for indefinite integral of (1 + t%) w. r. to t is available in the literature of integral

calculus and other mathematical tables. Therefore we shall apply hypergeometric approach to evaluate the exact
value of the arc-length. Furthermore, given rectangular hyperbola (3.4) is symmetrical about the line y = —x
without any loss of generality, we shall find the arc-length between two arbitrary points lying in positive quadrant
only.

Three cases arise based on the position of points A and B
when 0 <t; <t,<landc>0
tz

_ 1
then AB=c f t_z‘/(l +tY)dt, since t* <1 here,

]
] rl(4r — 1)
[ 1 1 ] 1 1
_E’_Z’ I [_E’_Z, ]
| c
AB:t_z A _tfl_t_zﬂl —t3
1 l 3 J 2 [ > J
) 4 )

@.7)
Both ,F, series are convergent, since t; < 1 and t, < 1. Therefore, our result (3.7) is also convergent.

when 0 <t; <1<t <o (ort; <1and =<1)and ¢ >0
2

www.ijceronline.com Open Access Journal Page 50



Analytical expressions for arc-length of hyperbola: A hypergeometric approach

r
r!
r=0 t1 m=0 1
(3.8)
1 t
N 2 (_1 r 4r—1 N (_ i)Trl (_1)m —-4m+1 2
Z r! (4r (t )| Fe Z '(=4m + 1) ( )
r=0 t m= 1
1 1
[_1 _1 1 [_E' 7 ] [ 1 1 1
c | 2' 4’ 1 _E)_ZI
=t_ 2F1| —t1|+Ct2 2F1 _t_4 —2C 2F1 —1 .
Ll ; EE
— ; 2 Z )
4 R
(3.9)

|
N|
|
e
|
N| -
|
N
—_
e——
N
—
|
—
N———
N

|
I

S w

3
4
(3.10)

where, FG) = 1.2254167024 ..., Both ,F, series are convergent, since t; <1 and ti< 1. Therefore, the
2

result (3.10) is also convergent.

When1<t1<t2<oo(0r < <1)andc>0

Page 51
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o (_1 _q1\ym
Z( z)m( D (t2—4m+1_t1—4m+1)’

m!(—4m + 1)
m=0
1 1_ [1 1_ ]
[ 20 4 ] 20 4
— 1
AB == Ctz 2F1 _g - Ctl 2F1| _El
3 | 3 |
ra Ly

(3.12)

Both ,F, series are convergent, since ti< 1 and ti< 1. Therefore, the result (3.11) is also convergent.
1 2

REMARK
We have also derived a formula [5] for arc-length between two arbitrary points lying on an ellipse.

We conclude our present investigation by observing that solutions of such problems can be obtained in an
analogous manner.
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