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ABSTRACT

Let Xand Kbe a Cech-complete topological group and a compact group, respectively. We prove that if Gis a
non-equicontinuous subset of CHom(X, K), the set of all continuous homomorphisms of Xinto K, then there is a
countably infinite subset L CEGsuch that LKXis canonically homeomorphic to Pw, the Stone—Cech
compactifcation of the natural numbers. As a consequence, if Gis an infinite subset of CHom(X, K)such that for
every countable subset L cGand compact separable subset Y €Xit holds that either LKYhas countable tightness
or |LKY| <c, then Gis equicontinuous. Given a topological group G, denote by G-+the (algebraic) group
Gequipped with the Bohr topology. It is said that Grespectsa topological property Pwhen Gand G+have the
same subsets satisfying P. As an application of our main result, we prove that if Gis an abelian, locally
quasiconvex, locally kwgroup, then the following holds: (i) Grespects any compact-like property Pstronger than
or equal to functional boundedness; (ii) Gstrongly respects compactness.

Keywords: Cech-complete group Locally ko-group Interpolation set Bohr compactification Bohr topology
Respectscompactness

I.  INTRODUCTION

Let Gbe a locally compact abelian group and let _Gdenote its Pontryagin dual group. We say thata subset Eof
_Gis Sidonif for every bounded function fon Ethere corresponds a Borel regular measure on G, p, such that _p(y)
=f(y)for all yEE(here _pdenotes the Fourier transform of p). If, in addition, pis assumed to be discrete (ithasa
countable support) then it is said that Eis an lo-set. Therefore, each lo-set is Sidon. For instance, lacunary (or
Hadamard) sets (i.e. sequences (zn)nCNsuch that infzn+1/zn>1) are perhaps the simplest examples of lo-sets. The
search for interpolation sets is a main goal in harmonic analysis and the monograph by Graham and Hare
[25]contains most of the recent results in this area.

In this paper, this question is approached from a topological viewpoint that is based on the equivalent
formulation of this notion given by Hartman and Ryll-Nardzewski [26](in fact, the term lo-set is due to them).
According to their (equivalent) definition a subset Eof a locally compact abelian group Gis an lo-set if for each
f€le(E) (that is, for each complex-valued, bounded function defined on E) there exists an almost periodic function
foon Gsuch that f(y) =fo(y)for all yEE. Furthermore, since every almost periodic function on a topological group
Gis the restriction of a continuous function defined on the Bohr compactification bGof G, it follows that ECGis an
lo-set if each f€l=(E)can be extended to a continuous function fedefined on bG. The latter property implies that
Evcis canonically homeomorphic to BE, the Stone-Cech compactification of the set Eequipped with the discrete
topology. This equivalent definition of le-set and the duality methodsobtained from Pontryagin-van Kampen
duality allows us to apply topological techniques in the investigation of this family of interpolation sets. Thus, we
can prove the existence of lo-sets for much larger classes of groups than locally compact abelian groups. Several
applications of our results to different questions related to the Bohr compactification and topology of topological

abelian groups are also obtained. Last but not least, we deal with the topological properties of sets of continuous
functions. Indeed, if Xand Mare a topological space and a metrizable space respectively, given a subset G €C(X,
M), we look at the possible existence of copies of pw(the Stone-Cech compactification of the natural numbers)
within Gm.. This property, or its absence, has deep implications on the topological structure of Gas a

set of continuous functions on X and has found many applications in diff erent settings (for instance, see
[20.22,17,25] where there are applications to topological groups, dynamical systems, functional analysis and
harmonic analysis, respectively).

The starting point of this paper stems from a celebrated theorem by Bourgain, Fremlin and Talagrand
about compact subsets of Baire class 1 functions [7], that we present in the way it is formulated by Todorcevi¢

in [35].

Theorem 1.1. (J. Bourgain, D.H. Fremlin, M. Talagrand) Let X be a Polish space and let {f,},c, S C(X)
be a pointwise bounded sequence. The following assertions are equivalent (where the closure 1s taken in RX):
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() {fptnew 15 sequentially dense in its closure.
(b) The closure of {fn}nw contains no copy of Bw.

A variant of this result is due to Pol [33, p. 34], that again was formulated in diff erent terms (cf. [9]).
Here B,(X) denotes the set of all Baire class 1 functions defined on X.

Theorem 1.2. (R. Pol) Let X be a complete metric space, G a subset of C(X), which is uniformly bounded,
and K = G the closure of G in R*, Then the following are equivalent:

(1) K ¢ B:(X).
(b) G contains a sequence whose closure in K is homeomorphic fo Bw.

In both cases we have a dichotomy result that basically characterizes two erucial properties about sets of
continuous functions defined on a Polish and metric complete space, respectively. In this paper we look at
this question in terms of the set of continuous functions G € C(X, M) alone, when M iz a general metric
space. We first extend the notion of I;-set, given by Hartman and Ryll-Nardzewski for complex-valued
functions, to a more general setting, which will be needed later on when we apply it to topological groups.

Definition 1.3. Let X and M be a topological space and metric space, respectively. If C(X, M) denotes the
set of all continuous functions from X to M, we say that a subset ¥ of X is an M-inferpolation set (or, we

can simply say an Interpolation set for C(X, M )) when for each function g € M" , which has relatively

compact range in M, there exists a map f € C(X, M) such that fj, = g.

A main goal in this paper is the understanding of the kev (topological) facts that characterize the
existence of interpolation sets. Thereby, this research continues the task accomplished in previous projects
[19.20] and [16]. Here, we introduce a crucial property stronger than the mere non-equicontinuity, that
provides sufficient conditions for the existence of Interpolation sets in diff erent settings. We refer to [6]
forits motivation, where this notion implicitly appears.

Definition 1.4. Let X be a topological space and let M be a metric space. We say that G = C(X, M) is a
B-family if the following two conditions hold:

(a) G is relatively compact in M*.
(b) There exists a nonempty open set V of X and € > 0 such that for every finite collection {U,, ..., U.}
of nonempty relatively open sets of Vv there is g € G such that diam(g(U;)) = efor all j € {1,...,n}.

Remark 1.5. In [15], we define a subset G of C(X, M ) as almost equicontinuous (resp. hereditarily almost
equicontinuous) if G is equicontinuous on a dense subset of X (resp. if G is almost equicontinuous for
every closed nonempty subset of X). We do not know which is the relation between the notions of being

a B-family and the negation of being almost equicontinuous or hereditary almost equicontinuous when X
is a Cech-complete space. However, in the cases in which this relation is known (topological groups, for
instance), the existence of interpolation sets is assured as we show below.

Definition 1.6. A map f: X Y defined between two topological spaces X and Y is guasi-open when for
any open set U in X, the image f(U) has nonempty interior.

We now formulate our main results. All topological spaces are assumed to be infinite, completely regular
and Hausdorff from here on.

Theorem A Let X be a é&ch—complc:t:—: space, M a metric space, Y a metrizable separable space and @ :
X Y a continuous and quasi-open map. If G < C(X, M ) is a B-family such that each g ¢ G factors
through @ (that is, for each g = G, there is a map g  C(¥Y, M) satisfying g(x) = (§ o ©)(x) forall x = X),
then there is a nonempty compact subset A of X and a countable infinite subset L of G such that L is
separated by A. As a consequence, if M is a Banach space, G contains a countably infinite M-interpolation
set.

Remark 1.8. From Theorem 1.2, one can deduce the existence of an interpolation subset in a set G of real-
valued continuous functions defined on a complete metric space X, when G contains a function thatis
not Baire one. The main diff erence in our approach is that this property is isolated within the set G.

Theorem B. Let X be a (fe::kfcomplsfc group and K a compgcz‘ group. If G = CHom(X, K) is not equicorn-
tinuous, then G contains a countable subset L such that T©  is canonically homeomorphic to 6L, when L
is equipped with the discrete fopology. In case K = Uln), the unitary group of degree n, it follows that L is
an C"zfin.ferpoi!czfion sef.
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A consequence of this result is a variation of a well-known Theorem by Corson and Glicksberg [13]
asserting that if a subset G of continuous homomorphisms defined on a hereditarily Baire group has a

compact, metric closure, then it is equicontinuous. In case X is Cech-complete and K is a compact group,
these constraints can be relaxed considerably.

Theorem C. Let X be a C ech-complete group, K be a compact group and G be an infinite subset of
CHom(X, K_) If for every countable ﬂfbf‘d L = G and compact separable subset Y S X we have that
—K¥

either L has countable tightness or IL = ¢, then G is equicontinuous.

Definition 1.11. A Hausdorff topological space X is a k,-space if there exists an ascending sequence of

compact subsets K; € K2 ... € X such that X = K, and U € X is open if and only if U N K, is
open in K, for each n < w (i.e. X = imK,) as a topgf(;%ical space. A Hausdorff topological space X is

locally k,, if each point has an open neighborhood which is a k,-space in the induced topology. It is clear
that every k,-space is a k-space (see [24]). A k,-group (resp. locally k,-group) is a topological group where
the underlving topological space is a k,-space (resp. locally k).

The class of abelian locally quasiconvex, locally k.-groups includes, in addition to all locally compact
abelian groups: all free abelian groups on a compact space, indeed on any k, space; all dual groups of
countable projective limits of metrizable (more generally, Cech-complete) abelian groups; all dual groups of
abelian pro-Lie groups defined by countable systems [24,32]. Moreover, this class is preserved by countable
direct sums, closed subgroups, and finite products [24].

Theorem D. Let G be an abelian locally quasiconvex, locally ku-group. If {Gntnew is a sequence in G that
is not precompact in G, then {g,},-, contains an lo-set.

The Bohr compactification of a topological group G, can be defined as a pair (bG, b) where bG is a compact
Hausdorff group and b is a continuous homomeorphism from G onto a dense subgroup of bG such that

everyeontinuous homomorphism h: G = K into a compact group K extends to a continuous homomorphism
h*: bG — K, making the following diagram commutative:

G%‘bﬁ'

NS

The topology that b induces on G will be referred to as the Bohr topology. A topelogical group G is said
to be maximally almost periodic (MAP, for short) when the map b is one-to-one, which implies that the
Bohr topology will be Hausdorff .

The duality theory can be used to represent the Bohr compactification of an abelian group as a group of
homomorphisms. Indeed, if G is an abelian topological group and I'; denotes its dual group equipped with
the discrete topology then bG coincides with the dual group of T',.

Given a topological group G, let G+ denote the algebraic group G equipped with the Bohr topology.
Glicksberg [23] has shown that in a locally compact abelian (LCA, for short) group G, every compact subset
in G* is compact in G. This result concerning LCA groups is one of the pivotal results of the subject, often
referred to as Glicksberg's theorem.

Given a topological group G and a property P, we say after Trigos-Arrieta [36] that G respects the
property P when G and G* have the same sets satisfying P. Taking this terminology, Glicksberg's theorem
asserts that locally compact Abelian groups respect compaciness. Trigos-Arrieta considered some properties
(pseudocompactness, countable compactness, functional boundedness) obtaining that they are respected by
locally compact Abelian groups. Several authors have dealt with this question subsequently (cf. [3,5,28,18]).
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Glicksberg result was extended in a diff erent direction by Comfort, Trigos-Arrieta and Wu [12] by the
following remarkable result.
Let G be a LCA group and let N be a closed metrizable subgroup of its Bohr compactification bG.

Denote by m the canonical projection from bG onto bG/N and set by, Lt ron making the following diagram
commutative:

b
G ———=bG

NS

Theorem 1.13 (Comyfort, Trigos-Arrieta and Wu). Let G be a LCA group and let N be a closed metrizable
subgroup of its Bohr compactification bG. If A is a subset of G, then A + (N n G) is compact in G if and
only if the set by(A) is compact in bG/N.

23

In the same paper, the following classes of topological groups is introduced: A group G strongly respects
compactness if satisfies the thesis in Theorem 1.13. The authors also propose the question of clarifying the
relation between these two classes of groups and furthermore the characterization of the groups that strongly
respect compactness. Using the techniques studied in this paper, we can prove that everyv abelian locally
quasiconvex, locally k,, group respects any compact-like property P that implies functional boundedness
and, furthermore, strongly respects compactness, improving the results obtained by Gabriyelyan [18] for
locally k,-groups. As a matter of fact, this result has been already applied to solve Question 4.1 in [12]
(see [30]).

Definition 1.14. Let X be a topological space. A subset A of X is functionally bounded when every real-valued
continuous function defined on X is bounded on A. We say that a topological property P on X is stronger

than or equal to functional boundedness if for each A =X that satisfies P (A &P for short), it holds that
A is functionally bounded.

Theorem E. Let G be an abelian, locally quasiconvex, locally k,, group. Then the following holds:

(i) G respects any compact-like property P stronger than or equal to functional boundedness.
(ii) G strongly respects compactness,

1. Interpolation sets in topological spaces

Definition 2.1. Let X and M be a topological space and metric space, respectively, and let C(X, M ) denote
the space of continuous functions of X inte M. Given a subset L £ C(X, M), we say that K S X separates
L if for every subset A = [ there are two closed subsets in M, say D; and D., and x4 € K such that
dist(Dy, D=) > 0, x(x4) € Dy for all y € A and x(x4) € D=for all y € L \ A.

In the sequel, we are going to apply the definition of M -interpolation set to subsets L C(X, M3 M* ,
where X and M are a topological and a metric space, respectively. That is to sav, we will look at L as an
Interpolation set for C(M”", M ). First, we need a lemma, whose proof is known. However, we include it
here for the reader’s sake. We refer to [14,21,34] for further information.

Lemma 2.2. Let X and M be a topological and a metric space, respectively, and let L be a subset of c(x,Mm)
—mr - . . . -
such that L is compact. Consider the following properties:

www.ijceronline.com Open Access Journal Page 103



Interpolation sets in spaces of continuous metric-valuedfunctions

(a) Thereis a nonempty subset A of X such that L is separated by A.

(b) EU&Z.’::‘y two disjeint subsets of L have disjoint closures in M~

(c) L is canonically homeomorphic fo 6L if Lis equipped with the discrete topology.
(d) L is a Interpolation set for C(M", M).

Then (@) = (b) = (c) = (d). If M 15 a Banach space then the properties (b), (c) and (d) are equivalent.

Proof. That (b) implies (c) is folklore. It is also clear that (d) implies (c). For (@) implies (b), let B, and
B, two disjoint subsets of L, which is separated by A. Then, there are two closed sets D, and D, in M and

Xo € A € X such that d(D, D.) = €, for some & > 0, bl(xo) £ D, for all b, € B, and y(x,) € D. for all
yel \Bl (in particular for all b- ¢ B2). Thus, _SH = 0. Finally, let us see that (c) implies (d),
assuming that M is a Banach space.

Letf € M with relatively compact range in M. By (c), the malg f can be extended to a continuous map

defined on - . Therefore, there is a continuous function f: LY — M such that T~ f- Now, applying
[34, Cor. 3. 5] (cf [20, Th. 9]), it follows that there is a continuous map f: M* — M that extends f. Hence

f is the required extension of f to M*.

Definition 2.3. Let X and M be a topological space and a metric space (respectively) and letof M*. We
say that f is fotally discontinuous if there are two subsets Ny and N, in M and two dense subsets Ay and

A; in X such that d(No, Ni) = 0 and F(A;) EN; for j = 0,1

We may assume that No and N are open sets because, otherwise, we would replace them by B(N;, 5/3) &
{m e M : d(m, N;) < s/3}, where s = d(No, N2) and i = 0, 1.

Definition 2.4. A topological space X is said to be Cecli-complete if it is a Gssubset of its Stone—Cech
compatification. The family of Cech-complete spaces includes all complete metric spaces and all locally
compact spaces.

Lemma 2.5 . Let X and M be a écch—complstc space and a metric space, rc:n}';{gc:crivcly. If G a subset of
C(X, M) where each element has relatively compact range in M such that G contains a totally discon-
tinuous function f, then there is a nonempty compact subset A of X and a countable infinite subset L of
G, which is separated by A. Furthermore, by Lemma 2.2, if M is a Banach space, it follows that L is a M-

interpolation set.

Proof Since X is C'?ech—c.omplete, it is a Gs-subset of its Stone—Cech compatification 8X. Set X = mo W,
n=

where W, is a dense open subset of 8X for each n < w and W, c W, if r < s. In the sequel, given a map
g c C(X, M) with relatively compact range in M, we denote by ¢° its continuous extension to 8X.

Set No, Ny, Ao, As as in Definition 2.3, where we assume that No and N: are open wlog. By induction
onn = |t], t € 20 (ie. the set of finite sequences of 0's and 1's), we define a family {U, : t € 2} of non-
empty open subsets in 6X and a sequence of functions {h, : n < w} S G, satisfying the following
conditions for all t € 2@:

[{13 ggf Bx‘CVb,l? NnUfori=o,1;
(111:] ti tf |t]+1 t
(iv) Ug, NUs =3
|:|( Uy) € N; for j = 0, 1;
(v) if s<|¢l, then diam(h°® [H— ")) <= forj=o0,1.
It
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B
- Fruction: =0,byr {tv Wy o mpty ) t 1 ! that S c
wCpTTctign TEn 5 0y rpgularity wegan find Uy ¢ ponemipty open st i D Lehrs & LS
t g <N €
with [t| = n. Since U, is open in 8X, then V, Ay UsnX @ is openin X. We can find a, b, € V, such that
fla) € Ny and f(b.) £ N, because V, is a relatively open subset of X and the sets A; and A, are dense
in X. Since f € G, there is h, € G such that h,(a;) € No and h,(b;)  N..

Let h° be the continuous extension of h,, then we can select two open disjoint neighborhoods in 8X,
O and O, of a, and b,, respectively, satisfying:

6

R &X
(1) Owgy uO0n  cus

(2) 0 NOa" =2
3) diam(h (Oy)) < e
(4) hO,) = N, for j = o, 1.

Since Wy, ., is dense in 6X, then W, N O, and W ., N O, are two nongmpty open sets. By
regularity, there exist two non empty open sets Uy, and U,y such that U Uo S Wis N 0w and
—8x =
Un EUn S Wj+s N O, respectively. Therefore, U and Un satisfies the conditions (i), (jii) and (iv).
Moreover, using a continuity argument, we can adjust the two open sets to satisfy (v).

Set A def EBX, which is a closed subset of 8X and, as a consequence, A is compact. On the
n<w |t|=n

6x (0 by compactness of 6X.

8x
other hand, we also have A = Ugln . For each o € 2%, Ugln
° gE2Y psw * n<w

oo
So A /= . By construction we have that A < W, = X. Consequently A is contained in X.

n=0
Define ¢p : A = 2% by ¢—#(a) = Uu|n§x- Clearly ¢ is an onto and continuous map. For each t € olw)
and o € 2¥, h|,£q}—lga )] ig a gingleton by (v). Therefore, hjy lifts to a continuous function h* on 2% such
that ., ()= ( for all A, 7|
hix" hy @ c

Let us see that {h,}.c. is separated by A. Indeed, for any arbitrary subset 5§ = w, it suffi ces to select
ag € 2% such that o(0) =0 and o(n +1) = 1if n € S or a(n + 1) = 0 if n £ S. By construction, if we
take any element & o " 8X < A, then h, (B) € N, for every n € S and h, (B) € N, for every n £ 5.

<t Uuln

Finally, in case M is a Banach space, Lemma 2.2 implies that [ = {A.}ne i3 a M-interpolation set. O
We need the following compact space K that is defined as in [10].

Definition 2.6. Let (M, d) be a metric space that we always assume equipped with a bounded metric. We
set

K% {a: M —[-1,1]: la(m) — a(my)| < d(m,, m2),  ¥ms, mz € M.

Being pointwise closed and equicontinuous by definition, it follows that K is a compact and metrizable

subspace of C(M, R) equipped with the supremum norm. For each mo € M, we set @, € R by @, (m) =
d(m, mo) for all m € M. It is easy to check that a,, € K. Given any element f £ A", we associate a map

f € R**K defined by
f (% a) =a(f(x)) for all (x a) € X x K.

In like manner, given any subset G of M we set G e {f . fEGL
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We are now in position of proving Theorem A.

Proof of Theorem A. We may assume wlog that the map @ is surjective because otherwise we would deal
with the separable and metrizable space ®(X). Due to the fact that Cech-completeness is hereditary for
closed subsets, we may assume, from here on, that X = Vwlog; where V is a nonempty open subset
satisfving the following property: there is some fixed € > o such that for every finite collection {U,, ..., U}
of non-empty open subsets contained in V, there is some element g € G with diam(g(U;)) = ¢ for all
jeiy..., nk a N

Let {Vilicw be an arbitrary countable open basis in Y. We set V, = ®7*(V,) and pick and arbitrary
point x, € V, for each k < w.

Since X is Cech-complete, there exists a sequence{ A} ;. of open coverings of X, such that, if a family
F of closed subsets has the finite intersection property, and if for each i < w there is an element of F such
that is contained in a member of A;, then F # [i4, Theorem 3.9.2]. In order to simplify the notation
below, we say that a set of X is A;-small if it is contained in a member of A;.

Using an inductive argument, for every integer n < w, we find f,, € G, &, = K and a finite collection

{Unkh=k=n of nonempty open sets in X satistying the following conditions (for each n < w and each
k=1...,n):

() Upi E Vi
() diam(f(U,)) = 3
(i) Unssk S Unis
(iv) d(f,(x), fu(x)) = “gfor all x € U5
(V) Un,i is Aj-small, for 1 = j = n;
(vi) |, (Fr(x)) — an(Fr(xi)l = 5, for all x € U, .

Construction: If n = 1, since Vi is an open subset in X there exists fi =G such that diam(f.(V)) = €.
By the continuity of fi, it follows that there exists a nonempty open subset Wi ; such that:

(a) Wi EVy
(b) d(filx), f(xs)) = 5 for all x € Wi,

Let a; 4 @ (.)€ K Note that |a,(f1(x)) — a.(f1 ()| = %, for all x € W, 4.

Now, we take the open covering A, of X. Then, there is A € A; such that A N Wy, is not empty.
By regularity, we can find a nonempty open subset Uis such that Uys & Uia € A N Wiy E Vi and
diam(fi(U.:) = 1.

Assume now that f,, a, and {U, i} zx=, have been obtained, with n = 1. By hvpothesis, there exists
fn+s E G such that diam(f,,+1(U,, ) = € for all k £ {1,..., n} and diam(f,,+,(V,+1)) = €, where x,,., £
Vigy S Vpes: and V,,y, is A;-small for 1= j < n.

By the continuity of f,+,, we can find nonempty open subsets { W+ t}1=4 =0+ satisfving:

(1) Woesp S Upy, for all 1 = k = n;
(2) Whe1n+1 € V,yq (therefore W, ey n+s is Aj-small for 1 = j < n);
(3) diam(foes(Wos1i)) =—= ,foralli =k =n+1;

(4) d(fosslx), fre:1(q)) = “gforallx € Wy and 1 =k =n+1.
Set @+ € [—1,1]™ defined by

Ctnsq (M) & .111i.n d(m, fr+1(x,)) for all m € M.
1=k=n+1
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We claim that a,., € K. Indeed, if m, m. £ M, then

Iﬂ'nﬂ(nh] - ﬂnﬂ(mzjl = | min d(mx, fn+1(Xk)) - min d{:mz,fn+1()(k)).
! sk=at1 !ok=n+1

Assume wlog that

1 min  d(my, fr+(x)) = . min  d(ma, frr ()
=k=n+1 =k=n+1

and choose ko € {1,..., n + 1} such that

, min - d(ma, f-106)) = d(ma, frea(x, ))-

=k=n+i

Then,

|ﬂn+1(m1) - a'n+1(f?".'2)| = . min d(mp fn+1(Xk)) - d(ﬂ"h, fn+1(xkp)) =
=k=n+1

d(my, for1(xi,)) — d(mz, fora(xy,)) = d(m,, m2).
On the other hand, forall x € W,yyand 1=k = n+ 1

ﬂn+1(_fn+1(XD - an+1[fn+1(Xk')]| = |an+1[fn+1[xj)| = 1 min d(fn+1[x);fn+1(xk]) = ;_

=k=n+1

Take the open covering A,+: of X. Then, for each k € {1,..., n + 1} there is A, € A,+ such that
Ay M W,sy, is a nonempty open subset of X. By regularity we can find an open set U,.,, such that:

= Un+ik & Un+ik E Ak N Wasrrk E Ung, fi1=k=mn
e Uniiner S Unsines S Appys N Wigineg € Viey,  ifk=n+1

This completes the construction.
e] -
Now, for each k < w, the intersection U, is nonempty by Cech-completeness. Therefore, we can fix
n=k
oo

a point B, € . U, for all k < w. Note that ®(x,) € V, and @®(&8,) € Vv, for all k € w.
n

(@ xK)
Take an element (£ a) € {(f., a,)}rw . By (vi) we have:

€
|an O_fn(@(k)] — On o_fn((b(xk]) = |8n Dfn(lzk) —n Dfn(xk)| = E? "F‘."l = k
Therefore, osc(a,, © _;F:, 17;() = € for all n = k. As a consequence, we also have osc(a o f", ';'1) = ¢_for all
k<w. 3 3
Let 4, 6 ,m}be an enumeration of all pairs of rational numbers (r, §) with § > 0. For each m<w,

define

Fry = {y €Y :inf(a OJE)(U] < rp  supla of)(u) = Fpy + 68, Ynbd U of y}.

It is easily seen that Frm is closed and, consequently, £, def - 1F 7 is closed in X

Observe that, since {Vi}rww is an open basis in Y, it follows that ¥ = ™ E,.

: L i . : X = "
Being X Cech-complete, it is a Baire space. Therefore, there is some m, < w sucﬁl%ﬂap E;ﬁﬁfls notierpty
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interior” in . Since ¢jiga quasgi-open gap, wedave that @( ) has nonempty interior included in
It follows that inf a o F(U) < Fmo and sup o o fwy)y = Frg + Omg - Set Ug = @YU ) & U we have that
inf (a © f(Uo)) < rm, and sup (a e f(Ua)) = rmg + 6m, -

Set F = Uo, r e rm. and & s &m. and consider the following sets:

As={xeF:acf(x)<r}={xE F:ac f(x) € Io}
Ar={xeF:acf(x)=r+8t={xcF acf(x)s L}

wheye /o =[—1,r) and /, = (r+6, 1]. Note that A, and A, are dense subsets in £. Define N s a—t(/,) and
N; = a-1(/,), which are disjoints. Moreover, since a € K, it follows that d(N,, N;) = 6 and f(A ) S N
i J

for j = 0, 1. Therefore f iz totally discontinuous on F. It now suffi ces to applv Lemma 2.5. O

Remark 2.7. Note that the result remains valid if we assume that for each residual subset R of X there is
a separabl®e metrizable space Y and a continuous and quasi-open map @ : R — Y such thatforallg € G
there is a g € C(Y, M) satisfying g(x) = (g e ®)(x) for all x € R.
Corollary 2.8. Let X be a Polish space, let (M, d) be a metric space and let G

pe L = C(X, M) be a B-family.

Then there is a nonempty compact subset A of X and a countable subset L of G such that L is separated
by A. As a consequence, if M is a Banach space, it follows that L is a M-interpolation set.

2. Interpolation sets in topological groups

In this section, we apply the results obtained previously in the setting of topological groups. Our first
result clarifies the relevance of the notion of B-family when we deal with topological groups. From here
on, we assume, wlog, that every metrizable topological group M is equipped with a left-invariant metric.

Furthermore, if M is in addition compact, then we assume that M is equipped with a bi-invariant metric.
From here on, if X and Y are topological groups, we let Hom(X, M) (resp. CHom(X, M)) denote the set

of all homomorphisms (resp. continuous homomorphisms) of X into M.

L*ﬂl—nm 3.1. Let X be a topological group, M a metric topological group and G c CHom(X, M) such that

G is compact. Then G is a B-fanmily if and only if it is not equicontinuous.

Proof. It is clear that, if G is a B-family, then it may not be equicontinuous. So, assume that G is not a
B-family. Taking V = X and € > o arbitrary, there exists a finite family U, ..., U open subsets in X
(wlog, we assume that U; = x;V,, where V; is a neighborhood of the neutral element) such that for every
g € G there is V;, with 1 = j = n, satisfying that diam(g(x;V;)) < €. Now, since g is a group homomorphism
and d is left-invariant, it follows that diam(g(V,)) < € as well. Set V, = V. n...nV,, then diam(g(xV,)) < €
for all g € G and x € X. Consequently G is equicontinuous. O

The next result is a direct consequence of Lemma 3.1, Theorem A and Lemma 2.2. Previously, we need
the following definition. Recall that U(n) denotes the unitarv group of degree n.

Cc;};gllary 3.2. Let X be a compact group, M a metric topological group and G CHom(X, M) such that
G is compact, If G is not equicontinuous, then there is a nonempty compact subset A of X and a
countable infinite subset L of G that is separated by A, As a consequence, if M is a Banach space, it
follows that L is a M-interpolation set. In particular, if M = U(n) then G contains an Interpolation set for
C(Hom(G, U(n)), C™).
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Proof By Troallic [37], we may assume wlog that G is countable. By Lemma 3.1, G is a B-family. Define

an equivalence relation on X by x ~ y if and only if g(x) = g(y) for all g € G. Since G is countable and
consists of group homomorphisms, it follows that the quotient space X = X/~ is a compact metrizable

— S
def
., There Hp. .d. the ical quoti 3 hg  Gfactorst h a ma
BERRRa i Eomo D) Tnati S R0 e e Sy e R 220 ot P o oo R
is automatically open, Theorem A implies that there is a nonempty subset A of X and a subset L of G
such that £ is separated by A. In case M is a Banach space, applying Lemma 2.2, we obtain that £ is a

-

M-interpolation set. O

Next result is folklore but we include its proof for the sake of completeness.

Lemma 3.3. Let X be a topological group, M a metric topological group, G € €(X, M) and h € C(X, M ).
Set Gh s {gh:g € G}. Then G is equicontinuous on X if and only if Gh is equicontinuous on X,

Proof. It suffices to prove that Gh is equicontinuous if G is equicontinuous. Let x, be an arbitrary but fixed
point in X. Since right translations are continuous mappings on a topological group, and G (resp. h)
is equicontinuous (resp. continuous) on X, given € > o, there is a neighborhood U of x; such that
d(g(xe)h(xs), g(x)h(xc)) < e/2 and d(h(xc), h(x)) < e/2 for all x £U and all g < G. Thus, applyving
the left invariance of the group metric, we obtain

€ €

d(g(xo)h(xo), g(x)h(x)) = d(g(xe)h(xo), glx)h(xe)) + d(g(x)h(xc), g()h(x)) < |+ -=¢€

for all x € U, which completes the proof. O

With the hypothesis of the previous lemma, if g € CHom(X, M), the symbol g—* denotes the map
defined by g-1(x) = g(x)~* = g(x2) for all x € X. Combining Lemmata 3.1 and 3.3, we obtain:

Corollary 3.4 Let X be a toppfagical group, M be a topological group with a bi-invariant metric, G <
CHom(X, M) such that EW is compact and go € G. Then Ggg - is a B-family if and only if it is not

equicontinuous.

Proof It suffi ces to see that Gg, * is equicontinuous if Gg, * is not a B-family. Reasoning as in Lemma 3.3,

let Vv = X and € > o, then there are {U, ..., U} open subsets of X such that for all g € G there is

j £141,...,n} with diam(gg; *(U;)) < €. We can assume that U; = x;V; wlog, where V; is a neighborhood

of the identity element of X, for all 1 = j = n. Take W e V; and an arbitrary element x, = x.
1=j=n

Given g € G, there is j € {1,..., n} such that

€ > diam(ggs " (U,))

diam(gge *(x;V;)) = sup d(ggs(x;x), 995 (x;¥))

X VEV
=sup d(g(x;) gg5*(x) g5*(x;), a(x;) gga*(¥) go*(x;))
X, YEV;
=sup d( gg;*(x) , 995 (y) ) = diam(gas*(V;))
X VEVF

> diam(ggy*(W)) = diam(ggs* (xoW)). O
We can now prove Theorem B.

Proof of Theorem B. Since K is compact, there is a representation m : K — U(n) such that {mog : g € G}
is not equicontinuous. Therefore, we assume that K = U(n) wlog.
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Applving [15, Cor. 2.4] (cf. [37, Cor. 3.2]), since G £ CHom(X, U(n)) is not equicontinuous, there exists
a separable compact subset £ of X and a countable subset L © G such that L|r is not equicontinuous.
Set H as the smallest closed subgroup generated by F, it follows that H < X is closed and separable and
L G countable such that L 4 {s not equicontinuous. So we can assume wlog that X is separable and G is
countable. On the other hand, by Cech-completeness of X, there must be a compact subgroup € of X such
that X/C isdgfeparable, complete and metrizable [8], thereby, a Polish space.

Let Gle = {glc:g € G} = CHom(C, U(n)). We have two possible cases:

(1) Gl contains infinitely many elements that are pairwise inequivalent (recall that y4, y» € Hom(C, U(n))
are equivalent (y, ~ y») if there exists U € U(n) such that y, = U-ty.U).
(2) Glc only contains a finite subset of elements that are pairwise inequivalent.

- Case (1): We may suppose wlog that all elements of G| are pairwise inequivalent. By [11, Th. 1], it
follows that G| is discrete as a subset of CHom(C, U(n)) in the compact open topology on C, which
implies that G| mayv not be equicontinuous on C. Applying Corollary 3.2, there is a nonempty subset
A of € and a countable subset L of G such that L is separated by A. Thus, by Lemma 2.2, 79 is
canonically homeomorphic to 8L (where L is equipped with the discrete topology) and we are done.

- Case (2): Set H s {¢s, ..., ¢} S G such that every g € G is equivalent to an element in 4 when
they are restricted to C. If we define G, ={g £ G:glc ~ ¢ilch then G=G, ... G,,. Since G is
not equicontinuous, there is i € {1,... m} such that G;is not equicontinuous. So, we may assume wlog
that there is go € G such that gl ~ gole for all g £ G. Therefore, for each g £ G, there is U, € U(n)
with (U;2gU,)|e = gole. Denote by g the map Ug*gU, and set G s {u3zgU, : g € G}, which is a
subset of CHom(X, U(n)). It is easily seen that G is not equicontinuous on X. (Indeed, assume that
G were equicontinuous and let W be an open neighborhood of the identity matrix /,, in U(n). By [31,

Corollary 1.12], there would exist an open neighborhood V of ex such that g(Vv) S U-WU for
u=Uln)

allg e G. Therefore, we would have glv) = U, §(V)Ug_ £ W for all v € V. This would imply that G is
equicontinuous, which is a contradiction.) Hence,“Ggo—i is a B-family on X by Lemmas 3.3 and 3.4.
Let i, : X — X/C the canonical quotient map, which is open and continuous. Since X/C is Polish and
each gg,.~* factors through X/C, we apply Theorem A and Lemma 2.2 in order to obtain A = X and
L < G such that

Ums  Uma .
L L g 6L

def
Set L = {g:g € L} < G and consider the map

¥ (L t,(A)) —— (L t,(A))
Ug_lgug — g

- YO
The map ¢ is continuous because L is discrete. Moreover, using that £ is canonically homeomorphic
to BL (L with the discrete topology), there is a continuous extension map

— )

<Uln)™
gL St (A)) = (

- T
77 ().
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U
Using a compactness argument on the group U(n), it is not hard to verify that if p,q £ cr and
Y(p) = Plq) then p and g are equivalent. Since Orbit(p) =§ U~*pU : U =U(n) thas the cardinality of

()
continuum ¢ and |L | =|6L| = |Bw| = 2°, we obtain:

"‘U{n}"| - —L[n]

of = |L [1U(n)| = max{|LYC |, c}.

Therefore

U@ e

__Utn)* . .
Applying [16, Cor. 2.16], it follows that L contains a subset P such that p ™ s canonically homeo-
morphic to P (with P equipped with the discrete topology). This completes the proof. O

Corollary 3.5. Let X be a Cech- -complete abelian group. If an infinite subset G ofX is not equicontinuous,
then G contains a countably infinite lg-set,

Next follows the proof of Theorem C.

Proof ofTheorem C. If for every countable subset L= Gand compact separable subset ¥ = X we have
that either " has countable tightness or T" | <c then T° may not contain any copy of 6w. By
Theorem B, this implies that [|, is equicontinuous on Y. Applying [15, Theorem B], it follows that G
is hereditarily equicontinuous on X, which implies that G is equicontinuous because G consists of group

homomorphisms. O

3. Iy-sets in abelian locally k,, groups

In this section, we study the existence of Jo-sets for abelian locally k, groups, a large family of topo-
logical groups that includes, for example, all LCA groups, the free abelian groups on a compact space and
all countable direct sum of compact groups. The proof of our main results are obtained using methods of
Pontrvagin—van Kampen duality. Therefore, we first recall some basie definitions and facts about the Pon-
trvagin duality of abelian groups. From here on, all groups are supposed to be abelian and, therefore, we
will use additive notation to deal with them. In particular, we identify T with the additive group{ 1/2, 1/2)
by identifying 1/2.

If G is a topological group, a character on a topological abelian group G is a continuous group ho-
momorphism from G to the torus group T. The set of all characters on G, with peintwise addition, is a
group.

For a topological abelian group G, let K(G) denote the family of all compact subsets of G. For a set
A = G and a positive real €, define

def s
la el = {x e G:Ix';:}Jl«_r: eforall g 2 A}

The sets [K €] c é, for K c K(G) and € > 0, form a neighborhood base at the trivial character, defining
the compact-open topology. We write G for the topological abelian group obtained in this manner.
A topological abelian group G is reflexive if the evaluation map £

E:G— G,
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defined by £(g)(x) = x(g) for all g & and x= G, is a topological isomorphism. By the Pontryagin—van
Kampen theory, we know that every LCA group is reflexive. Furthermore, the dual of a compact group
is discrete and the dual of a discrete group is compact. In general, the dual of a LCA group is also lo-
cally compact. As a consequence, every compact abelian group is equipped with the topology of pointwise
convergence on its dual group.

Definition 4.1. Let G be a topological abelian group. For A G, leeA® := [A 14]. Similarly, for X G,
let

X = g€G:lxg)l= f01 aly e Xx .

The following facts are well known (see [4]).

Lemma 4.2. For each neighborhood Uof 0 in G, we have that u® e K(G}j.

Definition 4.3. Let G be a topological abelian group. A set A <G is guasiconvex if A® = A. The
topological group G is locally quasiconvex if it has a neighborhood base at the neutral element, consisting
of quasmom ex sets. G is called Maximally Almost Per Todjc (MAP, for short) in the sense of von Neumann
when G separates the points in G, which means that G is Hausdorf and, as a consequence, the group G
is algebraically injected in its Bohr compactification bG. Obviously, by definition, every locally quasiconvex
abelian group G is MAP.

For each set A G, the set A” is a quasiconvex subset of G. Thus, the topological group G is locally
quasiconvex for each topological abelian group G. Moreover, local quasiconvexity is hereditary for arbitrary
subgroups.

The set A” is the smallest closed, quasiconvex subset of G containing A.

In the case where G is a topological vector space, G is locally quasiconvex in the present sense if, and
only if, G is a locally convex topological vector space in the ordinary sense.

If G is locally quasiconvex, its characters separate points of G, aud thus the evaluation map £: G — Gis
injective. For each quasiconvex nelghbmhood U of 0in G the set U” is a compact subset of G (Lemma 4.2),

and thus UPP is a neighborhood of 0 in G. As E[G] nUP® = E[U® ] = E[U], we have that £ is open [4,
Lemma 14.3].

The following theorem of Gléckner, Gramlich and Hartnick [24] states that there exists a relation between
the abelian locally k,, groups and the abelian Cech-complete groups.

Theorem 4.4. If G is an abelian locally k., group, the é is écch—complers.
Conwversely, Gis locally k,, for each abelian Ceck—complsfe topological group G.

Using this duality and Theorem B we obtain:

Proof of Theorem D. Consider the abelian Cech-complete group G. By means of the evaluation map

E:G —GC C(GAT] we can look at the sequence {g,},., as a subset of C[GAT] Furthermme since
{g,},<. is not precompact in G, it follows that {g,},.,, is not equicontinuocus on G Indeed, 1f it were
equicontinuous on G, by Arzela—Ascoli's theorem, then {g-},, would be precompact in CC(G T). the
group C(G, T) eqmpped with the compact open topolog} Now, since G is a locally quasiconvex k-space,
the evaluation map E: 6 6 % a topological isomorphism onto its image (see [27]). Thusf g} s, would
also be precompact in G, which is a contradiction.

Therefore, the sequence {g,},., is not an equicontinuous set on G and, by Theorem B, contains an
I-set. O
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The next result was proved in [19, Lemma 4.11].

Lemma 4.5. Let G be a maximally almost periodic abelian group, A a subset of G and let N be a subset of
bG containing the neutral element such that A + N is compact in bG. If F 15 an arbitrary subset of A, there
exists Ao S A with |Asl = |N| such that

er_bgF = Ao+ N +C."5+(F - F)
We are now in position of proving Theorem E.

Proof of Theorem E. Let G be a locally quasiconvex, locally k., group and let bG denote its Bohr compact-
ification.

(i) Let P be 3 topological property implying functional boundedness and let A be any subset of G
satisfying P in G , which (by definition) is equipped with the weak topelogy generated by G; that is to say
G+ S TS. Reasomng by contradiction assume that A does not satisfy P in G. We claim that A may not be
a precompact subset of G. Indeed, if it were, since every locally k,-group is complete [24, Remark 7.3], it
would follow that A° would be compact in 6. Therefore, it would also be compact in G * that is equipped
with a weaker topology. Since any compact topology is (Hausdorff ) minimal, this would imply that the Bohr
topologzy would coincide with the original topology of G on the compact subset Zﬁand, as a consequence,
on A. Thus A would have property P in G.

So, assume wlog that A is not precompact in G. As in the proof of Theorem D, if we take the abelian
Cech-complete group G and inject G in C(G, T) by means of the evaluation map £: G _, &< (&, T), it
follows that A is not equicontinuous on G. By [15, Cor. 2.4], it follows that there exists a countable subset
F = A and a separable compact subset X = G such that F is not equicontinuous on X. Taking the closure
in G of the subgroup generated by X, we may assume wlog that X is a separable closed subgroup of G. On
the other hand, since A is functionally bounded in G* and X < G, it follows that F is also funetionally
bounded in G, when the latter is equipped with weak topology generated by X.

Set X+ = {g c G: x(g) = 0 for all x € X} and take the quotient G/X =, which clearly is a maximally
almost periodic group whose dual is X. Furthermore, the group G/X+ is locally k., and G/X* = X,
which is Cech-complete. If p : & G/X+ denotes the open quotient map and bG/X* denotes the Bohr
compactification of G/x, it follows that there is a canonical extension p°: b6 bG/X*. Therefore, we

have that p°(F) is a functionally bounded subset of p°(G*) = G*/X+ that is not equicontinuous on X.
Indeed, if p°(F ) were equicontinuous on X, then it would follow that F would be equicontinuous on X,

w]uch is not true. In other words, we may assume wlog that A is a countable, functionally bounded subset
of G that is not equicontinous on G, which is separable.

As in the proof of Theorem B, by the Cech-completeness of X, there must be a compact subgroup C of
X such thatX/C is separable, complete and metrizable [8], thereby, a Polish space.

Let Al- = {gle:gcA}c ¢. We have two possible cases:

(1) Ajc contains infinitely many diff erent elements.
(2) Ajc only contains a finite number of diff erent elements.

— Case (1): By Pontryagin duality, the dual of a compact group (equipped with the compact open topology)
is discrete. Therefore A'c is an infinite discrete subset of C in the compact open topology on C, which

implies that A|c may not be equicontinuous on C. Applying Corollary 3.2, there is a nonempty subset

A of C and a countable subset L of A such that [ is separated by A. Thus, by Lemma 2.2, LI& is
canonically homeomorphic to 6L (where L is equipped with the discrete topology), which vields
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_TA c
LLA =2.

@

On the other hand, by Asanov and Velichko's generalization of a well-known theorem of Grothendieck
about sets of continous functions defined on a compact space [2] (see also [1, IT1.4.1.]), we have that
C,(A, T) (the space of continous functions of A into T equipped with the pointwise convergence topol-
ogy) is a u-space, which means that every closed functional bounded subset of C,(4 T) is compact.
Being A a functionally bounded subset of G*, which is equipped with the pointwise convergence topol-
ogy on G eA, i follows that L AA 4 is tunctionally bounded as a subset of C,(A, T). Thus

TC AL
Lia must be compact and, as a consequence

GAT)  T*
Lia =La-

However, by [20,(}.emma 3.4], we have that IEE (A'nl = ¢, which is in contradiction with (I).
- Case (2): Set H = {¢,,..., ¢>m} Z A such that for each g € A there is an element ¢ £ H satisfying

that g - =1gh;l . If we define A, ={g € A :g.=¢, -}, then A = A, ... A, Since A is not
equicontinuous, there is i € {1, ... m} such that A; is not equicontinuous. So, we may assume wlog
that there is g, € A such that gic = gojc for all g € A. By Lemma 3.3, we know that Aggy*
equicontinuous on X and, by Lemma 3.4, it follows that Ag,~ is a B-family on X.

Let rc : X — X/C the canonical quotient map, which is open and continuous. Since X/C is Polish and
each gg,—* factors through X/C, we apply Theorem A and Lemma 2.2 in order to obtain A € X and
L € A such that

is not

—rs Tt
Lia  Liago 6L,
which again yields
_T c
[Lial=2" (I1)
On the other hand, repeating the same argument as in (1), we deduce that _T= —G(AT) ,

Lal =L, | =¢
| A
which again is in contradiction with (II). This completes the proof of (i).

(ii) The proof of this part replays some of the steps followed to prove (i). For the reader’s sake, we will
avoid unnecessary repetitions as much as possible.

Let N be a closed metrizable subgroup of bG and let A be a subset G. It is obvious that if A + (N4 G)
is compact in G, then by(A) is compact in bG/N.

In order to prove the non-trivial converse implication, again reasoning by contradiction, assume that
by (A) is compact in bG/N but A + (N ) is not compact in G. As G is complete [24, Remark 7.3], this
means that A + (N &), being closed in G, is not precompact in the topology inherited from G. As in the
proof of (i), it follows that there exists a countable subset Fc A+(N G) and a separable compact subset
X cG such that F is not equicontinuous on X. Taking the closure in G of the subgroup generated by X,
we may assume that X is a separable closed subgroup of G.

Again, the quotient group G/X- is a MAP, locally k,, group whose dual group X is Cech-complete. If
p: G — G/X* denotes the open quotient map and p”: bG — bG/X* is the canonical extension to their
Bohr compactifications, we have that p(A + (N N G)) is contained in p(A+ N) = p(A) + p°(N ), which is
compact in bG/X+. Applying Lemma 4.5 to p(F) and p°(N), we obtain that there exists As < p(A) with
l[4o] = [p°(N)| = c such that

www.ijceronline.com Open Access Journal Page 114



Interpolation sets in spaces of continuous metric-valuedfunctions

clocmop(F) S Ao +pb(N) + Cf(g,—qu,p(F — F).

Now, being the group X separable, it follows that G/X* can be equipped with a metrizable precompact
topology. As a consequence |G/X+| = c. All in all, we obtain that |cles o p(F)| = c.

On the other hand, p(F) is not equicontinuous as a subset of C(X, T) and, by Theorem D, this means that
it contains an /y-set, which vields |elpgx-p(F) = [Bw| = 2° > c. This is a contradiction that completes

the proof. O
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