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ABSTRACT

Euler operators are partial diff erential operators of the form P (&) where P is a polynomial and
0; = x;0/0x;. We show that every non-trivial Euler operator is surjective on the space
of temperate distributions on R®. This is in sharp contrastto the behavior of such operators
when acting on spaces of diff erentiable or analytic functions.
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In the present note we study Euler diff erential operators on the space §'(RY) of temperate distributions
on R?. These are operators of the form P () where P is a polynemial and 8, = x; 8/0x,. We show that every

Euler operator is surjective on S'(R¥) which is in sharp contrast to the behaviour in spaces of diff erentiable
functions since the operator P(#) is, in general, singular at the coordinate hyperplanes. Even for d = 1

the simple example of & acting on C=(R) shows that surjectivity there is in general impossible. There are
natural necessary conditions for a function to be in the range of an operator P(8#), solvability under these
conditions has been shown in Domanski—Langenbruch [2]. For real analytic functions the situation is even
more complicated, see [1]. As an example our result implies the following: if g is a polynomial function on

R? then the equation P(J)f = g may not have a C*-solution f on RY but it will always have a temperate
distribution f as solution on R?. We first study partial diff erential operators P (g) with constant coeffi cients

on the space ¥ (R%) of C=-functions with exponential decay on RY and on its dual the space ¥ (RY)’ the
space of distributions with exponential growth. We show that every non-trivial operator P (d) is surjective

on ¥ (RY). By the exponential diff eomorphism this implies the surjectivity of P (&) on the space S '(Q) of

temperate distributions on the positive quadrant on RY hence surjectivity on S'(RY) up to a distribution
with support in the union of coordinate hyperplanes. By a method similar to the one used in [2] we then

show the result by induction on the dimension.

1. Preliminaries

We use the following notation d; = d/0x;. §; = x;d; and D; = —id;. For a multiindex & € N¢ we set
0" = 0% 0%, likewise for ¥" and D For a polynomial P(B) = ¢,@" we consider the Euler operator

P(®) = L0 and also the operators P(d) and P (D), defined likewise.
P(&) and P(d) are connected in the following way. We set for x € R?

Exp(x) = (exp(xy), .., exp(xa)).

Exp is a diff eomorphism from RY onto Q := (0, +o0)?. Therefore

Cep: f——f° Exp
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is a linear topological isomorphism from €=(Q) onto €=(RY). For f € C=(Q) we have P(d)(f + Exp) =
(P(9)f)+ Exp that is P(d) » Cexp = Cexp » P (). In this way solvability properties of P(#) on C=(Q) can
be reduced to solvability properties of P (9) on C=(R”). This has been done in [9]. We apply the same
argument to the space S (Q) where S(Q) = {f€ S (RY) : supp f < Q} and S (RY) is the Schwartz space

of rapidly decreasing C»-functions on R,
Throughout the paper we use standard notation of Functional Analysis, in particular, of distribution

theorv, and of the theory of partial diff erential operators. For unexplained notation we refer to [3], [5].
[6].[7]. [8].

2. Distributions with exponential growth

We start with studying partial diff erential operators on R? and we will transfer our results by the
exponential diff eomorphism to results on Euler operators on Q. We set

Y(RY) := {f € C=(RY) : sup [f(I(x)]| €™ < oo for all & and k € N}

= {f € C=(R") : sup |f)(x)| €”" < oo for all @ and n € R%}

with its natural topology. Here xn = ;x;n; and |x] := |x]s.
Then ¥ (R¥) is a Fréchet space, closed under convolution and P(d) is a continuous linear operator in

¥ (R?) for every polynomial P. D(RY) < Y (R as a dense subspace, hence Y (RY < D'(R%). We obtain
Lemma 2.1. Cex(S(Q)) = Y (RY).

Proof. We first claim that

=
(f- Exp)®@ = a (- Exp)Exp’

G=a
with g, = 1 and this is shown by induction.
This implies that for f € S(Q) we have

z
sup |(f © Exp)®0)] " = ae sup [fUE]]€]'"F < +oo

x=Rd B=a £=q
for all @ and k € N.
On the other hand we have for g = f - Exp € Y(RY)
=
(f7 » Exp) Exp” = (f » Exp)™® - as (f( © Exp) Exp®
B=o, 8=0

hence

=
sup |[f(9(€)] £ = sup |g(I(x)| Exp"(x)+ as [FE)] €7,

11={s] x=R4 8=a, 8 ©

for all « € Ng and y € R?. From here one derives easily by induction that F € S(R9). O

The space ¥ (R?) can also be described by means of the Fourier transformation. This description might
also be used to show Lemma 2.3. We will use another method. However the description exhibits that from
the point of view of the Fourier transformation ¥ (RY) is a very natural space. We define

Hy (R") = o e H(C) : sup |x + iy]¥|g(x + iy)| < oo for all k € N}

x, |yl =k
and remark that Hy (RY) — S(R9), due to Cauchy’s estimates. We obtain:
Proposition 2.2. The Fourier transformation maps Y (RY) isomorphically onto Hy (RY).

Proof. For f € ¥ (R we have with B = x + iy

I I
F@e" = (2m)™"2  Bf(§e-"dE = (2m) ™20 fU§) & e-dE
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and therefore f € H, (RY).
On the other hand, for g € H, (RY) there is f € S(RY) with g = fﬂ. Then

I
FO) = (22017 g(€) e
I
= (2m)™21° g€ + in)(§ + in)"e~""e" .

Therefore we have for every n € R?

J
[F00] €7 < (2m)™2  |g(€ + in)(€ + in)*|dE < +oo.

This means that f € Y (RY).
Our first main result is based on the following Lemma.

Lemma 2.3. For every non-trivial polynomial the operator P ( 0) t1 ¥ (RY) is an isomorphism onto its
range.

Proof. We use the construction of an elementary solution of P. Wagner [10, Proposition 1] and assume P

to be nontrivial of degree m. For /£ R? with P,(n) = 0 and pairwise diff erent real numbers Ao, .., A, we
set with suitable coefi cients a;

E 1 EﬂjeﬁquF— 1 ﬂgia_q )

Pal2n) £ P(E+Am

Then, by Wagner, [10], Eis an elementary solution for P(d), that is, ( £ P(-d)d)) = ¢(0) for any ¢
€D(RY). By continuous extension this holds also for ¢ € ¥ (R since E € ¥ (R?). That means that for
anve € Y (RY) the term ¢(y) is a linear combination of terms

T ()= (P(=0 Jplx +y)euns, LA
/ * £ PUE+An

Then ¥,;(y)e™s™ has the form

()Y = (- +y), F2(G)

where (x) = (P(—0,)d)(x))e’™ € Y (RY) and G € L. (R?), IGll» = 1. We obtain

I I
¥,V = G- GE)dE = |§(8)]dE = IP(—3)dlly (re)

where Il - lly (rey is a semi-norm in ¥ (R?) (cf. Proposition 2.2). We do that for every j and find a semi-norm
-1, in ¥ (R9) such that

6| = — 1 = |g |eMIIP(=0)dll .
1ol _, !

We may assume that our choice was so that A; = 1 for all j. We evaluate the inequality separately for every
quadrant Q. = {x : e;»; = o for all j}, e; = +1 for all j. For given ¢ > 0 we choose . € Q. such that
ney = c|ly| for all y € Q.. This yields with a proper constant D

|¢(y)| = D max P (-d)ll,. e~ =: IP(-3)pll =",

We may apply this estimate to ¢ for any a. Since 8" commutes with P (-d) and since ¢ > 0 was chosen

arbitrarily, we obtain the result. O
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As an immediate consequence we obtain by dualization of Lemma 2.3.
Theorem 2.4. Every non-trivial operator P(9) is surjective on Y (R9).
3. Euler diff erential operators on SR
From Lemma 2.3 we derive the following lemma which is the basis for our main result.

Lemma 3.1. Every non-trivial Euler operator is surjective on 5'(Q).

Proof. To show surjectivity of P(§) on S'(Q) we have to show that P (8*) is an isomorphism onte its range
in S(Q). Here §* is the transpose of @, that is, 8j¢p = —¢ — #;¢ and therefore P(#*) = P(—1 — 8). By
Lemma 2.1 and the fact that P (-1 -9) » Cexp = Cap @ P (§*), we obtain from Lemma 2.3 that P (*) isan
isomorphism onto its range in S (Q) which shows the result. O

WesetZo = {x €R? :Bj:x =0} and So = {f €S (RY : fis flat on Zo }Since Lemma 3.1 holds,
mutatis mutandis, on every ‘quadrant’ we obtain:

Corollary 3.2. Every non-trivial Euler operator is surjective on S,

Let T€ S'(R9) and P(J) be a non-trivial Euler operator. We want to solve the equation P(F)U = T.
WesetTo =T|s,. Then Ty € S, and we can find U, € Sy such that P (H)U, = To. We extend U, by use of

the Hahn—Banach Theorem to a distribution U: € S'(R¥) and for any solution U of our problem we have
P(3)(U-U) = oon So. Hence it suffices to solve the equation P(J)U= = T, with I, = T -P(J)U: €
S'(Zs) = {5 € S'(RY) : S vanishes on Sg}.

By H; we denote the coordinate hyperplanes H; = {x € R? : x; = o} We set S, _;, €

S(RY) : fF flat on HjU..u ij}’ then Sy, = S, 4. and we set S'(H;, U.. U Hj‘? ={5 € ST:F{ )
S vanishes on S;,_}.
Lemma 3.3. Every T € S'(Z,) has a decomposition T = Ty +--- + T, where T, € S'(H;) for all j.
Proof. We act by induction and consider the canonical map
@ := S (RS _a = S(RY)/S, x S(R)/Sies_a-

It is injective and we want to show that its image is closed. We admit that S, +S,.;_, is closed in S (R%)
and we will show this later. We consider the map

W, : S (RY)/Sk x S(RY)/Siws o = S(R/Sy + Sivs_a
given by
(s + 5)) = (b2 + Sira,_g) >— (@1 — P2)+ (Si + Sprs_a)

We claim that im®, = ker W,. One inclusion is evident, for the other assume that (¢,—g-) € (Si+Siey_a)-
Then there are ¢4, € S, and (= € Si.s 4 such that ¢ — = = Y. — Y2, hence ¢, — Y, = = — Y= =: ¢.
So we have @ (¢) = . = ¢, where " denotes the respective equivalence class.

Let T;.....j,. denote a distribution in S'(H; V..U H,.). Dualization of the previous shows that for every
Ti..s there are T, and Ti+s 4 such that 7o s = Ti + Tiss 4. Starting with T = 7§ S (Zo).
in@‘f@ﬂﬁiﬁg%%hiﬁkdﬁﬁh%}eﬁlézhr_,d is closed in S(Rd]. We write S(F{d) = S[Rk)i@,,S(Rd k) and

consider the map N A
A: ® Az : S (RY®,S (R7Y) - S (RY/SURI®,S (R /5= _o(R*5).

Here A, A are the respective q uotient maps and § ( *) resp. § (7 %) are self-explaining. By use
1 2 R k+1,.d R T
of Lemma 5.4 below we get

ker(4; ® A.) = S((RI®,.S (R)+ S (Rt\)®rrsk+l,__,d(Rd_k) =S, + Si+1 g

and the claim is shown. O

The following lemma is known (see [1], Theorem 2.12). We sketch a proof for the convenience of the
reader.
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Lemma 3.4. Let As : £y = Fy,"Az @ E2 — F2 be continuous linear mdps between nuclear Fréchet spaces then

for A, @ A; : E\QE. — F,®F- we have ker(A, @ A;) = ker A,@E: + E,8,, ker A..

Proof By Grothendieck [4], Chap I, p. 38 and Chap II, p. 70, we obtain ker (A id ) =kerA E and

ker (id ) = ker 19 & 1w 2

the re §1‘,1]E Ao F.®, Az We calculate the kernel of the composition, which is As ® Az, and obtain
O

We are now ready to prove our main result. We will use the structure of distributions in S"(H;) (see in
analogy [7. Chap III, Théoréme XXXVI]) and the fact that d; and multiplication with x;. which is up to a

factor the Fourier transform of d;, are surjective on .S '(R¥).

Theorem 3.5. Every non-trivial Euler operator is surjective on S'(RY).

Proof The proof will be by induction on the dimension. We start with the induction step. Assume that
d > 1 and the result is shown for d — 1. We may assume that P is irreducible.

Due to Lemma 3.3 and the argument before this Lemma it is enough to assume that T € S°(H;). We
may assume that j = 1. We set x’ = (xz,..., ). Then

=
T(@) = O0)T(x)Pxs x),

k

and analogously for U if we try to solve P(§)U = T with U € S’'(H:). Here U,, T, € S'(R%%) and the
sums are finite.

We recall that for ¢ € C=(R) we have

(98, ¥y = 1" o) **(0) = (1) Mk + g ©(0) = ~(k + 1)( 8%, v,
that is, 36®) = (_k _ 1)6.

z
For P(B) = ,c,B" we obtzﬁ-l = =
P(HU = Cal—k —1)60 U = 6OP(-k - 1,9V
P K
K o« K

and the equation we want to solve takes the form

z ke Z K
SP(—k -1, 3V = 60T
k K

By the induction assumption P(—k - 1, &)U, = T, is solvable if P(-k - L B /= 0.

So we have to consider the case where P(-k-1, @) = 0. Then B, + k +1 divides P. Since P is irreducible
P(E) = C (B, + k + 1) for some constant C /= 0.

Since under the canonical isomorphism S (R = S(R)®,S'(R™™) the operator & + n in S'(RY
corresponds to (g + n)®id ing R )® S (R“—l) we are, due t o Grothendieck’s exactness theorem, reduced
to the surjectivity of &+ n in §'(R) which is shown below.

For d = 1 we have to consider P(E) = B — a. It is enough to find, for all @ and k, a distribution S € S '(R)
such that (8- a)$ = 6¢). Since (9— a) 6©) = —(k+1+a) 609 this is evident for @ # —(k+1). For the equation
(9 + k +1)S = 69 we obtain a solution as follows: choose any U with x**1U = ¥ (x), where ¥ (x) = 1 for

= ;
- _ - k _ _ k k-1
x = 0, Y (x) = o0 otherwise, then x"((k + 1)U +8U) = 6, hence (¢ + k + 1)U = (—1)* 1/k! 60°) + j=0Ci 6

Let us finally remark that for d = 1, that is, for the case of an ordinary Euler diff erential operator P
(9)the proof of surjectivity can, by the fundamental Theorem of algebra, be reduced to the case P(§) =8 a
and be carried out in a much more direct way. The proof then shows that P(d) is surjective also in the

space D'(R) of Schwartz distributions. Whether this is true also for higher dimensions iz not known and it
is an open problem.
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