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Abstract: We study contact magnetic curves in the unit tangent sphere bundle over the Euclidean plane. In
particular, we obtain all contact magnetic curves which are slant.
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l. INTRODUCTION AND PRELIMINARIES

As iz well known, unit tangent sphere bundle over Riemannian manifolds admits the so-called standard
contact metric structure. In our previous paper [12] we have developed a general theory of magnetic curves
in unit tangent sphere bundles. In addition we studied magnetic curves in the unit tangent bundle US* of
the unit 2-sphere 52. As a continuation of [12], in this paper, we study magnetic curves in the unit tangent
sphere bundle UE? of the Euclidean plane E®. In particular, we obtain all contact normal magnetic curves on
UE? which satisfv the conservation law. Because the unit tangent sphere bundle UE® may be identified as
a contact metric manifold with the motion group £(2) of the Euclidean plane E?, we do some investigations
in E(2).

1.1. Magnetic curves

Magnetic curves represent, in physics, the trajectories of charged particles moving on a Riemannian
manifold under the action of the magnetic fields. Let (M, g) be a Riemannian manifold and let F be a

closed 2-form on M (often called a magnetic field on M). A magnetic curve represents a solution of a
second order diff erential equation

V¥ =@V, (1.1)

where denotes the Levi-Civita connection on M and ¢ is a skew-symmetric (1, 1) tensor field associ-
ated toyf , that is F (X, Y ) = g(eX, ¥ ) for any vector fields X, ¥ on M . See e.g. [1]. Such curves are

sometimes called also magnetic geodesics since the Lorentz equation generalizes the equation of geodesics
under arc-length parametrization, namely, , ¥ = 0. The equation (1.1) is usually known as the Lorentz

equation. However, in contrast to the geodesits, magnetic curves cannot be rescaled, because the trajectory
of a charged particle depends on the speed y' . Nevertheless, magnetic curves have constant speed, and
hence constant energy, sinee2 g(y, ') = 24(¢y, ¥) = 0.

And now, as usual, we restrict our investigation to a single energy level and we consider only unit speed
magnetic curves together with a strength g€ R. Therefore, from now on, we study normal magnetic curve
(i.e. unit speed) satisfving the Lorentz equation

ViV =qep (1.2)

where by dot we denote the derivative with respect to the arc-length parameter s.
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1.2, Almost contact metric structures

A (¢, & n)-structure on a manifold M is defined by a field ¢ of endomorphisms of tangent spaces, a vector
field ¢ and a 1-form n satisfying

n=1 ¢2=—1+n@E =0, n° p=o.

If (M, ¢, & n) admits a compatible Riemannian metric g, namely

g(@pX, oY) = gX, ¥ ) - n(Xn(y),

for all X, ¥ T€TM ), then M is said to have an almost contact metric structure, and (M, ¢, & n, g) is
called an almost contact metric manifold. Consequently, we have that £ is unitary and n is metrically dual

to &, ie., n(X) = g(&§ X), for any X r&€7m ). The vector field £ is often called the Reeb vector field, even
though, this name is used for the contact case.
We define a 2-form Q on (M, ¢, & n, g) by

Qx, ¥) = glx, oY),

for all X, ¥ € r(T™m), called the fundamental 2-form of the almost contact metric structure (¢, & n, g).
The fundamental 2-form is not always closed. However, there are several classes of almost contact metric
manifolds with closed fundamental 2-form. For more details see e.g. [3].
Let us remember some more definitions: An almost contact metric manifold is said to be:

(1) A contact metric manifold if Q0 = dn.
(2) An a-Sasakian manifold if there exists a constant a such that it satisfies

(V@)Y = a{g(X, Y )§ — n(Y )X}

for all X, ¥ € r(T™M). Recall that a 1-Sasakian manifold is simply called a Sasakian manifold, while a
o-Sasakian manifold is ealled a cosymplectic manifold. On an a-Sasakian manifold we have

Vi = —agX, dn =a Ll

The first formula implies that on a-Sasakian manifolds, £ is a Killing vector field.
(3) Normal if it satisfies

[dX @Y1+ p2[X V] - @[dX, Y] - p[X @Y1+ 2dn(X, Y)E =0

for all X, Y € I{TM). A normal almost contact metric manifolds is called a quasi-Sasakian manifold
if 2 is closed.

Note that a-Sasakian manifolds are normal. In particular, Sasakian manifolds are characterized as
normal contact metric manifolds.

Let (M, ¢, & n, g) be an almost contact metric manifold with closed fundamental 2-form Q. Then for any
constant g, the magnetic field F; = 40 on M is called a contact magnetic field with strength g. In our

previous papers [7.8,17], we investigated contact magnetic curves in Sasakian manifolds and cosymplectic
manifolds, respectively. See also [5,6,0]. In addition, the study of contact magnetic curves in quasi-Sasakian
manifolds was initiated in [13,14,16].

2. Magnetic curves in the unit tangent sphere bundle of a Riemanman mamifold

In our previous paper [12] we present a detailed study of magnetic curves in the unit tangent sphere
bundle TWA of a Riemannian manifold (M, g). Recall that the tangent sphere bundle of radius r > o0 is
the hvpersurface of the tangent bundle 7(M) defined by

TOM ={{x;u) € T(M) : gu,u)=r}
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On T(UIM we consider the restriction g of the Sasaki metric of T(M).

It is well known that the Levi-Civita connection V of (M, g) defines a splitting of the tangent bundle
T(TM ) of T(M) as follows: T(TM ) = HEV. Here H and V are called the horizontal and vertical subbundles,
respectively. For a vector X € T,M, the horizontal lift of X at a point (x, u) is the unique vector Xt € H,
such that m=Xt, = X,(,), where m : T (M) M is the canonical projection. The vertical lift of X is the
unique vector X¥gVuch that X¥(df) = Xf, for every C= function on M.

Let p(s) = (x(s); V(s)) be a curve in UM = (T(WM, g). Then V (s) is a unit vector field along the base
curve x(s) in M. The curve y is expressed as

vis) = xi(s),..., xX"(s); Vi(s),...,v"(s) .
The derivative p(s) is written as

. dxX . 0 av' o
5)- = —s)5 + —As5)5 - .
V{ ] wis) dS{ )dk" P{s) dS ( )dur-p{s}
The following result characterizes contact magnetic curves on the unit tangent sphere bundle of a Rieman-
nian manifold (M, g).
Theorem 2.1 ([12]). A curve y(s) = (x(s): V (s)) in UM is a contact magnetic trajectory with strength q if
and only if

Vix+R(V,ViVix=—qgViV, @)
2.1
ViViV +g(VLV, VVIV —gi = —qg(x, V)V

Here V is the Levi-Civita connection of g and R is its curvature tensor of tvpe (1, 3).

2.1, Conservation law

We have the following conservation law for geodesics. See e.g. [20].

Proposition 2.1. Let y(s) = (x{(s); V(s)) be a geodesic in UM. Then x(s) has constant speed and ViV has
constant length.

This result can be extended for magnetic curves as follows.

Proposition 2.2 ([12]). A nen-geodesic unit speed contact magnetic curve y(s) = (x(s):V(s)) satisfies
|VV | = constant (equivalently |x| = constant) if and only if g(x, ViV) = o.

This conservation law implies that we may reparametrize geodesic y(s) so that f|= 1. Under this
reparametrization, Sasaki classified geodesic in the unit tangent sphere bundles over space forms.

Theorem 2.2 ([20]). Let M be a Riemannian manifold of constant curvature c. Then the base curve of a
geodesic in UM has constant first and second curvatures and vanishing third curvature.

2.2. Contact angle

Recall that the contact angle of a curve y in an almost contact metric manifold is defined as the angle
between its tangent vector field and the Reeb vector field in the corresponding point. For a unit speed curve
p(s) in UM we have p(s) = )'((sj]i(s} +(V,.V j:f(s) . where by Xt we denote the tangential lift of X at a point
u € UM. Recall that the tangential lift of a tangent vector X is given by Xt = X¥ - g.(X, u)U,, where
U is the Liouville vector field on T (M ). See e.z. [3, Chapter g] and [4]. On UM , the almost contact metric
structure is that induced from the almost Kihlerian structure of T(M). The Reeb vector field £ is precisely
the geodesic spray, known also as the geodesic flow vector field, namely &, is the horizontal vector such that
m,.&, = u. Therefore, the contact angle & of y is given by
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cos #(s) == 1, (¥(s)) = g(¥(5), &) = Gui) (X(5), V (5)),

sinee 1,964 = V(s). Consequently, a unit speed curve is slant, that is the contact angle is constant, if
and only if g(x, V) is constant.

Motivated by the result of Klingenberg—Sasaki, which says that any geodesic in US®is a slant curve in
U 5%, we investigate contact magnetic curves which are slant in the unit tangent bundle UM (c) of a space

form M(c).

Proposition 2.3 ([12]). Let M = M (c) be a space form of curvature c. Then any contact normal magnetic
curve satisfies the following differential equations system:

V,x+cg(x, V VIV +(g—ceos®)V .,V =0,
(MC)
ViViV +(|ViV]2+geosd)V = gx

Besides, taking the derivative of cos#(s) and using the first equation (MC), we get
—sind & = (1— glx, V.V).
Accordingly, we obtain the following two results.
Proposition 2.4 ([12]). Every contact normal magnetic curve in US" is slant.

Proposition 2.5 ([12]). Let M be a space form of curvature ¢ = 1. Then a contact normal magnetic curve is
slant if and only if it satisfies the conservation law, that is, both |x| and |ViV | are constant.

3. The umt tangent bundle over Euclidean plane

In this section we will continue our investigation of magnetic curves in the unit tangent bundle of a space
form M(c) initiated in [12]. We will consider the case c = 0.

3.1, It is well known that the orientation preserving isometry group (the motion group) E(2) of the
Euclidean plane E? may be identified with the unit tangent sphere bundle UE=.

The rigid motion group of the Euclidean plane E? is the semi-direct product of rotation group SO(2) and
translation group (B? +). The semi-direct product structure of SO(2) R? is given by

(A,p)-(B q) :=(AB,p+Aqg), A BESO(2), pgqeR= (3.1)
It is isomorphic to the following closfﬁ subgroup of GL(Q\R]

I\cos W —sing x }

E(2) = L sing  cosp y/ " xyekR dﬂeS‘Jv (3-2)
0 o 1

In fact, we have a global coordinate system of £(2) defined by (x, y, ¢). Thus £(2) is nothing but R*(x, y) >&*

with multiplication rule:

xy @) *x (G, y, &) =(x+cosgp X —sing y,y +sing x +cos¢ y, ¢ +¢). (3:3)
The Lie algebra e(2) corresponds to \
{ 0o —w u}l
e(2) = L w o v/I'uvwe RJ (3.4)
] ] 0

and hence we take the following basis {£, E- E;} of e(2):
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Then the left translated vector fields of £,, E», £ are

d d d d d
€1 =cos¢a +smi,be, €2 =—s1nq’)§+cosd){§, ey = E

whose Lie brackets satisfy
[eve:]=0, [exesl=e, [ese]=ex

We equip e(2) with an inner product( ; -)which makes the basis{f,, Ea, £3 ofthonormal. Consider now
the left translated Riemannian metric g defined by

g = dx2 + dy= + dy=.
The dual coframe field 6 = (9, 2, 93) of B = (e, e, e;) is, therefore, given by
Ut = cos dx + sin Pdy, 32 = —sin Pdx + cos dy, I3 = di.
Finally, the Levi-Civita connection V of £(2) is described by the expressions

V€1 =€, Ve =—es and all other V.,e; = 0.
3.2. Canonical contact structiure on E(2)

We define a canonical contact structure on the universal covering group E(2) of £(2).
The universal covering group E(2) of E(2) is the Cartesian 3-space Ry, y, @) endowed with the multi-

plication:
(%, B) = (x,y,F) = (x + cosBx —sinBy,y +sin@x + cosBy, B+ ). (3.5)
The discrete group T'e = 2nZ of (R3, #) acts on £(2) by translation:

E(2) < Tg — E(2); (xy,B)-2mm = (x, y,@ + 2nm). (3.6)
This action is properly discontinuous. The factor space of E(2) is diff eomorphic to R (x,y) x  and it is
st 2
identified with E(2). Let us denote by pe the projection pe : R3 — E(2).
On E(2) = (R3, ), the 1-form §j = cosBdx +sinBdy is a contact form. Obviously, the contact form i
induces, via pe. a contact form n on E(2), that is pEn = 7q.
We set EE =cosB_ + sinB

3 and we define an endomorphism field ¢ on R3 by
y

dx
d d
= — =g —
box = ~SnB oy
i = cos@ "
dy del
d d d
rbﬁ = smlza —coslila.

Then (&, &, ) is an almost contact structure on R3. The Euclidean metric § = dx= + dy= + d2= is related

to this almost contact structure by
gl@x, @Y) =g, ¥ ) —i(x)a(y), 2di(Xx, ¥) =a(Xx, ¢v)

for all X, ¥ € X(R3).

It is easy to see that this almost contact structure (&, £, i, §) induces an almost contact structure on
E(2).

The induced almost contact structure (n, & ¢, g) on E(2) = (R¥(x, y) x 5%, =) is given, explicitly, by

n=0£=e, de, =0, ¢ex =e3 e; = —€a
g = () + (82)* + (92)"

www.ijceronline.com Open Access Journal Page 70



Magnetic curves in tangent sphere bundles Il

3.3, The tangent bundle TE? of Euclidean plane E* iz expressed as
TE2 ={(x,y;u,v) | x,y,u,v €E R} = E2 x E=

Then the geodesic spray € is given by

The unit tangent sphere bundle UE?® is parametrized by
UEz2 ={(x, y;cosy,siny) | x,y €ER, ¢ € [0, 2rm)} = E= x 52,

Hence { is represented as

£ = cosd}i + sin :pi
dx dy

on UE™
With the notations from [12] we have the following quantities:

h h
: oL a a T __ o
= the horizontal lifts: 32 3x> oy -
- v
- rerti iftg- 0L —_o8 8 @ —_ 8.
the vertical lifts: 3£ 2w’ oy =
t t
- . - ; a — a a _ a
the tangential lifts: o sing 2, 2 cos iy "

Therefore, the induced metric (from the Sasaki metric of TE?) is precisely g =dx2 + dy2 + dip2. Moreover,
the almost contact structure on UE?is obtained from the equations

n(xt) = { X, (cos ¢, sin )y, n(xt) = o,
PXh = X, Xt = X+ n(ME

for every vector field X on the base manitold E?. Thus, U E? is identified with E(2) as a contact metric

manifold.

Take a curve y : | — UEZ, p(s) = (x(s), y(s), B(s)) parametrized by the arc-length; then we write

v(s) = x(s)0, + y(s)0, + B(s)dy
= x(s)(cosB(s)e; —sinB(s)e-) + y(s)(sinB(s)e; + cosB(s)ez) + B(s)es
= (x(s) cosB(s) + y(s) sinB(s))es + (—x(s) sinB(s) + y(s) cosB(s))e- + B(s)es.

We compute

Vop(s) = i[}'{(s) cosB(s) + y(s)sinB(s))e, + %s[—)'((s) sinB(s) + y(s) cosB(s))e. + A(s)e;+
+ (x(s)cos@(s) + y(s) sinB(s))A(s)e= — (—x(s) sinB(s) + y(s) cosB(s))E(s)e,.

Moreover, we have
¢y(s) = — x(s)sin@(s) + y(s) cosB(s) ez — B(s)e-.

The Lorentz equation becomes

(x(s) cosB(s) + y(s)sinB(s)) — (—x(s) sinB(s) + y(s) cosA(s))E(s) = o,
(—x(s)sin@(s) + y(s) cosB(s)) + (x(s) cosB(s) + y(s) sin@(s))A(s) = —gB(s),
F(s) = q(—x(s) sinB(s) + y(s) cosB(s)).

We immediately obtain the following system of ordinary diff erential equations

cosB(s)x(s) + sinB(s)y(s) = o,
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— sinB(5)%(s) + cosB(5)y(s5) = —qb(s),
B(s) = g(—x(s)sinB(s) + y(s) cosB(s)),
which is equivalent to
x(s) = gsinB(s)A(s),

y(s) = —qcosB(s) B(s), (3.7)
A(s) = q(—x(5)sin@(s) + y(s) cosB(s)).

Note that, the curve y is a geodesic if and only if
x(5) = y(s) =HB(s) = 0.

The first and second equations of (3.7) can be rewritten as

7 (s) + geosB(s)) = (x(s) + qsinZ(s)) = o,
ds ds

Hence there exist constants ¢; and ¢ such that
x(s) =c1 —qgcosB(s), y(s)=c.— qsinB(s). (3.8)

Inserting these equations into the third equation of (3.7), we get
A(s) = g(—c1 sinA(s) + c= cosB(s)).
When B is nonconstant, multiplving this diff erential equation by B(s), we get
H(s)B(s) = g(—c. sinB(s) + c= cosB(s))E(s),

which leads to

B(s)* = 2g ¢, cos@(s) + c2sinB(s) +e; c; ER (3.9)
Hence, the equations of motion for y are built in the following theorem.

Theorem 3.1. Let y : 1 —>» UEZ, p(s) = (x(s), y(s),8(s)), be a normal contact magnetic curve with

strmgf'_‘_q '{;!Ié’l'i n‘s velocity satisfies (3.8) and (3.9), where ¢y ¢z and ¢y are real constants such that
5 =

The ordinary diff erential equation (3.9) can be solved in terms of elliptic functions and/or hypergeometric
functions depending on the constants ¢, and c,. In this paper, we do not intend to give all explicit solutions
(as, for example, in [18]); so, from now on, we consider only slant contact normal magnetic curves. By
Proposition 2.5 we know that y satisfies the conservation law, meaning that x*(s) + y*(s) is constant and
hence H(s) is constant, too. As B is not a constant (since y is not a geodesic) and g = o, it follows, from
(3.9), that ¢, = ¢z = 0, which implies B(s)? = ¢; =1 —g=.

We state the following theorem.

Theorem 3.2. Let y : | — U E2 p(s) = (x(s), y(s), B(s)), be a slant, non-geodesic, normal contact magnetic
curve with strength q. Then y is given by

x(s) = —% sin[svrl——qz], y(s) = ’\% COS(S\[W): Bi(s) = Svrﬁ
aq= -q-

Here we have set the initial point at y(0) = 0,q/ 1-g% 0 . Moreover, |q| € (0, 1).
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Looking back to the unit tangent bundle UE® we remark that the base curve is a circle, centered at
the origin and with radius _!°l ~ and the unit tangent vector along this circle is, up to orientation, the

1-g= V{ v"
normalized tangent vector, that is V(s) = cos(s 1 —g?), sin(s 1— g2) .
Finally, we remark that in case when B is a constant, we obtain that the base curve is a straight line
in E*, while V is any constant unit vector field along this line.

4. Magnetic curves on tori
4.1. Helicoidal motion

Let E3(x, y, B) be the Euclidean 3-space with natural Riemannian metric dxz + dy2 + dB as before. For
any vector v € R3, we denote by I'(V) the discrete subgroup of (R?, +) generated by v:

rv)={z2mmv|meZ}

In the special case when v = e; = (0, 0, 1), the factor space E3/r (e;) is precisely the underlying flat

Riemannian manifold of £(2). This fundamental observation inspired some researchers to use group structure

of £(2) for the study of several geometric objects in Euclidean 3-space which are invariant under the
r(es)-action. See e.g. [10].

For instance, the left translation by (a, Br

x
T L TR TR P
Lias,) I_ y J :I_ sin y cos y OJ I_ y J + I_ 6 J

m o o} 1 1] %

v) € E(2) can be rewritten as
a

—I:os y —siny o

In particular, the one parameter subgroup {{0, 0,y)] y REof}f(2) acts on R2 as helicoidal motion group
(or screw motion group) of pitch 1: [ 1T
x o

T.osy —-siny o

L(o,o,,,)ll_ yIJ :II_ siny cos y OJI I_I yJI +I|_ OIJ .

5] o (o] 1 B V

The action of {(0,0,y¢) |¥ €R } decends to an SO(z)-action on E(2).
For example, the helicoid B = tan™(y/x) is an orbit of the x-axis under the action of the one-parameter
subgroup {(o,0,v) | v € R} = (R(v), +). It is given by the immersion

f :R2(u,v) = E3  f (uv)=(ucosv, usinv, v)= Lioom(u, 0, 0).

The helicoid f induces a minimal surface f in E3/ (e;). In E3/T (e5), the helicoid f is regarded as S'-orbit
of the x-axis. Namely, with respect to the group structure =, helicoid is regarded as a “rotational surface”
in E3/r(e;).

Finally, observe that (0, 0,v) *(u, 0,0) # (u, 0,0) * (0,0, v) = (u, 0, v). The image of this immersion is
xB-plane. Obviously, this is also M(es)-invariant.

4.2, Standard contact structure on tori

The canonical contact structure on £(2) induces a contact structure on 3-dimensional tori. In the fol-
lowing, we briefly exhibit the induced contact structure on flat tori.
The contact form 7 is invariant under the action of discrete subgroup I'+ = 2nZ3 of (R3, +) defined by

(% v, @)+ 2n(l, m, n), (l, m, n) € Z3.

Furthermore the Euclidean metric § = dx2 + dy2 + d&2 is invariant under I';, too. Hence 77 induces a contact
structure nr on the (flat) torus T3 = R3/T'; . Thus (T3, nr ) is a compact flat 3-manifold which admits a
contact structure. We give the following result.

Proposition 4.1. The 3-torus T3 = E(2)/2nZ 32 admits a contact structure.

Note that on I'r, two multiplications “+” and * " coincide. Hence the factor space (R3, )/2nZ¥*is a3-

torus with "nonecommutative” Lie group structure.
Besides, this contact structure on T3 is not regular. See also [2]. The Reeb vector field £ of (R3, i) is

£ = cosEIi + si.nIEli.
ax dy
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The integral curve (t) of £ ﬂuou h (0,0,7) is ¢(t) = £, —3— Hence ¢ induces an irrational flow

on 2-torus in T3 defined by B = 5. Thus tk thé 3-torus T2 is not gg'ular contact manifold. In fact, every
2n+1

3-torus cannot admit regular contact structure. More generally, Blair proved that no torus T can carry
a regular contact structure. See e.g. [3, p. 52].

The almost contact structure (&, £, i, §) on £(2) induces an almost contact structure on T3. However,
in order to connect our work to contact metric geometry, we have to renormalize some objects, that is we
consider

i. . z - 1.
i, £=25 =9, §:=
2 4

Then M3 = (R3, 4, £, ¢, §) is a contact metric manifold, and hence T3 together with contact metric structure
induced from M3 provides an example of compact contact metric manifold which is not regular

4.3. Conclusions and further research

The contact metric structure on R3 and T3 are not homogeneous with respect to the additive group
structure but homogeneous with respect to the group structure of £(2). In particular, £(2) itself is a
homogeneous contact metric manifold.

According to this observation, it seems to be natural that the contact structure determined by fj on R3 is
regarded as a contact structure on the covering group F(2) of the Euclidean motion group (from the group
theoretical viewpoints).

In [18] the authors consider two magnetic fields on the 3-torus obtained from two diff erent contact
tormson the Euclidean 3-space. Thev study when their corresponding normal magnetic curves are closed
obtaining
some periodicity conditions involving the set of rational numbers. Remark that the left invariant contact
structure on £(2) compatible to the flat metric induces a contact structure on the 3-torus T3 which coincides
with the non-regular one used in [18].

These observations could motivate researchers to study contact magnetic curves on homogeneous contact
metric 3-manifolds. As is well known, homogeneous contact metric 3-manifolds are realized as 3-dimensional
Lie groups equipped with left invariant contact metric structure (see [11,19]).

To conclude, we would like to emphasize the paper [15], where the authors study the algebra of the
integral motion of magnetic geodesic flows and their integrability in 4-dimensional Lie groups.

As further research we propose the study of contact magnetic curves in 3-dimensional Lie groups equipped
with left mvariant contact metric structures.
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