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INTRODUCTION 

ThemainadvantagesofCBDapproacharetheabilitytomanagecomplexityandthepossibilitytoselectthemostsuitableco

mponentamongtheonesthatprovidesamefunc-tionality.However, the latter can be best achieved only ifthe design 

step incorporates rigorous analysis for this spe-cific need. This issue becomes all the more relevant whenCBD is 

used for developing dependable systems, since onehastoanalyzemultipleextra-functionalpropertiesaswell. 

Our main goal is development of a framework based onwell-founded theories, while keeping industrial realities 

infocus, which will provide meaningful reasoning about de-pendability attributes in CBS based on the 

characteristicsof the component model, properties of individual compo-

nentsandcomponentconnectionschemeinagivendesign.Sinceerrorsareoneofthemainimpedimentsforachieving 

dependability, this paper particularly focuses on modelingtheerrorbehaviorofcomponentsanderrorpropagationas-

pects in order to reason about the dependability attributesof the composed system and its failure modes. We use 

anin-housedevelopedcomponentmodel(SaveCCM)[2]toil-lustrate how a specific component model can influence 

theerrorpropagationaspects. 

In a recent work, Elmqvist and Nadjm-Tehrani [7] ad-dressed formal modeling of safety interfaces and 

providedcompositional reasoning about safety properties of com-posed systems. Our focus is more on reliability 

and timingaspects and on analytical approaches.Grunske and Neu-mann [9] have proposed an approach to 

model error be-havior of composed systems by using the Failure Propaga-

tionandTransformationNotation(FPTN)foreacharchitec-turalelementandtoconstructthecomposedsystems’Com-

ponent Fault Trees (CFT) from the FPTN models to per-form safety analysis. Rugina et al. [14] proposed a 

frame-work where the Architecture Analysis and Design Lan-guage (AADL) with the features of Error Model 

Annex isusedtocreatemodelsofcomposedsystems’errorbehavior.Then, these models are converted to 

GeneralisedStochas-ticPetriNets(GSPNs)orMarkovChainstobeanalyzedbyexisting tools.More recently, Joshi et 

al.[11] have pro-posedanapproachtoconverterrormodels,generatedusingAADL with Error Model Annex, to Fault 

Trees to performfurtheranalysis. 

Asubstantialamountofresearchhasbeenconductedonreliability modeling of composed systems based on indi-

vidual component reliabilities, with a recent focus on ar-chitecture based models.Most of these works assume 

theexistence of known probabilities for error state transitions,and only a few address the error propagation 

aspects.Onthe other hand, research on dependable systems has beenfocussing more on fundamental system level 

models of er-

rors,andmechanismsfortoleratingthoseerrormodes,witharguablylessinterestonhowthesemodelsarelinkedtotherelia

bilitypredictionmodels.Inourview,thelinksbetweenthese two research directions are loosely coupled and 

ABSTRACT 

Component-

BasedDevelopment(CBD)ofsoftware,withitssuccessesinenterprisecomputing,hasthepromiseofbe-ing 

a good development model due to its cost effectivenessand potential for achieving high quality of 

components byvirtue of reuse.However, for systems with dependabilityconcerns, such as real-time 

systems, a major challenge inusing CBD consists of predicting dependability 

attributes,orprovidingdependabilityassertions,basedontheindivid-

ualcomponentpropertiesandarchitecturalaspects.Inthispaper, we propose a framework which aims 

to address thischallenge. Specifically, we present a revised error classifi-

cationtogetherwitherrorpropagationaspects,andbrieflysketch how to compose error models within 

the context ofComponent-Based Systems (CBS). The ultimate goal is 

toperformtheanalysisonagivenCBS,inordertofindbottle-necks in achieving dependability 

requirements and to pro-vide guidelines to the designer on the usage of 

appropriateerrordetectionandfaulttolerancemechanisms. 
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lessexplored. Specifically in CBD, architectural decisions 

andspecificaspectsofthecomponentmodelwillinfluencethe 

dependability evaluations. Our aim is to enable end-to-

endlinkingfromsystemleveldependabilityrequirements(nor-mally specified in terms of diverse 

qualitative/quantitaiveterms), to models for dependability evaluation and predic-tions of composed systems.We 

envision our research toprovide substantial clarity and simplifications needed 

forCBDofapplicationswithdependabilityconcerns. 

The rest of the paper is organized as follows: in Section2 we state the challenges in system level modeling of 

errorbehavior, and present the principal parts of our proposedframework.Section 3 presents our revised error 

classifi-cation from a CBS perspective.Section 4 discusses 

errorpropagationandcompositionaspects,whicharefurtherex-

emplifiedinSaveCCM,andSection5presentsconclusionsandongoingresearch. 

 

1. Outlineoftheproposedframework 

The major challenges in realization of a generalizedframeworkfordependabilityevaluationofCBSare: 

• diversityofdependabilityrequirementsspecification 

differentdependabilityattributesrequiredifferentanalysistechniquesandapproaches 

• limitedinformationoncomponentproperties 

lackoftechniquesforperforminganalysiswithpartialorevolvinginformation 

relating usage profiles of components to target systemcontexts 

non-scalabilityofmostoftheformalanalysistech-niquestoindustrial-sizesystems 

 

In order to enable modeling and analysis of system-level dependability behavior, the framework must 

includedependability requirements specification, component-levelerror modeling, and system-level 

dependability analysis,whicharebrieflymentionedinfollowingsubsections. 

 

Dependabilityrequirementspecifica-tions 

At this step, the system designer has to specify the de-pendability requirements for the target system. Due to 

thediversity of the dependability attributes, as well as the var-ied industrial priorities and practices, this step is 

critical asithasaconsiderableimpactonthesubsequentanalysis(in-cluding the choice of techniques).For instance, 

the reli-ability requirements of systems are usually defined in di-

verseterms,rangingfromqualitativetoquantitativeones. 

Atypicalrequirementspecificationcanbe’Systemreliabil-

ityshouldexceed0.99999’or’Systemshouldnothaveanytiming failures even under a hardware node 

failure’.Theframework must have means to accurately capture and for-mally specify a wide variety of such 

requirements, whichthesubsequentanalysistechniquesneedtoaddress. 

While designing a dependable system, the goal is typi-cally to achieve fail-controllability [3], i.e., to introduce 

acertain degree of restrictions on how the system can fail.The level and type of such restrictions are usually 

dependentontheapplicationdomain,criticalityofthesystem,andthedependability attributes that are 

considered.Typical fail-ure modes include fail-operational, fail-safe, fail-soft, fail-silent,fail-

stop,crashandByzantine(arbitrary)failures[3].Failuremoderequirementscaneffectivelybeusedforgen-erating 

subsystem-level requirements in a hierarchical wayandcanhelpinperforminglocalizedanalysis. 

 

Component-levelerrormodeling 

Typically, this step involves modeling error behavior ofindividual software components, as well as other 

systemelements, such as component connectors, hardware nodes,middleware, and communication media. Our 

plan is to useprobabilistic automata with timing, where nodes of the au-tomata represent error states, and edges 

denote transitionprobabilities.An approach based on AADL [14] can besuitable for this step, with proper 

extensions on the errormodelingaspects.Ourintegrateddevelopmentenvironmentfor CBS is being designed to 

specify and include informa-tion about component error behaviors with varying levelsof details, based on the 

available specifications. The levelof details in component-level error models, as well as 

thedependabilityrequirementspecificationsofthesystem,willdecidethechoiceofanalysistechniquetobeperformed. 

 

System-leveldependabilityanalysis 

The analysis to be performed at this step depends on thedependability specifications and the component-level 

errormodels.Our aim is to get the basic structure in place 

sothatmultipleanalysistechniquescanbeeasilyintegratedtoour framework. A challenging issue is how to compose 

er-ror models to obtain a system-level error behavior.Errorpropagation can occur between two 

components,betweena component and another system element, or between twosystem elements. The 
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architecture of the system will serveas an input to this step, where both impact and criticalityanalysis will be 

performed.Ideally, by looking at the er-ror model of the composed system, one should be able toobserve 

whether the system can possibly fail in a certainmode that is not allowed. If this is the case, the 

frameworkshouldfurtherenabletheidentificationofthecriticalpathsin the architecture, and provide guidelines for 

efficient de-tection/recovery/correction strategies along with appropri-

atelocationforincorporatingthem,sothattheresultingsys-temmeetstheoriginaldependabilityrequirementsasspeci-

fiedbythesystemdesigner. 

Figure1illustratestheskeletonofourproposedmethod-ologyforcomposingerrorinformationtoperformasystem-level 

error analysis.The methodology consists of criticalpath identification followed by propagation analysis per-

formed on each identified path where the type of analysisdepends on the specific failure mode requirement. 

Thoughcomponents are usually considered as black boxes, we as-

sumetraceabilityofacriticalparameterevaluationthroughthe component chain. If, on the other hand, this is not 

pos-sible,wemayhavetoconsiderallpossiblescenarios. 

 

 

Compone

ntmodelp

roperties 

Error 

modelspec

ification 

ofcompo

nents 

 

System

architect

ure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1.System-levelerroranalysis 

Domain 

Incomponentbasedsystems,outputsgeneratedbycom-ponents can be specified by two domain parameters, 

viz.,value and time [3, 4, 13]. Our hypothesis is that toleratingvalueandtimingerrorsatcomponent-

level,requiresdiffer-entapproacheswithsignificantlydifferentassociatedcosts.Hence, separation of value and time 

domains will enablethe use of dedicated fault tolerance mechanisms for eachtype, as well as aid in achieving 

better error coverage 

withminimumcost.Inthispaper,wedefinethespecifiedoutputgeneratedbyacomponentasatuplebasedonthesedomain

parameters: 

SpecifiedOutput(SO)= <v∗,V,T,∆1,∆2> 

where the v∗is the exact desired value, Vis the set of ac-ceptable values, Tis the exact desired point in time 

whenthe output should be delivered and [T∆1, T + ∆2] is theacceptabletimerangefortheoutputdelivery. 

Theoutputgeneratedbyacomponentisdenotedas:GeneratedOutput(GO)=<v,t> 

wherevisthevalueandthetisthetimepointwhenthe 

outputisactuallydelivered. 

TheGOisconsideredtobecorrectif: 

v∈VandT−∆1≤t≤T+∆2 

Value errors:The output generated by a component iserroneous in value domain (ev) if v   /V , where Vis theset 

of acceptable values.We first classify errors in valuedomainassubtle(e
s
),andcoarse(e

c
)basedonourknowl- 

v v 
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2. Errorclassification-revised 

The error characteristics presented in this section arebasedonasynthesizedviewofseveralworks[3,13,4,10, 6].We 

follow the basic classification of Avizieniset.al.[3] while extending it into details with other 

works,mostofwhichaddressnarrowerareasbutwithfinerdetails.It also presents various aspects of errors in two 

categoriesbasedontheirinfluenceontheerrorhandlingmechanisms.Thesecategoriesessentiallydetermine’whichmec

hanisms’and ’how much’ are needed for adequate error 

handling.Thevariousaspectsconsideredaredomain,consistency,de-

tectability,impact,criticality,andpersistenceoferrors.Thedomain and consistency determine what kind of error 

han-dling mechanisms are appropriate while the rest determinetheamountoferrorhandlingneeded. 

edgeaboutthesetofreasonablevaluesfortheoutputandthesyntaxthatshouldbefollowedasin[4,13]. 

 

• Inexactvalueerrors(e
e
) 

v∈/V,whereV={v∗} 

 

• Unacceptabledistinctvalueerrors(e
d
) 

v/ V , where V=v∗, v1, v2, ..., vn, v∗is the idealvalueandv1,v2,...,vnaretheotheracceptablevalues 

• Inaccuratevalueerrors(e
a
) 

v/  V , where V   =   v∗∆v, ..., v∗1, v∗, v∗+1,...,v∗+∆vand[v∗∆v,v∗+∆v]istherangeofacceptablevalues 

 

Avalueerrorisacombinationoftheaboveclassifica-tions,i.e.,e
xy

,wherex∈{c,s}andy∈{a,d,e}. 

 

Timing errors:In [4, 13, 6] and in our classification, er-rors in time domain are classified into early, late and in-

finitelylate(omission)timingerrors. 

• earlytimingerrors(e
e
):t<T−∆1 

• latetimingerrors(e
l
):t>T+∆2 

• omissiontimingerrors(e
o
):t=∞ 

Additional classes [13] are, bounded, omission, and per-manent omission (crash or permanent halt) errors.para-

graph Errors in both time and value domain:Componentoutputsunderthiscategoryareerroneousinbothvalue 

andtimedomainsimultaneously,i.e.,e
a,b

,wherea  ∈ 

   

{ce,cd,ca,se,sd,sa}andb∈{e,l,o}if: 

v∈/Vand(t<T−∆1ort>T+∆2) 

 Consistency 

 

If a component provides replicas of an output to sev-eral components,consistency issues may arise.In 

thiscase,the errors are considered consistent if all receiversget identical errors.In [13], multi-user service errors 

areclassified into consistent value errors, consistent timing er-rors,consistentvalueandtimingerrors,andsemi-

consistentvalue errors.   In semi-consistent value errors, some out-put replicas have unreasonable,or out-of-

syntax values,whiletheresthaveidenticallyincorrectvalues.In[4],non-

homogeneousoutputreplicasaredefinedtobeerroneous. 

Inconsistent errors: Replicas of an output are definedas inconsistent if there are both correct and 

incorrectreplicas. 

The characteristics presented so far define our error classi-fication and will be used in both propagation analysis 

andcomposition of component error models.Furthermore theclassification will be used to determine which error 

han-dlingmechanismsareadequatetocontroltheerrorbehaviorduringcomposition. 

 

3. ErrorpropagationinCBS 

Errors in a component based system can occur in soft-ware components, middleware, or hardware platform, 

andcan propagate up to a system interface causing a systemfailure with a certain probability. This probability is, 

in itsturn, dependent on the probability of error occurrences, theisolation between different system elements, 

existing errordetection and handling mechanisms, as well as the type oferrors. The research effort is currently 

increasing for find-ing ways to get these probabilities, and to use them appro-priately[10,8,12,1,5]. 

We define the set of errors E, which includes instantia-

tionsoferrortypesdiscussedintheprevioussection.WealsodefinethefollowingsubsetsofEasfollows: 

• 
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values(ortimes)ofreceivedoutputsarenotcloseenough 

toeachother.Closenessisspecifiedbyusingthresholdval-ues. In our classification, we use both consistency and ho-

mogeneityconcepts. 

• Consistenterrors:Replicasoftheoutputfromacom- 

 

 

 

atedbycomponentCiandpropagatedout withoutany 

changes 
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sameerrorcategory,e.g.,bothhavecoarsevalueerrorsorlatetimingerrors. 

Wefurtherclassifytheseerrorsas: 

– Precise: The values or generation times of repli-

casareconsistentlyerroneousaswellasbotharewithinaprecisionrangeoridentical. 

– Imprecise:Thevaluesortimingofreplicasare 

toanothererrortype,maskedorcorrected 

E
trans

isthesetoferrorsthatwereoriginallybelong-ingtoE
mod

orinternallygeneratederrorsandtrans-

formedintothemembersformingthisset 

E
out

is the set of errors that are propagated from com-ponentCi 

consistentlyerroneous.Howevereithervaluesor 

 

Ein 

= Emod∪Epass 

Eout 

 

=  Egen∪Epass∪Etrans 

   
 

Semi-consistent errors: Replicas of an output are de-fined as semi-consistently erroneous if all users 

receiveerroneousoutputswhileatleastoneofthembelongstoadifferenterrorcategorythantheothers. 

ErrorscanbetransformedintoE
trans

byeitherCi’snor-mal execution or by error handling 

mechanisms.Thesemechanisms can be implemented within components atcomponentdesignstage, atthe 

componentinterfacesat the 

 

architectural design, or at integration stages of CBD. Var-ious mechanisms for different types of errors and their 

ef-fects on error propagation are discussed in the followingparagraphs. 

 

Transformation of value errors:The possible ways oferrortransformationsinvaluedomainareshowninTable1. 

 

Cause Initialerror Finalerror 

Errordetection ev ev(transformationi

ntimedomain) 

Errormasking ev noerror 

Errorcorrection ev noerror 

Componentoperation ev 

es 

noerror 

ec 

i i i 

i 

generationtimes(dependingontheerrortype) 

• 

• 

• 

• 

• 

ponentareconsistentlyerroneousiftheybelongtothe 

areoutsidethespecifiedprecisionrange. 
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Table1.Transformationsofvalueerrors 

 

One way to detect coarse value errors is using reason-ableness checks. Implementing reasonableness checks ne-

cessitates having knowledge about the behavior of the pro-

ducer,forexample,arangecheckingmechanismmarksthetemperaturereadingofaroomaserroneousifthevaluereadis20

0◦C based on our knowledge about the reasonableboundaries for that output.Coding checks are used to de-

tectnon-codevalueerrorswhichisaspecifictypeofcoarsevalue errors (parity-check is an example for this type 

ofcheck). Obviously, if more advanced error detection mecha-

nismsareused,whichcanidentifymorecomplexerroneousbehaviors, the coverage of detectable errors is 

increased.Detecting subtle value errors is performed by more expen-

siveerrordetectionmechanisms,suchasreplicacheckingatavoterelement.Propagationofvalueerrorscanbeblockedafte

rdetection,bysimplynotallowingtheerroneousoutputto be delivered to the next component. In this case a 

valueerroristransformedintoanomissiontimingerror. 

Certain means allow masking of value errors, such asN-modular redundancy techniques, while some others 

cancorrect value errors by using, e.g., error correction codes.Both masking and correction techniques enable 

continua-tionofcorrectfunctioninguponerrors. 

 

Transformationoftimingerrors:Errorsintimedomaincanbetransformedaccordingtothefollowingorder: 

 

e
e
→noerror →e

l
→e

o
 

Timing checks and watchdog timers can be used to de-tect timing errors produced by components.Early 

timingerrors can be corrected by introducing delays. Propagationof early or late timing errors can be blocked by 

not trans-mittingthem,iftherearenomeanstocorrectthem.Insuch cases, these errors are transformed into omission 

er-rors.When a value error is detected and omitted, as de-scribed previously, the output is actually transformed 

fromhavingnotimingerrortoanomissionerror. 

For errors regarding consistency, similar checks can beusedandinconsistenterrorscanbetransformedintoconsis-

tenterrorsinbothvalueandtimingdomains. 

To illustrate how a specific component model can in-fluencetheerrorpropagationaspects,wehaveconsid-

eredthein-

housedevelopedSaveCompComponentModel(SaveCCM)[2]andpropagationbetweencomponentsthroughconnect

ors. 

 

SaveCCMcomponentmodel 

SaveCCM was developed under the SAVE project andwasintendedforuseinautomotiveapplications.InSaveCCM, 

systems are built by composing entities 

whichbelongtooneofthreemaincategories,namelycomponents,switchesandassemblies,viawell-definedinterfaces. 

Components are basic entities in SaveCCM that followstrict read-execute-write semantics.A component is ini-

tially in an inactive state.Once all input trigger ports 

areactivated,inputdataportsarereadandthecomponentstartsexecuting.When the execution is completed, results 

arewritten to output data ports, input data ports are reset, andall output trigger ports are activated. Then the 

componentreturnstotheidleorinactivestate.Switchesarelightweightcomponents that allow changing the 

interconnections ofcomponents either statically, for offline configuration, ordynamically at run-time.Switches 

are not triggered andonly perform routing of incoming data to output ports ac-cording to the connection pattern 

guards.Finally, assem-

bliesareencapsulatedsubsystemswhoseinternalstructuresmay(ormaynot)bevisiblefromtherestofthesystem. 

Interfaces between SaveCCM entities consist of 

inputandoutputports.Theyarefurtherclassifiedintodataports,trigger ports, and both data and trigger ports. 

Connectionsbetween components consist of immediate or complex con-nections, where immediate connections 

are assumed to be-have as ideal connections which take place instantly 

withoutanylossofinformation.Complexconnections,ontheotherhand,areusedtomodelmorerealisticconnectionscena

rios,e.g.,withcertaindelaysandpossiblelossofinformation. 

 

ErrorpropagationinSaveCCM 

Inthissection,wefirstinvestigatewhicherrortypescanbe propagated from one entity to another through 

differentSaveCCM ports (Table 2).If two SaveCCM entities areconnected by a trigger port, then the preceding 
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entity canpropagate only timing errors by triggering (therefore acti-

vating)thefollowingentityatanincorrecttime.Ifthecon- 

 

 ValueErrors TimingErrors 

Dataports C C 

Triggerports - C 

Dataandtriggerports C C 

 

Table2.ErrorpropagationthroughSaveCCM 

 

nection is implemented with a data and trigger port, bothvalue and timing errors can be propagated. This is also 

thecase for connections implemented with a data port, sincethe time when the data is written to the port will 

determineif there is a timing error. Hence, SaveCCM entities can beclassified with respect to error generation 

and propagationasfollows: 

SaveCCMentitiesthatcangeneratevalueerrors:These are the entities that have output data or 

outputdataandtriggerports. 

SaveCCMentitiesthatcanpropagatevalueerrors:En-tities in this group have input data or input data andtrigger 

ports to receive a value error from a preced-ing entity. Furthermore they must have output data 

oroutputdataandtrigger portsinordertopropagatetheerrortothefollowingentity. 

SaveCCM entities that can generate timing errors: Anyentitythathasoutputportscangeneratetimingerrors. 

SaveCCM entities that can propagate timing errors:Similarly any SaveCCM entity can propagate timingerrors 

provided that there exists at least one input andoneoutputport. 

As different component models have different levels ofimpact on the error propagations, similar detailed 

analysis,inthecontextofthegivencomponentmodel,isessentialforanaccurateandcomputationallyfeasiblesystemlevel

errorbehaviorprediction. 

 

4. SummaryandOngoingWork 

In this paper, we have proposed a framework to enablecompositional reasoning of error models. We have 

surveyedvarious error classifications and failure modes in the litera-ture with the aim of identifying their 

relations/contrasts aswell as in arriving at an ’all-encompassing compilation 

ofclassifications’.WehaveinvestigatedtheerrorpropagationinCBSanddiscussedtheeffectsoferrorhandlingmecha- 

probabilisticvariantsofthem),b)providelinkstoarchitec-tural reliability prediction models together with new theo-

ries on dependability reasoning of multi-level compositions,as well as c) instantiate our framework on the 

SaveCCMsuccessor,i.e.,ProComp,currentlyunderdevelopment. 
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