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ABSTRACT
Abstract: An investigation of heat equation as a model of partial difference operator is carried out in
this paper. Here, we introduce solutions of the heat equation obtained by generalized Q -difference

equation with and without variable coefficients. The propagation of heat is studied under diverse
circumstances and relevant conclusions are derived. Suitable Examples are inserted to validate our
main results
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l. INTRODUCTION
In 1984, Jerzy Popenda [1] introduced the difference operator A defined on u(k) as

a

A u(k) =u(k +1) —au(k) . In 1989, Miller and Rose [2] introduced the discrete analogue of the Riemann-
Liouville fractional derivative and proved some properties of the inverse fractional difference operator A"
[3,4]. The sum of m" partial sums on n® powers of arithmetic, arithmetic-geometric progressions and
products of n consecutive terms of arithmetic progression have been derived using A,"u(k), where

Au(k) =u(k+£)—u(k) [6]. In 2011, M.M.S.Manuel, et.al, [5], extended the definition of A, to A as
a(l)

AV(K) =Vv(k +£)—av(k) , for the real valued function v(k) and ¢ > 0. In 2014, G.Britto Antony Xavier,
a(l)

etal, [7], have introduced Q-difference operator defined as A,V(k) =V(gk)—v(k) for the real valued
function v(k), g e (0,00) and obtained finite series solution to the corresponding generalized ¢ -difference
equation A V(k) =u(k).
For N -variable real valued function V(K;, K,,..., K,) , the generalized q -difference operator is defined as
A v(k):v(qul,kzqz,...,knqn)—v(kl,kz,...,kn), (1)
g A A,
where k = (k,, k,,...,k,)eR", v(k):R" >R and g, AQ,A,....,q,.

Forexample A V(K;, k,) =Vv(ka,, k,0,) —Vv(k;, k,).
y /G,

1. PRELIMINARIES
Consider, the two side temperature distribution of a very long rod. Let V(K;,K,) be the temperature at

k
the real time K, and real position K, of the rod. At time K, , if the temperature vV(—+,Kk,),q, >0 is higher
1

. _k . . .
than V(K;,K,), heat will flow from the point — to K,. Similarly, at time k,, if the temperature

0
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v(k,0,,K,),q, > 0 is higher than V(K;, K, ), heat will flow from the point K, to K, .

K
The amount of increase V(Kj,K,0,)—V(K;,K,) is proportional to the differences v(—,k,)—Vv(k;,k,) and
1

v(k, k,0,) —V(k;,Kk,) . Let & is a positive diffusion rate constant of the rod. Then the (]-heat equation is
given by

v(ky, k,a,) —v(k, k,) = Ot(V(l:]l k,)—V(k;, K,)) +a(v(ka, k,) —v(k,k,)),

(ie) Av(k,k,)= aAv( ) +a AVK,K). @)
lqu ql/\l
1_2q1+q12

If v(Kk;,K,) =K,K; is the solution of (2), then the value of o is, @ = (
G, (9, —

. Similarly, g-Heat

equation for the variable coefficient is defined as,

AV(k,.k,) = a(kz,k)Av(kl,k)+a(k2,k)Av(kl,k) @)

lqu ql
where a(K,,K;) is a function of k1 and K,. If v(k;,k,)=k,k; is a solution of (3) then the value of
2
1_2q1 +0q

Ky, k) is a(k,, k) = .
a( ) Sa( ) Q1(q2 _1)

1. g-HEAT EQUATION WITH CONSTANT COEFFICIENT
In this section we derive a solution of equation (2) and also we obtain a function V(K Kk,) satisfying the
equation (2).
Theorem3.1.11f A V(k,k,)=u _ (k,k;) and A v(k,k;) = Uy, (k;,k,) are known functions. Then
ql—l % Al
the q -heat equation has a solution

k m
Vil k) vl 22 = a1 ) +u, (6857 )]
2 r=1

-1
Proof. From the linearity of A and (2), we have
4,0,
-1
V(kl’kz):aA A v(k, k,) + AV(k1,k2) . 5)
1/\q2 qlfl/\l o

Now the proof of (4) follows by taking A V(k,k,) =u _, (k;,k,) and
1Al !

Av(kl’ kz) = uql(kl’ kz) :
NS

Theorem 3.2.2 If V(K k,) is a solution of g-heat equation (2), then the following four relations are
equivalent:

(i)V(klykz)—V(kl ) aZ{V(ql ko0, ") +V(KiGy, K0, ) —2v(ky ky) | (6)

r=1
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i) v(k, k,) = K, k0
(i) v(k, )( )V( 9;)

m

(v(qﬁ, k,0; ) +v(k,, kzqé‘l)]- 7)
1

:1

o

k,
=20 "'q ( k,07')

1 o
(iii) v(k, k) = =y v(k,, k,q,) —mv(qul, k,)—

m 2

+Zﬁ{ (kl k,ad ™) +v(k,, kzqér‘“)} ®)

=1

. 3 a m
(IV) V(kz, kl) = (_1 2) _Wv(quv kzqz )

LT

Z(l 20 )ul{ (K ko0 ) + (k7 ko0 )} @)
1

Proof. From the g-difference Heat equation (2), we have

v(k, k,0,) —v(k, k) =a {V(%' k,) —v(k, kz)} + a[v(qul’ k,) —v(k, kz)]

1

a k,
K k.0, K, 10
k) g k). o

1
vk, ko) = ik kQp) -

k
(i) Replacing K, by —% in (10), we get (6).
2
(i) Replacing k2 by kzq2 in (10), continuing the same process we get (7).

. k, .
(iii) Replacing k; by — in (10), we get (8).
1

(iv) Replacing k; by kg, in (10), we get (9).

Corollary 3.3.3 Let k;, k, and g, #0 and g, #1. Then, we have
K, (kik,)

k log
k +k, |09(k1k2)} ey 9% |_% o
+ - - = (k,q,")+1t.  (11)
{qz—l loga, g,-1  logg, Z‘{ %)+

k, +K,

Proof. Taking V(k;,K,) = u(k,, k,) =k,, w(k;,k,) =1 in (4), we get the proof of (11).

2

Example 3.4.4 Taking k; = 0.3, k, =0.2,, g, =2 and m=2 in (11), we have 2.15=2.15

Corollary 355 Let 1-2a #0, ¢, # 0. Then, we have
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k a
klkz (1 2 2) —( lkzqz)_

(1 20 ) (1 20 ) m(qulkzqz)

(1 2 )(q_l 2)_(1 20 )(qulk) (12)

Proof. The proof of (12) follows by taking V(k;,K,) = kK, and m=2 in (7).
Example 3.6.6 Taking k, =4, k, =2, 0, =2, g, =3 in (12), we get 8=8.

Corollary 3.7.7 Let 1-2a # 0, @, # 0. Then we have

1 o k, o’ kl2
kK, —m(klkzqz) W( k,0,) + m(— k,)
(1 2 2 (12) (qulk) (13)

Proof. Taking V(K;,K,) = kK, and m =1 in (12), we get the proof of (13).
Example 3.8.8 Taking kK, =4, k, =2, 0, =2, g, =3 in(13), we get 8=8.

Corollary 3.9.9 Let 1-2a #0, q1 # 0. Then we have

1
klkz_m(klkz%) (1 2 )(q_l 2) m(qul 2q2

2
(24

+
(1-20a)?
Proof. The proof of (14) follows by taking V(K;,K,) = klk2 and m=1 in (9).

ko) « ~ (k%K) (14)

Example 3.1010 When k, =4, k, =2, 9,=3 Q, =2, in(14), we get 8=8.

V. g-HEAT EQUATION WITH VARIABLE COEFFICIENT
In this section we derive a solution of (-heat equation with variable coefficient of (3) and also we obtain a

function (K, Kk,) satisfying the equation (3).
Theorem 4.1.11 If V(k;,K,) is a solution of equation (3) with variable coefficients. Then the follwoing
relations are equivalent

_ k Sl . r
(') V(k11 kz) _V(kpq_,i) = a(kl’ k2)2|:v(q_l1 szz ) +V(k1q1' kzqz ) _2V(k1’ kz)}- (15)
2 r=1 1

(i) vk k) = - v(k, ko)

H[l_ 2a(k,, kzqzril)]

_il—[ ket ) (V(— K0y )+v(k1q1,k2q£‘1)j (16)
ST -2a(k, kgs )]

s=1
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_ 1 _alk,ky)
(iii) v(k,, k,) = PR TR 2k k) v(k,, k,0,) 120k K3 2a(k.K) v(k,a,,k,)
a(k1’ kz) kl m
- - K, ~ V(q—l’ k,0;')
[1- Za(kl’ kz)]H[l_ Za(a' kzqz )]
e k(D]
+ — {V — ko ™) +v(ky, kzqé”’)}- (17)
= [1- 20k, k)N JIL- 2a(§1, oL
. _ 1 _ a(k,k,) ﬁ
(IV) V(kl, kz) - 1_ 20(('(1, kz) V(kl, kzqz) 1_ 20(('(1, kz) V(ql ' kz)
- allo k) v(k,g;, k,a7)
[1- Za(kl’ kz )]H[l_ 2“(k1q11 kzqg_l)]
+i a(kl, kz)a(qul’ kzqg_l) {V(Kll kzqgs—l)) +V(qu12, kzqér—l))}. (18)

120k, kI -2k kol )

-1
Proof. (i) From the linearity of A
4,0

k.

and (3), we have

V(kl’ kz) _V(kl’ qm) = a(klv kz)Z{u(kp kzqgr) +W(k1’ kzqgr)}- (19)
r=1

2
From the experimental value, we tak

e

A V(K K) =ulky k), AV k) =w(k k). (20)
ql_ll\l ql/\l

Equation (20) is the solution of Heat

Equation (3).

In (19), u(kl,kzqz_rl) is obtained by replacing K, by kzq;rl in (20) .
Substituting (20) in (19), we get (15). (ii) From the g-Heat equation (3), we have

1

alk,k) k. a(k,k,)

v(k, k)= —v(k,k,q,) ————=—Vv(-+,k,) - v(k,q,, k
(ke k) 1-2a(k,,k,) (ki a2) 1-2a(k,,k,) (ql 2 1-2a(k,,k,) (ki ko)
(21)
Replacing K, by (K,q,) in (21), repeating the process we get (16).
. K\
(iii) Replacing Kk, by (=) in (21), we get (17).
1
(iv) Replacing k; by (k;0,) in (21), we get (18).
Corollary 4.2. 12 Let g, # 0 and g, # 1. Then we have
k, (kik,)
k,+—% log~—1%2~
ka+k,  log(kyk) | 9 % l_v o (22)
{qz -1 ! Iquz } q, -1 " Iquz ;{(kzqz )+1}.
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9 g, k) =k WG, k) =1 19

Proof. The proof of (22) follows by taking V(K,,K,) =

2
Example 4.3.13 Taking k, =0.2, k;, =0.3, 0, =2, m=2 in (22), we get 2.15=2.15.

Corollary 4.4. 14Let g, # 0, 1-2a/(k;,k,) # 0 and 1-2a(k;,k,q,) # 0. Then

= 1 (k.k q2)_ a(k,, k)
[1-2a(k,, k)I[1-2a(k,, k,q,)] ne [1-2a(k,, k)I[1-2a(k,, k,q,)]

ﬁ _ a(kl’ kz) ﬁ
{( 0 K,0p) + (qulkzqz)} = 2a(k. k)] { 0 k,)+ (qulkz)} (23)

kik,

Proof. Taking V(k;,K,) = kK, and m =2 in (16), we get (23).
Example 4.5.15 Taking k;, =4, k, =2, @, =3,9.2=2in,weget8 =8

Corollary 4.6. 16Let a(k;,K,) ;t% and a(%,kz) ;t%.Then we have
1
1 a(k,k K
:W(klkz%)— (ko) K (=+k,0,)
~2alk ko) [1-2a(k k)I[1-2a( )] %
1

kik,

(k—12 ky) + (kik,)

1

+ — (kGkz).  (24)
[1_2a(k1’kz)][l_za(allkz)]

1

a(kl,kz)a((‘;l,kz)
{ - 1—2a(k1,ll<2)

ol ke (k)
} g

Proof. Taking V(K;,K,) = kK, and m =1 in (17), we get (24).
Example 4.7.17 Taking k;, =4, k, =2, ¢,=3, 0, =2, in (24), we get8=8

Corollary 4.8.18 Let 1-2a(k;,k,) # 0 and 1-2a(k,q;,K,) # 0. Then we have

! alk, k) kK a(k,,k,)
kk =——— (kk A\ M) Ry 1 Ko k
2 1—2a(k1,k2)(1 20:) 1—2a(k1,k2)(ql 2) 1—2a(k1,k2)(
a(kl’kZ)a(qullkz) 2
kk, +kkgl. (25
[1—2a(k1,kz)][l—Za(qul,kz)]{ orhokal). @9

14K, 0,)

Proof. Taking V(K;,K,) = K,k; and m =1 in (18), we get (25).

Example 4.9.19 Let K, =2, k, =4, 0, =2, g, =3 in(25), we get 8=8.
Conclusion: In the above study, the heat equation model is studied using generalized (] - difference operator.

We can say that the above research helps us in reducing any wastage of heat and also enables us in making a
optimal choice.
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