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I. INTRODUCTION 
Almost 100 years ago, Taylor described machine tool chatter as the “most obscure and delicate of all problems 

facing the machinist” (Stephenson &Agapiou, 2006). Its documented history started from as early as 1906 when 

chatter was recognized as a challenging practical problem. Merchant (1945) presented the kinematics of the 

mechanics of the orthogonal metal cutting process, as presented in Figure 1. The relationships between the 

forces and the cutting parameters , rake angle , the coefficient of friction Fs between the tool and the chip, 

and the shear strength of the material  are derived. However, the relationships are not valid in a steady state 

cutting process, because metal cutting is a dynamic process and chatter needs to be taken into account as it 

causes serious problems in machining stability. Aerospace, automotive, mold/die and general manufacturing 

industries face pressures to ensure lower costs, greater productivity, and improved quality, in order to encourage 

economic growth of the machine tool industry. However, machining productivity using high material removal 

rates is inhibited by the dynamic deflection of the tool and workpiece systems, which generates an unstable 

cutting force. This causes sudden vibrations of large 

amplitudewhentheenergyinputexceedstheenergydissipatedfromthesystem,whichis known as chatter. Chatter is a 

self-excited type of vibration that occurs in metal cutting if the chip width is too large with respect to the 

dynamic stiffness of the system, especially when machining with a high material removal rate. It produces a 

poor surface finish, high tool wear, and can even damage machine tools because of the regenerative effect, the 

loss of contact effect, and the mode coupling effect. The boundary of stability limits represents either the stable 

or unstable (chatter) condition of the machining process and is known as the stability diagram, which is a 

function of depth of cut and spindle speed, as shown in Figure2. 
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Figure 1. Model of metal cutting by Merchant (1945) 

 

Since Taylor first developed machining techniques, researchers have given much attention to machining 

processes (Stephenson &Agapiou, 2006). For the milling process, Figure 3 shows that the process parameters 

important in roughing or finishing operations are the axial depth of cut b, radial depth of cut r, spindle speed n, 

cutting velocity v, and chip width w. The interactions between these process parameters, machine tools, and the 

system cause machining problems, such as low productivity, short tool life, poor surface roughness, chatter, and 

others. To overcome these problems, it is necessary and important to obtain a global optimum strategy. All 

factors relating to each other must be considered simultaneously in order to obtain the optimal cutting 

parameters for accomplishing high productivity, high quality, and profit. Recent practices based on operator 

experience and handbooks were used as reference for optimizing the process parameters. In this paper, the 

algorithms or methods applied to various problems in machining optimization will be introduced and then 

specific focus will be placed on the problem of optimization for chatter suppression. 
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Figure 2. Cutting tool process parameters and type of milling operation 
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Figure 3. Stability lobes diagram. 
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OPTIMIZATION METHODS AND PROBLEMS 

The development of powerful computer tools has accelerated the optimization methods for solving machining 

problems. The optimization problem consists of three basic parameters that need to be considered: objective 

function, a set of unknowns or variables, and a set of constraints. For the machining problem, these problems 

can be solved by optimizing the parameters in processes, tools, and problem functions. The problem functions 

consist of constraint parameters and operation conditions referring to the problem to be solved. The objective 

function is named the cost function to minimize its value, fitness function to maximize its value, and error 

function to search its zero value (Fletcher, 1987). 

Computer optimization methods for metal cutting operations can be classified as traditional, modern, and 

intelligent methods. Operational research or traditional methods are known as Geometric Programming (GP) 

(Walvekar& Lambert, 1970; Jha, 1990; Koulamas, 1991; Wang, Rahman, Wong, & Sun, 2005), Dynamic 

Programming (DP) (Sonmez, Baykasoglu, Dereli, &Filiz, 1999; Wang et al., 2005), and Sequential Quadratic 

Programming (SQP) (Balakrishnan&DeVries, 1985; Chua, Loh, Wong, &Rahman, 1991; Yeo, Rahman, & 

Wong, 1995; Stori& Wright, 2001; Kurdi, Schmitz, Haftka, & Mann, 2004; Kurdi, 2005; Maeda, Cao, 

&Altintas, 2005; Abburi& Dixit, 2007). However, the traditional method is based on a derivative technique, 

which faces problems when an objective function is used that cannot be differentiated. In addition, an objective 

function can also be a computer program or experimental data that are very subjective, and the constraint may 

also consist of differentiation parameters (Lin, 2002; Ghani, Choudhury, & Hassan, 2004; Tsai & Hsieh, 2005; 

Chang & Lu, 2007). Therefore, modern technology is introduced to overcome the problems by applying a 

statistical approach, such as the Taguchi Method (Lin, 2002; Ghani et al., 2004; Tsai & Hsieh, 2005; Chang & 

Lu, 2007), Design of Experiment ( Vivancos, Luis, Costa, & Ortiz, 2004; Stoic, Kopac, & Cukor, 2005; Bajic, 

Lela, &Zivkovic, 2008), and Response surface methodology ( Oktem, Erzurumlu, &Kurtaran, 2005; 

Saikumar&Shunmugan, 2008). Nevertheless, statistical methods can be trapped in local optimization, premature 

and not generalized because the equations used are obtained from experiment (Budak, 2000; Marian 

Wiercigroch, 2001; Budak, 2003). Thereby, intelligent techniques overcome the problem by introducing Hill 

Climbing (Budak, 2000; Budak, 2003; Baskar, Asokan, Saravanan, &Prabhaharan,, 2006), Neural Networks 

(Westkämper& Schmidt, 1998; El-Mounayri, Kishawy, &Briceno, 2005), Simulated Annealing ( Juan, Yu, & 

Lee, 2003; Wang et al., 2005), Tabu Search ((Budak, 2000; Budak, 2003; Baskar, Asokan, Prabhaharan, 

&Saravanan, 2005), Genetic Algorithms (GA) (Li & Li, 2000; Cus&Balic, 2003; Ariffin& Worden, 2004; 

Baskar et al., 2005; Onwubolu, 2005; Stoic et al., 2005; Wang et al., 2005; Baskar et al., 2006; Oktem, 

Erzurumlu, &Erzincanli, 2006; Weinert, Zabel, Muller, &Kersting, 2006; Yajun, Zhenliang, &Minghui, 2006; 

Parent, Songmene, &Kenne, 2007; Savas&Ozay, 2007), Ant Colony Optimization (Baskar et al., 2005), 

Differential Evolution (DE) (Krishna, 2007; Saikumar et al., 2008), and Particle Swarm Optimization (PSO) 

Tandon, El-Mounayri, &Kishawy, 2002; Kurdi et al., 2004; Baskar et al., 2005; Kurdi, 2005). Latest technology 

optimization can be applied in a virtual manufacturing environment, as proposed by Merdol and Altintas 

(2008a;2008b). 

Abuelnaga and El-Dardiry (1984) reviewed several mathematical approaches (GP, DP and SQP) for solving 

optimization problems in machining, while Aggarwal 

andSingh(2005)compiledturningmachiningoptimizationproblemsaccordingtothe conventional and most recent 

technologies. Mukherjee (2006) reviewed the advantages and disadvantages of machining optimization methods 

used in current research. In contrast, Appendix 1 summarizes the literature on the problems, techniques, and 

parameters of machining optimization. Machining problems can be classified into product quality, productivity, 

tool life and chatter. In short, GA and SQP are the methods predominantly used for solving most of the 

problems in machining, and they indicate that machining problems can be faced and solved by either 

conventional or intelligent methods. For this work, although GA is more popular than DE in current research, 

DE will be applied to optimize variable helix and variable pitch owing to its robustness and it being faster than 

GA (Tusar, Korosec, Papa, Kilipic, &Silc, 2007). For instance, Mayer, Kinghorn and Archer, (2005) used a 

small population of DE with efficient, robust, and better results than GA when optimizing a beef model. A 

comparison of stochastic methods (GA, ES, PSO, DE, electromagnetic algorithm, and stigmergy algorithm) 

performed by Tusar et al. (2007) in optimizing universal motor geometries, showed that DE and the stigmergy 

algorithm improved the loss of power of the motor better than the other stochasticmethods. 

Additionally, DE is the only algorithm that can find consistently the optimal solution with a few function 

evaluations (Pener&Littlefair, 2005), small population size, and the capability to escape local optimality with 

the mutation process (SaikumarShunmugan, 2008). Thus, it can avoid rapid convergence. However, although 

DE cannot compete with a free search algorithm, it is better in terms of exploration ability and facing noisy data, 

than GA and PSO, when optimizing several constraint problems (Krishna, 2007). DE has also been applied 

successfully (Price, Storn&Lampinen, 2005) in digital design, neural network learning, fuzzy decision-making 

problems, and optimization of heat exchangers. In machining optimization, Saikumar and Shunmugan (2008) 

applied DE to select the best cutting speed, feed rate, and depth of cut to achieve an optimum surface finish, 

while Krishna (2007) applied DE in grinding, when searching for a suitable process for minimizing surface 
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grinding. In addition, SQP, as a popular conventional method, can be used to benchmark the results of DE. 

Kurdi et al. (2004; 2005) applied SQP to optimize a multi-objective function using a Pareto front approach, 

where each time a single objective was solved, the second objective was constrained until an optimal front was 

found. SQP can also transform nonlinear optimization problems into a quadratic sub-problem around an initial 

guess that gives better performance than PSO results. Therefore, based on the previous research and experience, 

DE and SQP will be used for optimizing the currentproblems. 

 

OPTIMIZATION IN CHATTER SUPPRESSION 

Regenerative instability is affected by many factors, such as the workpiece, tool material, machine stiffness, tool 

geometry, and cutting processes. On the other hand, milling stability is more complex owing to the rotation, 

multiple cutting teeth, periodic force, chip load direction, and multiple degrees of freedom of the structural 

dynamics (Tlusty, 2000 ). In order to show that the chatter of the system is mitigated, the stability limits should 

describe the increment from the original dynamics machine tools system. In suppressing chatter, certain 

methods require optimization to be taken into consideration. For example, spindle design (Liu &Rouch, 1991; 

Maeda et al., 2005), tool path (Ariffin, Sims, & Worden, 2004), cutting process (Kurdi et al., 2004; Budak et al., 

2005; Kurdi, 2005; Tekeli&Budak, 2007), and variable pitch require an optimization algorithm to beapplied. 

The spindle is a main component in a machine tool where both the static and the dynamic spindle stiffness are 

related directly to the chatter problem. An appropriate spindle design is required, especially in optimizing the 

geometry to produce high productivity machining without chatter. Maeda et al. (2005) optimized bearing 

distribution along the spindle shaft using SQP. Finite element modeling (FEM) was applied to predict the 

frequency response function (FRF) of the spindle speed based on Tomoshenko beam theory. Integrated with 

chatter vibration stability, cutting speed, and axial depth of cut, the spindle drive configuration can be designed 

and optimized. Maximum critical depth of cut was included in the objective function, which changes according 

to the bearing location FRF and the number of flutes. Liu &Rouch (1991) proposed an optimal passive dynamic 

absorber for the milling process. Before carrying out the passive control, a dynamic mass was to be connected 

with the optimized passive elements, such as the spring and damper. The objective function was chosen as the 

optimal critical depth of cut that could be applied in the wide range of spindle speeds. However, wide ranges of 

high torques and spindle speeds are required to ramp at high spindle speed. 

Chatter stability is represented by depth of cut in the spindle speed function, as shown in Figure 3. It involves 

the cutting process parameters that should be optimized in order to minimize chatter. Thus, Kurdi et al. (2004; 

2005), and Budak and Tekeli (2005; 2007) applied process optimization methods to suppress chatter. Kurdi et 

al. (2004; 2005) optimized spindle speed and depth of cut under stability conditions of chatter, in order to 

achieve high material removal rate and minimum surface location error by using a Time Finite Element 

Analysis (TFEA) numerical method. PSO and SQP were applied to search for two objective functions under a 

Pareto front approach where each time a single objective was solved, the second objective was constrained until 

the optimal front was found. An additional constraint with perturbed spindle speed was added to treat trapped 

SQP in local minima, which performed better than PSO because of the discontinuity trend. Both objective 

functions used b and n as parameters and constraints of dynamic map eigenvalues. Material removal rate (MRR) 

calculations also involved chip width as a constraint, in addition to depth of cut and spindle speed. As stated 

previously, spindle speed selection is impractical to apply owing to the availability and limited spindle speed of 

certain machines. However, an epsilon constraint, which can be applied easily to any optimization algorithm, is 

appropriate for solving multi-objectiveproblems. 

On the other hand, Budak and Tekeli (2005; 2007) maximized the MRR while optimizing axial and radial depth 

of cut, without sacrificing chatter, by using an analytical method. Maximum MRR can be achieved at certain 

combinations of b and r while both n and the number of cutters are constant, and it is related to the FRF of the 

cutting tool change. From integrating the optimization with the computer-aided design/computer-aided 

manufacturing (CAD/CAM) system, machining time was reduced when applied to pocket machining. They used 

their own algorithm to optimize the machining process for maximum MRR, while at the same time, minimizing 

chatter and machining time. However, maximizing radial and axial depth of cut requires a twist optimization 

approach, which takes time to achieve optimum immersion conditions. 

Variable geometry can be optimized to reduce chatter in generating low cutting force, high material removal 

rate, and a precise product by using several approaches. For example, Altintas, Engin and Budak (1999) 

emphasized maximizing axial depth of cut when the regenerative phase  shifts to 90; the phase changes 

when using different n,fcandb.Tooptimizevariablepitchangles,amanualmathematicalcalculationwas applied by 

considering specific spindle speeds and chatter frequencies that minimize chatter. Using variable pitch tools, 

Shirase and Altintas (1996) minimized the force and location error. However, modifications of the variable pitch 

range are small because of phase angle constraints in maintaining a no-chatter condition. Additionally, Budak 

(2000; 2003) modeled and optimized a non-constant pitch angle cutter model with an analytical stability model. 

A simple equation based on HC was used to determine optimal pitch angles from stability and pitch variation. A 

linear pitch variation was used that gives higher stability, rather than non-linear variation for which tool 
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manufacture is difficult. Thus, the spindle speed and chatter frequency need to be tuned to optimize pitch angles 

at constant depth of cut. Both the phase difference and chatter frequency were set as constraints to ensure that 

higher stability was accomplished. A variable pitch cutter is appropriate for low speed machining; in addition to 

reducing force, it also does not increase cost, and only needs measurement analysis. However, at a certain pitch 

variation, it is suitable only under a limited range of frequencies and speeds. 

In contrast, Olgac and co-authors (Nejat&Rifat, 2005; Fazelinia&Olgac,  2006; Olgac&Sipahi, 2007a; 2007b) 

maximized MRR in simultaneous machining with an irregular pitch cutter using the cluster treatment of 

characteristic roots (CTCR) algorithm. The algorithm has the capability to optimize unstable variable pitch at 

certain values of b and n. It is based on the characteristic equation of the CTCR, at certain b, to represent two 

time delays in pitch ratio and n variation. The characteristic equation depends on the number of flutes, spindle 

speed, and different depth of cut, to give different optimal values by using the time delays. CTCR with time 

delay pitch angle  and spindle speed mapping with a certain depth of cut. In addition, variable pitch results need 

to consider the chip evacuation phenomenon, particularly at small angles, which was reported by Altintas et al. 

(1999), and Olgac and Sipahi (2007) who continued the same approach with a 6-flute cutter. However, no 

experimental implementation results have beendiscussed. 

 

II. CONCLUSIONS 
In the literature, it can be found that machining optimization focuses on spindle design, tool path, cutting 

process, and variable pitch. Various algorithms that can be applied in optimization of machining problems; 

however, DE is the most appropriate for use in chatter suppression, being less time consuming, locally optimal, 

and more robust than both GA, despite its wide applications and SQP, which is a famous conventional 

algorithm. 
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