

On intuitionistic fuzzy β generalized closed sets

Saranya M¹, Jayanthi D²

¹ MSc Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India ²Assistant Professor of Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India

ABSTRACT

In this paper, we have introduced the notion of intuitionistic fuzzy β generalized closed sets, and investigated some of their properties and characterizations

KEYWORDS: Intuitionistic fuzzy topology, intuitionistic fuzzy β closed sets, intuitionistic fuzzy β generalized closed sets.

I. Introduction

The concept of fuzzy sets was introduced by Zadeh [12] and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this paper, we have introduced the notion of intuitionistic fuzzy β generalized closed sets, and investigated some of their properties and characterizations.

II. Preliminaries

Definition 2.1: [1] An *intuitionistic fuzzy set* (IFS for short) A is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$

where the functions $\mu_A: X \to [0,1]$ and $\nu_A: X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS (X), the set of all intuitionistic fuzzy sets in X.

An intuitionistic fuzzy set A in X is simply denoted by A= $\langle x, \mu_A, \nu_A \rangle$ instead of denoting A = $\{\langle x, \mu_A(x), \nu_A(x) \rangle$: $x \in X\}$.

Definition 2.2: [1] Let A and B be two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X\}$. Then,

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$,
- (b) A = B if and only if $A \subseteq B$ and $A \supseteq B$,
- (c) $A^{c} = \{\langle x, \nu_{A}(x), \mu_{A}(x) \rangle : x \in X\},\$
- (d) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X \},$
 - (e) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}.$

The intuitionistic fuzzy sets $0 \sim = \langle x, 0, 1 \rangle$ and $1 \sim = \langle x, 1, 0 \rangle$ are respectively the empty set and the whole set of X.

Definition 2.3: [3] An *intuitionistic fuzzy topology* (IFT in short) on X is a family τ of IFSsin X satisfying the following axioms:

- (i) $0\sim$, $1\sim \in \tau$
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- (iii) $\bigcup G_i \in \tau$ for any family $\{G_i : i \in J\} \subseteq \tau$.

www.ijceronline.com Open Access Journal Page 37

In this case the pair (X,τ) is called *intuitionistic fuzzy topological space* (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X,τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4:[5] An IFS A = $\langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

- (i) intuitionistic fuzzy β closed set (IF β CS for short) if int(cl(int(A))) \subseteq A,
- (ii) intuitionistic fuzzy β open set (IF β OS for short) if $A \subseteq cl(int(cl(A)))$.

Definition 2.5: [6]Let A be an IFS in an IFTS (X,τ) . Then the β -interior and β -closure of A are defined as β int(A) = \bigcup {G / G is an IF β OS in X and G \subseteq A}. β cl(A) = \bigcap {K / K is an IF β CS in X and A \subseteq K}.

Note that for any IFS A in (X,τ) , we have $\beta cl(A^c) = (\beta int(A))^c$ and $\beta int(A^c) = (\beta cl(A))^c$.

Result 2.6: Let A be an IFS in (X,τ) , then

- (i) $\beta \operatorname{cl}(A) \supseteq A \cup \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$
- (ii) $\beta \operatorname{int}(A) \subseteq A \cap \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$

Proof: (i)Now int(cl(int(A))) \subseteq int(cl(int(β cl(A))) $\subseteq \beta$ cl(A), since $A \subseteq \beta$ cl(A) and β cl(A) is an IF β CS. Therefore $A \cup \text{int}(\text{cl(int(A))}) \subseteq \beta$ cl(A).

(ii) can be proved easily by taking complement in (i).

III. Intuitionistic fuzzy β generalized closed sets

In this section we have introduced intuitionistic fuzzy β generalized closed sets and studied some of their properties.

Definition 3.1: An IFS A in an IFTS (X,τ) is said to be an *intuitionistic fuzzy* β *generalized closed set* $(IF\beta GCS \text{ for short})$ if $\beta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an $IF\beta OS$ in (X,τ) .

The complement A^c of an IF β GCS A in an IFTS (X,τ) is called an intuitionistic fuzzy β generalized open set (IF β GOS in short) in X.

The family of all IF β GCSs of an IFTS (X, τ) is denoted by IF β GC(X).

Example 3.2:Let $X = \{a, b\}$ and $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$. Then $\tau = \{0 \sim, G, 1 \sim\}$ is an IFT on X. Let A = $\langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ be an IFS in X.

Then, IF β C(X) = {0 \sim , 1 \sim , $\mu_a \in [0,1]$, $\mu_b \in [0,1]$, $\nu_a \in [0,1]$, $\nu_b \in [0,1]$ / 0 $\leq \mu_a + \nu_a \leq 1$ and 0 $\leq \mu_b + \nu_b \leq 1$ }.

We have $A \subseteq G$. As $\beta cl(A) = A, \beta cl(A) \subseteq G$, where G is an IF β OS in X. This implies that A is an IF β GCS in X.

Theorem 3.3:EveryIFCSin (X, τ) is an IF β GCS in (X, τ) but not conversely.

Proof:Let A be an IFCS. Thereforecl(A) = A. Let $A \subseteq U$ and U be an IF β OS. Since β cl(A) \subseteq cl(A) = A \subseteq U, we have β cl(A) \subseteq U. Hence A is an IF β GCS in (X, τ).

Example 3.4:Let $X = \{a, b\}$ and $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$. Then $\tau = \{0 \sim, G, 1 \sim\}$ is an IFT on X. Let $A = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ be an IFS in X.

Then, IF β C(X) = {0 \sim , 1 \sim , $\mu_a \epsilon$ [0,1], $\mu_b \epsilon$ [0,1], $\nu_a \epsilon$ [0,1], $\nu_b \epsilon$ [0,1] / 0 $\leq \mu_a + \nu_a \leq 1$ and 0 $\leq \mu_b + \nu_b \leq 1$ }.

We have $A \subseteq G$. As $\beta cl(A) = A$, $\beta cl(A) \subseteq G$, where G is an IF β OS in X. This implies that A is an IF β GCS in X, but not an IFCS, sincecl(A) = $G^c \ne A$.

Theorem 3.5:EveryIFRCSin (X,τ) is an IF β GCS in (X,τ) but not conversely.

Proof: Let A be an IFRCS[10]. Since every IFRCS is an IFCS [9], by Theorem 3.3, A is an IF β GCS.

Example 3.6: Let $X = \{a, b\}$ and $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$. Then $\tau = \{0 \sim, G, 1 \sim\}$ is an IFT on X. Let $A = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ be an IFS in X.

Then, IF β C(X) = {0 \sim , 1 \sim , $\mu_a \epsilon$ [0,1], $\mu_b \epsilon$ [0,1], $\nu_a \epsilon$ [0,1], $\nu_b \epsilon$ [0,1] / 0 $\leq \mu_a + \nu_a \leq 1$ and 0 $\leq \mu_b + \nu_b \leq 1$ }.

We have $A \subseteq G$. As $\beta cl(A) = A$, $\beta cl(A) \subseteq G$, where G is an IF β OS inX. This implies that A is an IF β GCS in X, but not an IFRCS, sincecl(int(A)) = $cl(0\sim) = 0\sim \neq A$.

Theorem 3.7: EveryIFSCSin (X,τ) is an IF β GCS in (X,τ) but not conversely.

Proof:Assume A is an IFSCS [5]. Let $A \subseteq U$ and U be an IF β OS. Since β cl(A) \subseteq scl(A) = A and A \subseteq U, by hypothesis, we have β cl(A) \subseteq U. Hence A is an IF β GCS.

Example 3.8:Let $X = \{a, b\}$ and $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$. Then $\tau = \{0 \sim, G, 1 \sim\}$ is an IFT on X. Let $A = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ be an IFS in X.

Then, IF β C(X) = {0 \sim , 1 \sim , $\mu_a \in [0,1]$, $\mu_b \in [0,1]$, $\nu_a \in [0,1]$, $\nu_b \in [0,1]$ / 0 $\leq \mu_a + \nu_a \leq 1$ and 0 $\leq \mu_b + \nu_b \leq 1$ }.

We have $A \subseteq G$. As $\beta cl(A) = A$, $\beta cl(A) \subseteq G$, where G is an IF β OS in X. This implies that A is an IF β GCS in X, but not an IFSCS, since $int(cl(A)) = int(G^c) = G \nsubseteq A$.

Theorem 3.9:EveryIF α CSin (X,τ) is an IF β GCS in (X,τ) but not conversely.

Proof:Assume A is an IF α CS [5]. Let A \subseteq U and U be an IF β OS. Since β cl(A) $\subseteq \alpha$ cl(A) =A and A \subseteq U, by hypothesis, we have β cl(A) \subseteq U. Hence A is an IF β GCS.

Example 3.10: Let $X = \{a, b\}$ and $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$. Then $\tau = \{0 \sim, G, 1 \sim\}$ is an IFT on X. Let $A = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ be an IFS in X.

Then, IF β C(X) = {0 \sim , 1 \sim , $\mu_a \in [0,1]$, $\mu_b \in [0,1]$, $\nu_a \in [0,1]$, $\nu_b \in [0,1]$ / 0 $\leq \mu_a + \nu_a \leq 1$ and 0 $\leq \mu_b + \nu_b \leq 1$ }.

We have $A \subseteq G$. As $\beta cl(A) = A$, $\beta cl(A) \subseteq G$, where G is an IF β OS in X. This implies that A is an IF β GCS in X, but not an IF α CS, since $cl(int(cl(A))) = cl(int(G^c)) = cl(G) = G^c \nsubseteq A$.

Theorem 3.11:EveryIFPCSin (X,τ) is an IF β GCS in (X,τ) but not conversely.

Proof: Assume A is an IFPCS [5]. Let $A \subseteq U$ and U be an IF β OS.Since β cl(A) \subseteq pcl(A) = Aand $A \subseteq U$, by hypothesis, we have β cl(A) \subseteq U. Hence A is an IF β GCS.

Example 3.12: Let $X = \{a, b\}$ and $G = \langle x, (0.5_a, 0.6_b), (0.5_a, 0.4_b) \rangle$, Then $\tau = \{0 \sim, G, 1 \sim\}$ is an IFT on X. Let $A = \langle x, (0.5_a, 0.7_b), (0.5_a, 0.3_b) \rangle$ be an IFS in X.

Then, IF β C(X) = {0 \sim , 1 \sim , $\mu_a \in [0,1]$, $\mu_b \in [0,1]$, $\nu_a \in [0,1]$, $\nu_b \in [0,1]$ / $\mu_b < 0.6$ whenever $\mu_a \ge 0.5$, $\mu_a < 0.5$ whenever $\mu_b \ge 0.6$, $0 \le \mu_a + \nu_a \le 1$ and $0 \le \mu_b + \nu_b \le 1$ }.

Now $A \subseteq 1 \sim$. As $\beta \operatorname{cl}(A) = 1 \sim \subseteq 1 \sim$, we have A is an IF β GCS in X, but not an IFPCS since $\operatorname{cl}(\operatorname{int}(A)) = \operatorname{cl}(G) = 1 \sim \not\subseteq A$.

Remark 3.13: Every IFGCS and every IF β GCS are independent to each other.

Example 3.14: Let $X = \{a, b\}$ and $G_1 = \langle x, (0.5_a, 0.5_b), (0.5_a, 0.5_b) \rangle$ and $G_2 = \langle x, (0.3_a, 0.1_b), (0.7_a, 0.8_b) \rangle$. Then $\tau = \{0 \sim, G_1, G_2, 1 \sim\}$ is an IFT on X. Let $A = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ be an IFS in X. Then $A \subseteq G_1$ and $G_2 = \langle x, (0.3_a, 0.1_b), (0.7_a, 0.8_b) \rangle$. Then $G_1 \subseteq G_1$. Therefore A is an IFGCS in X.

Now IF β C(X) = {0 \sim , 1 \sim , $\mu_a \epsilon$ [0,1], $\mu_b \epsilon$ [0,1], $\nu_a \epsilon$ [0,1], $\nu_b \epsilon$ [0,1] / either $\mu_a \ge 0.5$ and $\mu_b \ge 0.5$ or $\mu_a < 0.3$ and $\mu_b < 0.1$, $0 \le \mu_a + \nu_a \le 1$ and $0 \le \mu_b + \nu_b \le 1$ }.

Since $A \subseteq G_1$ where G_1 is an IF β OS in X, but β cl(A) = $\langle x, (0.5_a, 0.5_b), (0.5_a, 0.5_b) \rangle \not\subseteq A$, A is not an IF β GCS.

Example 3.15: Let $X = \{a, b\}$ and $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$. Then $\tau = \{0 \sim, G, 1 \sim\}$ is an IFT on X. Let $A = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ be an IFS in X.

Then, IF β C(X) = {0 \sim , 1 \sim , $\mu_a \epsilon$ [0,1], $\mu_b \epsilon$ [0,1], $\nu_a \epsilon$ [0,1], $\nu_b \epsilon$ [0,1] /0 $\leq \mu_a + \nu_a \leq 1$ and 0 $\leq \mu_b + \nu_b \leq 1$ }.

We have $A \subseteq G$. As $\beta cl(A) = A, \beta cl(A) \subseteq G$, where G is an IF β OS in X. This implies that A is an IF β GCS in X, but not an IFGCS in X, sincecl(A) = $G^c \nsubseteq G$.

Theorem 3.16:EveryIF β CSin (X, τ) is an IF β GCS in (X, τ) but not conversely.

Proof: Assume A is an IF β CS [5] then β cl(A) = A. Let A \subseteq U and U be an IF β OS. Then β cl(A) \subseteq U, by hypothesis. Therefore A is an IF β GCS.

Example 3.17:Let $X = \{a, b\}$ and $G = \langle x, (0.5_a, 0.7_b), (0.5_a, 0.3_b) \rangle$. Then $\tau = \{0 \sim, G, 1 \sim\}$ is an IFT on X. Let $A = \langle x, (0.5_a, 0.8_b), (0.5_a, 0.8_b) \rangle$ be an IFS in X.

Then, IF β C(X) = {0 \sim , 1 \sim , $\mu_a \epsilon$ [0,1], $\mu_b \epsilon$ [0,1], $\nu_a \epsilon$ [0,1], $\nu_b \epsilon$ [0,1] / provided $\mu_b < 0.7$ whenever $\mu_a \ge 0.5$, $\mu_a < 0.5$ whenever $\mu_b \ge 0.7$, $0 \le \mu_a + \nu_a \le 1$ and $0 \le \mu_b + \nu_b \le 1$ }.

Now $A \subseteq 1 \sim$ and $\beta cl(A) = 1 \sim \subseteq 1 \sim$. This implies that A is an IF β GCS in X,but not an IF β CS,sinceint(cl(int(A))) = int(cl(G)) = int(1 \sim) = 1 $\sim \not\subseteq A$.

Theorem 3.18: Every IFSPCS in (X,τ) is an IF β GCS in (X,τ) but not conversely.

Proof: Assume A is an IFSPCS[11]. Since every IFSPCS is an IF β CS [7], by Theorem 3.16, A is an IF β GCS.

Example 3.19:Let $X = \{a, b\}$ and $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$. Then $\tau = \{0 \sim, G, 1 \sim\}$ is an IFT on X. Let $A = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ be an IFS in X.

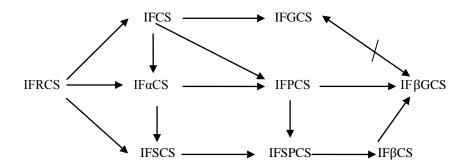
Then, IF β C(X) = {0 \sim , 1 \sim , $\mu_a \in [0,1]$, $\mu_b \in [0,1]$, $\nu_a \in [0,1]$, $\nu_b \in [0,1]$ /0 $\leq \mu_a + \nu_a \leq 1$ and 0 $\leq \mu_b + \nu_b \leq 1$ }.

Here A is an IF β CS in X. As int(cl(int(A))) = $0 \sim \subseteq A$. Therefore A is an IF β GCS in X.

Since IFPC(X) = $\{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] \text{ /either } \mu_b \geq 0.6 \text{ or } \mu_b < 0.4 \text{ whenever } \mu_a \geq 0.5, 0 \leq \mu_a + \nu_a \leq 1 \text{ and } 0 \leq \mu_b + \nu_b \leq 1\}.$

But A is not an IFSPCS in X, as we cannot find any IFPCS B such that $int(B) \subseteq A \subseteq B$ in X.

In the following diagram, we have provided relations between various types of intuitionistic fuzzy closedness.



The reverse implications are not true in general in the above diagram.

Remark 3.20: The union of any two IF β GCS is not an IF β GCS in general as seen from the following example.

Example 3.21:Let $X = \{a, b\}$ and $\tau = \{0\sim, G_1, G_2, 1\sim\}$ where $G_1 = \langle x, (0.7_a, 0.8_b), (0.3_a, 0.2_b) \rangle$ and $G_2 = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$. Then the IFSsA = $\langle x, (0.6_a, 0.5_b), (0.4_a, 0.3_b) \rangle$ and $G_2 = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.8_b), (0.4_a, 0.8_b), (0.4_a, 0.8_b) \rangle$ are IF β GCSs in (X,τ) but $A \cup B$ is not an IF β GCS in (X,τ) .

Then IF β C(X) = {0 \sim , 1 \sim , $\mu_a \epsilon$ [0,1], $\mu_b \epsilon$ [0,1], $\nu_a \epsilon$ [0,1], $\nu_b \epsilon$ [0,1] / provided $\mu_b < 0.7$ whenever $\mu_a \ge 0.6$, $\mu_a < 0.6$ whenever $\mu_b \ge 0.7$, $0 \le \mu_a + \nu_a \le 1$ and $0 \le \mu_b + \nu_b \le 1$ }.

As β cl(A) = A, we have A is an IF β GCS in X and β cl(B) = B, we have B is an IF β GCS in X. Now A \cup B = $\langle x, (0.6_a, 0.8_b), (0.4_a, 0.2_b) \rangle \subseteq G_1$, where G_1 is an IF β OS, but β cl(A \cup B) = $1 \sim \not\subseteq G_1$.

Theorem 3.22:Let (X,τ) be an IFTS. Then for every $A \in IF\beta GC(X)$ and for every $B \in IFS(X)$, $A \subseteq B \subseteq \beta cl(A) \Rightarrow B \in IF\beta GC(X)$.

Proof:Let B \subseteq U and U be an IF β OS. Then since, A \subseteq B, A \subseteq U. By hypothesis, B $\subseteq \beta$ cl(A). Therefore β cl(B) $\subseteq \beta$ cl(β cl(A)) = β cl(A) \subseteq U, since A is an IF β GCS. Hence B ϵ IF β GC(X).

Theorem 3.23: An IFS A of an IFTS (X,τ) is an IF β GCS if and only if $A_q^c F \Rightarrow \beta cl(A)_q^c F$ for every IF β CS F of X.

Proof: (Necessity): Let F be an IF β CS and A $_q$ c F, then A \subseteq F c [9], where F c is an IF β OS. Then β cl(A) \subseteq F c , by hypothesis. Hence again [9] β cl(A) $_q$ c F.

Sufficiency: Let U be an IF β OS such that $A \subseteq U$. Then U^c is an IF β CS and $A \subseteq (U^c)^c$. By hypothesis, $A_q^c U^c \Rightarrow \beta cl(A)_q^c U^c$. Hence by [9], $\beta cl(A) \subseteq (U^c)^c = U$. Therefore $\beta cl(A) \subseteq U$. Hence A is an IF β GCS.

Theorem 3.24:Let (X,τ) be an IFTS. Then every IFS in (X,τ) is an IF β GCS if and only if IF β O(X) = IF β C(X).

Proof: (Necessity): Suppose that every IFS in (X,τ) is an IF β GCS. Let $U \in IF\beta$ O(X), and by hypothesis, β cl(U) $\subseteq U \subseteq \beta$ cl(U). This implies β cl(U) = U. Therefore $U \in IF\beta$ C(X). Hence IF β O(X) $\subseteq IF\beta$ C(X). Let $A \in IF\beta$ C(X), then $A^c \in IF\beta$ O(X) $\subseteq IF\beta$ C(X). That is, $A^c \in IF\beta$ C(X). Therefore $A \in IF\beta$ O(X). Hence IF β C(X) $\subseteq IF\beta$ O(X). Thus IF β O(X) = IF β C(X).

Sufficiency: Suppose that IF β O(X) = IF β C(X). Let A \subseteq U and U be an IF β OS. By hypothesis β cl(A) \subseteq β cl(U) =U, since U \in IF β C(X). Therefore A is an IF β GCS in X.

Theorem 3.25:If A is an IF β OS and an IF β GCS in (X,τ) then A is an IF β CS in (X,τ) .

Proof: Since $A \subseteq A$ and A is an IF β OS, by hypothesis, β cl(A) \subseteq A. But $A \subseteq \beta$ cl(A). Therefore β cl(A) = A. Hence A is an IF β CS.

Theorem 3.26: Let A be an IF β GCS in (X,τ) and $p_{(\alpha,\beta)}$ be an IFP in X such that $int(p_{(\alpha,\beta)})_q\beta cl(A)$, then $int(cl(int(p_{(\alpha,\beta)})))_qA$.

Proof: Let A be an IF β GCSand let $(int(p_{(\alpha,\beta)}))_q\beta$ cl(A).

Suppose $\operatorname{int}(\operatorname{cl}(\operatorname{int}(p_{(\alpha,\beta)}))) \ _{\operatorname{q}}^{\operatorname{c}} A$, since by [9] $A \subseteq [\operatorname{int}(\operatorname{cl}(\operatorname{int}(p_{(\alpha,\beta)})))]^{\operatorname{c}}$. This implies $[\operatorname{int}(\operatorname{cl}(\operatorname{int}(p_{(\alpha,\beta)})))]^{\operatorname{c}}$ is an IF β OS. Then by hypothesis,

 $\beta cl(A) \subseteq [int(cl(int(p_{(\alpha,\beta)})))]^c$

= $cl(int(cl[(p_{(\alpha,\beta)})]^c$.

 $\subseteq cl(cl[(p_{(\alpha,\beta)})]^c$.

 $= \operatorname{cl}[(p_{(\alpha,\beta)})]^{c}.$

 $=(int(p_{(\alpha,\beta)}))^c$. This implies $int(p_{(\alpha,\beta)})_q^c\beta cl(A)$, which is a contradiction to the hypothesis. Hence $int(cl(int(p_{(\alpha,\beta)})))_q^cA$.

Theorem 3.27:Let $F \subseteq A \subseteq X$ where A is an IF β OS and an IF β GCS in X. Then F is an IF β GCS in A if and only if F is an IF β GCS in X.

Proof: Necessity: Let U be an IF β OS in X and F \subseteq U. Also let F be an IF β GCS in A. Then clearly F \subseteq A \cap U and A \cap U is an IF β OS in A. Hence the β closure of F in A, β cl_A(F) \subseteq A \cap U. By Theorem 3.25, A is an IF β CS. Therefore β cl(A) = A and the β closure of F in X, β cl(F) \subseteq β cl(F) \cap β cl(A) = β cl(F) \cap A = β cl_A(F) \subseteq A \cap U \subseteq U. That is, β cl(F) \subseteq U whenever F \subseteq U. Hence F is an IF β GCS in X.

Sufficiency: Let V be an IF β OS in A such that $F \subseteq V$. Since A is an IF β OS in X, V is an IF β OS in X. Therefore β cl(F) \subseteq V, since F is an IF β GCS in X. Thus β cl_A(F) = β cl(F) \cap A \subseteq V \cap A \subseteq V. Hence F is an IF β GCS in A.

Theorem 3.28: For an IFS A, the following conditions are equivalent:

- (i) A is an IFOS and an IF β GCS
- (ii) A is an IFROS

Proof: (i) \Rightarrow (ii) Let A be an IFOS and an IF β GCS. Then β cl(A) \subseteq A and A \subseteq β cl(A) this implies that β cl(A) = A. Therefore A is an IF β CS, since int(cl(int(A))) \subseteq A. Since A is an IFOS, int(A) = A. Therefore int(cl(A)). Hence A is an IFOS.

(ii) \Rightarrow (i) Let A be an IFROS. Therefore A = int(cl(A)). Since every IFROS in an IFOS and A \subseteq A. This implies int(cl(A)) \subseteq A. That is int(cl(int(A))) \subseteq A. Therfore A is an IF β CS. Hence A is an IF β GCS.

Theorem 3.29: For an IFOS A in (X,τ) , the following conditions are equivalent.

- (i) A is an IFCS
- (ii) A is an IF β GCS and an IFQ-set

Proof: (i) \Rightarrow (ii) Since A is an IFCS, it is an IF β GCS. Now int(cl(A)) = int(A) = A = cl(A) = cl(int(A)), by hypothesis. Hence A is an IFQ-set[8].

(ii) \Rightarrow (i) Since A is an IFOS and an IF β GCS, by Theorem 3.28, A is an IFROS. Therefore A = int(cl(A)) = cl(int(A)) = cl(A), by hypothesis. A is an IFCS.

Theorem3.30:Let (X,τ) be an IFTS, then for every $A \in IFSPC(X)$ and for every B in X, $int(A) \subseteq B \subseteq A \Rightarrow B \in IF\beta GC(X)$.

Proof: Let A be an IFSPCS in X. Then there exists an IFPCS, (say) C such that $int(C) \subseteq A \subseteq C$. By hypothesis, B \subseteq A. Therefore B \subseteq C. Since $int(C) \subseteq$ A, $int(C) \subseteq int(A)$ and $int(C) \subseteq$ B, by hypothesis. Thus $int(C) \subseteq$ B \subseteq C and by [5], B \in IFSPC(X). Hence by Theorem 3.18,B \in IF β GC(X).

References

- [1] K. Atanassov. Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 1986, 87-96.
- [2] C. Chang. Fuzzy Topological Spaces J. Math. Anal. Appl., 1968, 182-190.
- [3] D. Coker. An Introduction to Intuitionistic Fuzzy Topological Space, Fuzzy Sets and Systems, 1997, 81-89.
- [4] D. Coker and M.Demirci. On Intuitionistic Fuzzy Points, Notes on Intuitionistic Fuzzy Sets1(1995), 79-84.
- [5] H. Gurcay, D. Coker and Es. A. Haydar. On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces, The J. Fuzzy Mathematics, 1997,365-378.
- [6] D. Jayanthi. Generalized β Closed Sets in Intuitionistic Fuzzy Topological Spaces, International Journal of Advance Foundation and Research in Science & Engineering (IJAFRSE) Volume 1, Issue 7, December 2014.
- [7] D. Jayanthi.Relation BetweenSemipre Closed Sets andBeta Closed sets in Intuitionistic Fuzzy Topological Spaces, Notes on Intuitionistic Fuzzy Sets, Vol. 19, 2013, 53-56.
- [8] R. Santhi, and D. Jayanthi. Generalized Semi- Pre Connectedness in Intuitionistic Fuzzy Topological Spaces, Annals of Fuzzy Mathematics and Informatics, 3, 2012, 243-253.
- [9] S.S. Thakurand Rekha Chaturvedi. Regular Generalized Closed Sets in Intuitionistic Fuzzy Topological Spaces, Universitatea Din Bacau, Studii SiCercetariStiintifice, Seria: Mathematica, 2006, 257-272.
- [10] S.S. Thakur and S. Singh.On Fuzzy Semi-pre Open Sets and Fuzzy Semi-pre Continuity, Fuzzy Sets and Systems, 1998, 383-391.
- [11] Young Bae Jun &seok Zun Song. Intuitionistic Fuzzy Semi-pre Open Sets and Intuitionistic Semi-pre Continuous Mappings, jour. of Appl. Math & computing, 2005, 465-474.
- [12] L.A. Zadeh. Fuzzy Sets, Information and control, 1965, 338-353.