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I. INTRODUCTION 
The interaction between a rigid structure and a flexible body is a common phenomenon, like fishes swimming 

behind a ship or staying in the wake of a stationary structure. Fishes may take advantage of the interaction to 

save energy and lift efficiency. Two rigid bodies arranged in tandem, the downstream one enjoys a drag 

reduction [1]. Recently, the interaction between flexible bodies has been widely studied by simulations and 

experiments [2, 3]. For two tandem flexible bodies, the downstream will suffer a drag increase, which is 

opposite to the situation of two tandem rigid bodies. The interaction of coupled rigid and flexible bodies may be 

much different. Interaction between a upstream flexible filament and a downstream rigid cylinder is investigated 

in [4]. Reference [5] studied the effect of a thin wire placed in the wake of a rigid cylinder. In this paper, we 

places a flexible foil at the downstream of a rigid cylinder to study the interaction between rigid and flexible 

bodies in a viscous flow numerically. An immersed boundary-lattice Boltzmann method is adopted to carry out 

the simulations. 

 

II. COMPUTATIONAL MODEL 
A schematic diagram of the cylinder-foil system is shown in Fig. 1. A thin foil with length L is placed in 

downstream of a rigid circular cylinder with diameter d. The foil is considered as a two-dimensional thin beam 

with a simply supported boundary condition at the leading-edge. Both the center of the cylinder and the leading-

edge of the foil are fixed at the center line of the fluid domain, the trailing-edge of the foil is free. The minimum 

distance between the cylinder and the leading-edge of the foil is the cylinder-foil distance Ds. Here we introduce 

a non-dimensionalize cylinder-foil distance ratio defined as D = Ds/d. The incoming flow is parallel to the X-

axis with a velocity of U∞. 

The problem on a rigid body and a flexible foil immersed in a viscous flow is solved by the IB-LBM [6]. The 

fluid is discretized by a regular Cartesian lattice, the foil is discretized by a group of Lagrangian coordinate 

markers. The viscous fluid is govern by the incompressible Navier–Stokes and continuity equations: 
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ABSTRACT 
Passive dynamics of flexible body in the von Kármán vortex is complicated and has not yet been well 

understood. In this work we numerically studied the passive flapping motion of an inverted flexible 

foil pinned in the wake of a rigid circular cylinder by an robust fluid structure interaction 

framework. The non-dimensional parameters are Reynolds number and distance between the 

cylinder and pinned-point of the foil. Simulation results show that the flexible foil can extract energy 

from the vortex street and be induced to vibrate periodically. It is revealed that the foil's motion 

patterns can be divided into two categories: inverted flapping and forward flapping, which 

depended on the cylinder-foil distance. Both the cylinder and foil experiences a drag reduction, the 

foil can even obtain thrust in inverted flapping mode. Compared with a single one in the same 

uniform flow, the foil's flapping frequency here is smaller but its amplitude is greater. This work 

would help us to elucidate the energy-saving mechanism of fish swimming and inspire the promising 

applications in marine engineering. 
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p is the pressure of the fluid, ρ is the fluid density, v =(v, u) is the fluid velocity as a function of time /t L U


 . 

Re is the Reynolds number defined as /R e U d 


 , μ is the fluid dynamic viscosity. The added momentum 

force f represents the force exerted by the structure on the fluid. The dynamics of the foil is governed by the 

equation: 
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ρl is the linear density of the foil,  ,X YX represents the position of the foil markers. s represents the 

Lagrangian coordinate along the foil. 2
/cT T U L


 is the tension. Tc (s, t) is the tension within the foil which 

determined by the markers  
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Fig. 1 Schematic diagram of the cylinder-foil system. 

 

position X. K is the bending stiffness defined as 2 3
/ ( )K E I U L


 , EI is the bending rigidity of the foil. F is the 

hydrodynamic force exerts on the fluid by the foil which defined on the foil markers. The foil is considered to be 

inextensible, which provided by:  
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The boundary condition for the foil is: 
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for the leading-edge, 
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for the trailing-edge. The momentum force f = (fx, fy) can be calculated by: 
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Γ is boundary of the foil markers, Ω denotes the domain of the fluid. x denotes the coordinate of the Cartesian 

lattice of the fluid. U represents the velocity of the foil marker at X. v represents the fluid velocity field. δ is a 

mollifier [7] to perform the convolution which defined as: 
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Where d represents the distance between the Lagrangian coordinate s   and the lattice coordinate  x . As 

shown in Fig. 2, by placing the tension points between each foil markers, equation (3) and (4) can be discretised 

into a staggered fashion: 
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t is the increment of time. Ds denotes the standard second-order center finite difference for s. The lattice 

Boltzmann equation (LBE) [8] is used to solve the fluid instead of the Navier–Stokes equations because of its 

efficiency. The LBE with the BGK approach is:  
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Fig. 2 Discretisation grid of the plate in a staggered form. Blue circles represents tension points, between 

tension points are coordinate markers. 
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Where τ is a relaxation time which related to the dynamic viscosity as  1 / 2 / 3   .  ,
i

f tx denotes the 

distribution function with respect to the fluid particles at position x and time t, ei is the discrete particles velocity 

which is shown in Fig. 3. The subscript i is the directions of the fluid particles, in this model, ei is defined as: 
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 ,
e q

f tx is the equilibrium function which can be obtained by: 
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cs is the sound velocity and ωi is the weighting coefficients. The discretised force Fi relates to the f is defined as 

follows: 
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the macroscopic quantities of density ρ and v can are obtained by: 
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The dimensionless mass ratio of the foil is defined as: / ( )
l

M L  , the dimensionless drag coefficient for the 

foil and cylinder is: 2
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respectively. 
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Fig. 3 The distribution function and the discrete particles velocity. 



Passively Flapping Dynamics of a Flexible Foil Immersed in the Wake of a Cylinder 

www.ijceronline.com                                        Open Access Journal                                          Page 37 

The flapping amplitude Af is defined as the displacement along the Y-axis of the trailing-edge, and A = AT / L is 

the dimensionless flapping amplitude. The flapping frequency of the foil and the vortex shedding frequency of 

the cylinder are represented by f. 

The X-axis length for the fluid domain is 80d and the Y-axis length is 40d. The center of the cylinder is placed 

20d away from the inlet of the fluid domain. The position of the foil is decided by the distance ratio D. The foil 

is parallel to the X-axis at the beginning of the simulation. The foil markers and the Cartesian lattice is in 

uniform distribution. Both the distance between two neighboring markers and the lattice spacing is set to 0.01. 

The diameter d and the foil length L is set to d = L, so the size for the fluid domain is 2000 × 1500. Unless other 

stated, the Reynolds number is Re = 100 , the mass ratio of the foil is M = 0.3 and the bending stiffness is K = 

10
-4

. In such parameters, the flexible foil can flap in a stable motion periodically as the simulation results 

showed. All the results analyzed below are obtained by these stable periods. 

 

III. RESULT AND DISCUSSION 
Two categories of the foil's motion patterns are founded by changing the cylinder-foil distance: inverted 

flapping and forward flapping, as shown in Fig. 4. When the cylinder-foil distance is small enough, the foil will 

flap towards the opposite direction of the incoming flow. The free end of the foil will move upstream and go 

across the pinned-point, then gets into a stable flapping motion with the free end pointing to the upstream 

cylinder. There is a backflow zone behind the cylinder, as shown in Fig. 5, the flow speed of this area is contrary 

to the streamwise [9], and the pressure is low. The foil in the backflow zone will experiences a force along the 

negative direction of the X-axis, and finally the foil will turn around and flap towards the upstream direction. 

With the increasing of the cylinder-foil distance, the foil's motion patterns will turn to the forward flapping 

mode, which the trailing-edge points to the downstream. The crucial cylinder-foil distance of the mode shift is 

decided by the length of the backflow zone. Fig. 4 plots the flapping pattern of the inverted flapping mode at D 

= 2.1 and the forward flapping mode at D = 3.5. The flapping amplitude and the Y-velocity of the trailing-edge 

in the inverted flapping mode is obviously smaller than that of the forward flapping mode. From Fig.5 (e) we 

can see the flapping trajectory of the trailing-edge at D = 2.1 is not fully symmetrical about the centre line of the 

fluid. We can find the reason in Fig. 6 which plots the stream lines for the two different flapping mode. For D = 

2.1, the backflow zone deviates to one side of the cylinder, which has a attraction for the foil and lead to the 

unsymmetrical of the flapping motion of the foil. The backflow zone at D = 2.1 is much bigger than that at D = 

3.5, we can infer that the exists of the foil may has a influence on the shape of the backflow zone. 

The average drag coefficient and the amplitude of lift coefficient and the flapping frequency of the foil are 

shown in Fig. 7. All the figures are divided into two parts: part I and part II corresponding to the inverted 

flapping mode and forward  
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Fig. 4 The flapping patterns of the foil, the flapping trajectory and the phase plot of the of the trailing-edge of 

the foil at Re = 100, origin of coordinates for flapping trajectory and phase plot is set at the leading-edge and 

trailing-edge respectively, with (a), (c), (e) D = 2.1 and (b), (d), (f) D = 3.5. 

 

 
Fig. 5 The backflow zone 
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Fig. 6 Stream lines for (a) D = 2.1 and (b) D= 3.5 
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Fig. 7 The average drag coefficient Cd, the amplitude of lift coefficient Cl, the flapping frequency of the foil and 

the vortex shedding frequency of the cylinder versus the cylinder-foil distance ratio with (a), (c), (e) for the 

cylinder and (b), (d), (f) for the foil. 

 

flapping mode respectively. The range D ≤ 2.2 corresponds to the inverted flapping mode (part I), drag on the 

foil is negative, drag on the cylinder is much smaller than that of the single cylinder, both of foil and cylinder 

experiences a significant drag reduction. The tendency of the amplitude of lift and vortex shedding frequency 

for the cylinder is similar with that of drag. The range D ≥ 2.3 corresponds to the forward flapping mode (part 

II). Average drag and the amplitude of lift of the cylinder is much larger than that of the inverted flapping mode. 

The cylinder still experiences a drag reduction but the amplitude of lift exceeds the single cylinder. With the 

increasing of the cylinder-foil distance, all this three parameters of the cylinder approach to that of the single 

cylinder, at D ≥ 8.0, they are almost equal to those of the single cylinder. Drag and lift on the foil increases 

sharply when the foil's motion patterns shift too. At the range 2.3 ≤ D ≤ 4.0, there is still a obvious drag 

reduction on the foil, when D ≥ 5.0, the drag reduction vanishes. The amplitude of lift coefficient of the foil 

goes a opposite tendency with that of the drag coefficient. At 2.3 ≤ D ≤ 8.0, the amplitude of lift is larger than 

the single foil case. The vortex shedding frequency of the cylinder decreases because of the exists of the foil, 

especially when the cylinder and foil are close to each other. The downstream foil can be treat as a barrier and a 

wake splitter which inhibits the flow, from Fig. 6 we can see the stream lines around the foil are distorted. This 

hinders the vortex shedding and also enlarges the size of the backflow zone. This will lead to a drag reduction of 

the upstream cylinder. More closer the foil to the cylinder, more significant the influence is, which conforms to 

the results shown in Fig. 7.  

Flapping frequency of the foil is much smaller than that of the single foil, and always equal to the vortex 

shedding frequency even the distance ratio increase to D = 15.0. The flapping amplitude of the trailing-edge of 

the foil shown in Fig. 8 is much larger than the single foil case in the forward flapping mode. We can infer that 

the vortexes shedding by the cylinder has a strong influence on the flapping motion of the downstream foil. As 

shown in Fig. 7 and 8, When D ≥ 8.0, the influence of the foil on the cylinder is almost gone, but even at D = 

15.0, the cylinder still changes the motion of the foil.  
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Fig. 8 The flapping amplitude of the trailing-edge of the foil versus the cylinder-foil distance ratio. 

 

For a more detailed analysis, the time history of Y-position of trailing-edge, drag coefficient Cd of the foil and 

lift coefficient Cl of the foil at D = 2.1 and D = 3.5 are shown in Fig. 9. At time point A and C, drag on the foil 

reaches its maximum, the trailing-edge Y-position is near zero, at time point B, drag reaches its minimum, the 

Y-position is near its peak. But the situation for time point D, E and F is just opposite. Maximum drag 

corresponds to the peak of Y-displacement of the trailing-edge and minimum drag corresponds to the zero point 

of Y-displacement. Lift at point D to F shows that the peak of lift happens when the Y-displacement of trailing-

edge is near zero. But due to the unsymmetrical of the flapping motion at D = 2.1, the lift at point A and C are 

not exactly zero. The different corresponding relationship in the two motion patterns shows that the cylinder 

influent the downstream foil in two different ways. Fig. 10 shows the vorticity contours at time point A, B, D 

and E. 

We can see from the vorticity contours at time point A and B, between foil and cylinder is small that the foil is 

in the area the cylinder vortexes doesn't start to shed. The foil is in between of the positive and negative 

vorticity, the vorticity around the foil is opposite with the vorticity generated by the cylinder because of the 

inverted flapping of the foil. The contact of two kinds of opposite vortexes will decrease the vorticity around the 
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foil and inhibits the flapping motion. The vorticity contours at time point D and E shows that the downstream 

foil encounters the vortexes shedding by the cylinder. The positive vorticity at one side of the foil merges with 

the upstream positive vortex, and the negative vorticity at the other side of the foil decreases, this makes the 

positive vorticity around the foil is much larger than the negative vorticity, and it’s the same situation when the 

foil contours the upstream negative vortex, which lead to the increase of the flapping amplitude of the foil. This 

interaction also induce the foil to vibrate with the same frequency the cylinder sheds the vortex. 
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Fig. 9 Time history of Y-position of trailing-edge, drag coefficient Cd of the foil and lift coefficient Cl of the foil 

with (a), (c), (e) at D = 2.1 and (b), (d), (f) at D = 3.5. Point A to E corresponding to the two peaks of Cd and 

minimum value of Cd within a cycle. 

 

 
Fig. 10 Vorticity contours at time point (a) A, (b) B ,(c) D and (d) E 
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IV. CONCLUSION 
The passive dynamics of flexible foil in the downstream of a rigid cylinder has been studied by the immersed 

boundary-lattice Boltzmann method. Simulation results show that the cylinder has a strong influence on the 

downstream foil. By varying the cylinder-foil distance, the foil's motion patterns can be divided into two 

categories: inverted flapping mode and forward flapping mode. In the inverted flapping mode, the foil will 

invert and flap towards the upstream cylinder because of the attraction of the backflow zone. In the forward 

flapping mode, the amplitude of the foil is greater but the frequency is smaller compared with a single one in the 

same uniform flow. Both the cylinder and foil experiences a drag reduction. Compared with a single one in the 

same uniform flow, the foil's flapping frequency here is smaller but its amplitude is greater. The flexible foil can 

extract energy from the vortex street and be induced to vibrate periodically. Exists of the foil also change the 

dynamics of the cylinder. The foil can be treated as a barrier and a wake splitter which inhibits the vortex 

shedding and enlarges the size of the backflow zone when the cylinder-foil distance is small. This also leads to a 

drag reduction of the upstream cylinder. The interactions between the rigid cylinder and the flexible foil would 

help us to understand the energy-saving mechanism of fish swimming behind a structure and inspire the 

promising applications in marine engineering. 
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