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I. INTRODUCTION 
In modern science nonlinear phenomena are one of the most impressive fields of research. Nonlinear 

phenomena occur in numerous branches of science and engineering, such as, plasma physics, fluid mechanics, 

gas dynamics, elasticity, relativity, chemical reactions, ecology, optical fiber, solid state physics, biomechanics, 

etc., all are essentially governed by nonlinear equations. NLEEs are frequently used to illustrate the motion of 

isolated waves. Since the appearance of solitary wave in natural sciences is expanding every day, it is important 

to seek for exact traveling wave solutions to NLEEs. The exact solutions to NLEEs help us to provide 

information about the structure of complex physical phenomena. Therefore, exploration of exact traveling wave 

solutions to NLEEs turns into an essential task in the study of nonlinear physical phenomena. Travelling waves 

are the solitary waves, which are localized travelling waves, asymptotically zero at large distances, the periodic 

waves, which rise or descend from one asymptotic state to another. It is notable to observe that there is no 

unique method to solve all kind of NLEEs. Methods are proposed to obtain exact travelling wave solutions for a 

large variety of nonlinear partial differential equations (PDEs) that are the Jacobi elliptic function method [1], 

the homogenous balance method [2], the modified simple equation method [3], the (G’/G)-expansion method 

[4], the improved (G’/G) expansion method [5], the truncated Painleve expansion method [6], the homotopy 

perturbation method [7], the variational method [8], the Backlund transformation [9], the Exp-function method 

[10], the asymptotic method [11], the non-perturbative method [12], the Hirota’s bilinear transformation method 

[13], the tanh-function method [14], the F-expansion method [15], the generalized Riccati equation [16], the 

ansatz method [17], the perturbation method [18], the He’s semi-inverse variational method [19], the Lie 

symmetry method [20], the method of integrability [21], and the mapping method [22]. Other methodsare 

proposed to obtain exact travelling wave solutions such as sine-cosine function method [23], tanh-

cothmethod[24], Tan-Cot- function method [25], and sech method [26].In this paper the proposed method is 

applicable solve to a large variety of nonlinear partial differential equations, theFifth-order nonlinear integrable 

equation, the symmetric regularized long wave equation, the higher-order wave equation of Kdv type, and 

Benney-Luke equation. 

 

II. DESCRIPTION OF EXTENDED TAN-COT FUNCTION METHOD 
This method proposed by Anwar [27] to obtain new exact travelling wave solutions to the (3+1)-dimensional 

Kadomtsev-Petviashvili equation and (2+1)-dimensional equation. 

For a given nonlinear evolution equation, say, in two variables (1+1) - dimensional 

0)..........,,,( 
xxxt

uuuuP
(1) 

We seek a travelling wave solution of the form: 

)(),( Utxu 
, and 

tx  
(2) 

Where  isconsidered constant.  The following chain rule   
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converted the PDE Eq.(1), to an ordinary differential equation ODE 
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UUUUQ
(3)                                                                          

with
Q

 being another polynomial form of their argument, which will be called the reduced ordinary differential 

equations of Eq.(3). Integrating Eq.(3) as long as all terms contain derivatives, the integration constants are 

considered to be zeros in view of the localized solutions. However, the nonzero constants can be used and 

handled as well. Now finding the traveling wave solutions to Eq.(3) is equivalent to obtaining the solution to the 

reduced ordinary differential equation Eq.(3).  

Introduce the ansatz, the new independent variable  
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that leads to the change of variables: 
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 The next step is that the solution is expressed in the form 
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where the parameter  m  can be found by balancing the highest-order linear term with the nonlinear terms in 

Eq.(3), and mm
bbaaa ,....,,,....,,,

110


are to be determined. Substituting Eq.(6) into Eq.(3) will yield 

a set of algebraic equations for
mm

bbaaa ,....,,,....,,,
110

 because all coefficients of T have to 

vanish. Having determined these parameters, knowing that m is positive integer in most cases, and using Eq.(6) 

we obtain analytic solutions ),( txu  ,in a closed form.  

The trigonometric functions can be extended to hyperbolic functions by using the complex form. So that a tanh-

function expansion solution generates from a tan function expansion solution for 

)tanh()tan(  iiT  , and a cot-function expansion solution generates from a coth function expansion 

solution for )coth()cot(
1

 iiT 


. 

 

III. APPLICATIONS 
 In this section, we will bring to bear the new tan- cotmethod discussed in Section 2 to theFifth-order nonlinear 

integrable equation, the symmetric regularized long wave equation, the higher-order wave equation of Kdv type, 

and Benney-Luke (BL) which are very important in the field of nonlinear mathematical physics. 

 

3.1. Fifth-order nonlinear integrable equation 
In this section, we solve the fifth-order nonlinear evolution equation introduced by Wazwaz [28]: 
 

0)(4)(4 
xxtxxxtxtxxxxttt

uuuuuu (7) 

In thissection, we will use the extended Tan-Cot method in its standard form aspresented to solve Eq.(3.1). The 

technique is basedon the a priori assumption that the traveling wave solutionscan be expressed in terms of tan 

functions. 

By means of the method, we first use the wavevariable tx    that transforms Eq.(7) into an ODE 

0)(4)(4
//////2/)5(///2
 UUUUU

  (8) 

Integrating Eq.(8) twice with zero constants to get the following ODE; 

06
2/////2
 UUU                                                                                                                      (9) 
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The next step is that the solution is expressed in the form of Eq.(6) 
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Now, to determine the parameter m, we balance the linear term of highest-order with the highest order nonlinear 

terms. So, in Eq.(10) we balance 
2/
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///

U  , to obtain: 

m+3 = (m+1)(m+1) , then m = 1.  The Tan-Cot method admits the use of the finite expansion for: 
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Substituting 
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from Eq.(6) in Eq.(10),  
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Equating the coefficients of Ti i=-4,-2, 0, and 2 for both sides, then a set of nonlinear equations occurred as in 

the following  
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Solving the set (12), to get: 

1
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a
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1
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Then the solution 
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(13) 

Figure (1) represents  )4cot()4tan(),( txtxtxu  , while figure (2) illustrates the solitary of 

 )4cot()4tan(),( txtxtxu 
. 
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Fig.(1) 
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Fig.(2) 

 

3.2. The Symmetric Regularized Long Wave (SELW) equation 
In this section, we study the solution of the symmetric regularized long wave equation (SRLW) equation [29] given by: 

0
txxtxxttxxtt

uuuuuuu (14) 

Substituting )(),,( Utyxu  ,and tx    into Eq. (14) 
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or 
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Integrating Eq.(16) twice with zero constant, we have: 
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we postulate Tan-Cot series in Eq.(5), then Eq.(17) reduces to: 
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Now, to determine the parameter m, we balance the linear term of highest-order with the highest order nonlinear 

terms. So, in Eq. (18) we balance 
2
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then equating the coefficient of 
i

T , i= 0, 2, 4, -2,-4  leads to the following nonlinear system of algebraic 

equations: 
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Solving the nonlinear systems of equations (21) we can get: 
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1
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0
itxitxiatxu   (22) 

Figure (3) illustrates the solitary shape of u(x, t) in Eq. (22). 
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3.3. A higher-order wave equation of Korteweg–de Vries type 

The solution will be handling to the higher-order wave equation of Kdv type: 

0)(
32

2

1

2


xxxxxxxxxxxxt
uuuuuuuuuuu 

(23) 

By means of the method, we first use the wavevariable tx    that transforms Eq.(23) into an ODE 
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Integrating Eq.(25) once with zero constant to get 
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The next step is that the solution is expressed in the form of Eq.(6) 
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Now, to determine the parameter m, we balance the linear term of highest-order with the highest order nonlinear 

terms. So, in Eq. (27) we balance 
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Substituting 
///

,, UUU from Eq.(28) in Eq. (27),  
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then equating the coefficient of 
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T , i= -4,-3,-2,-1,0,1, 2,3, 4  leads to the following nonlinear system of 

algebraic equations:
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Solving the nonlinear systems of equations (30) we can get: 
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 Figure (4) represents the shape of the solitary u(x,t) in Eq.(32). 
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3.4  TheBenney–Luke equation 

The NLEE that is going to be studied in this paper is called Benney-Luke (BL) equation and is given by [30]       

I will make use of the method to find exact solitary wave solutions to the (BL) equation. Let consider 

theBenney–Luke equation in the form: 

0
xtxxxtxxttxxxxxxtt

uuuuuuuu                                            (33) 

This equation is an approximation of the full water wave equations and formally suitable for describing two-way 

water wave propagation in presence of surface tension. The positive parameters and are related to the inverse 

bond number , which capture the effects of surface tension and gravity forces. 

BL equation is a NLEE that has been around and studied for a very long time. There are various analyses that 

were conducted for this equation. These are the stability analysis [30], Cauchy problem [31], existence and 

analyticity of solutions [32], traveling wave solutions [33], the generalized two-dimensional BL equation [34] 

and so forth. 

Using the traveling wave variable tx   Eq. (33) convertsinto the following ODE 

for
)(),( utxu 

: 

0)()()(
///)4(2//22
 uuuuk 

(34) 

Eq. (34) is integrable, therefore integrating with respect to ξonce and choosing the integration constant to zero, 

we obtain 

0
2

)(
)()(

2////2/22



 uuuk




(35) 

The next step is that the solution is expressed in the form of Eq.(6)  

0][)1(
2
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32
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22222222
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
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T

dT

Ud
TY

dT

dU
TT

dT

dU
Tk





      (36) 

Now, to determine the parameter m, we balance the linear term of highest-order with the highest order nonlinear 

terms. So, in Eq. (36) we balance 
2/

U with  
///

U  , to obtain (m+1) (m+1) = m+3, then m=1.  The Tan-Cot 

method admits the use of the finite expansion for : 
1

110


 TbTaaU

, 
2

11

/ 
 TbaU

, 

3

1

//
2


 TbU

, 
4

1

///
6


 TbU

   (37) 

Substituting 
//////

,,, UUUU from Eq.(37) in Eq. (36) 
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TbaTTbT
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

    (38) 

then equating the coefficient of 
i

T , i= -4,-2,0,2  leads to the following nonlinear system of algebraic 

equations: 
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2220
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0)()()(12:
1

22
 aT                                                                                        (39) 

Solving the nonlinear systems of equations (39) we can get: 
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Where: 

0)161)(16(
2

  k
,  

0)161(  
, and

)0(  
 

for
20/1,1,0

0
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 )85cot()85tan(4166.3),( txtxtxu 
                                                                                       (42)    

Figure (5) represents the solitary shape for u(x, t) in Eq.(42) 
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IV. CONCLUSION 

The exact travelling wave solutions to different types of nonlinear partial differential equations have been 

studied by means of the extendedTan-Cot method. It can be easily seen that the implemented method used in 

this paper is powerful and applicable to a large variety of nonlinear partial differential equations. 
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