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I. INTRODUCTION 
Because the relationship between today's emphases on efficiency, with essays program to deal with less 

fluid flow analysis, the majority are based software package for simulation analysis. However, due to physical 

problems, there are many possibilities and variations, this paper attempts to analyze essays program flow 

structure in the disk-driven under the influence of the cube. 

In the past the process industries often use to drive the rotating disk-driven flow cylinder, rectangular, 

or cube thereby to understand the internal structure of the fluid flow. Applying a simple geometric structure of 

the flow field to explore rotation can help analyze and understand the principles of early and recent research 

literature mostly cylindrical or rectangular shape, so this article is to explore the use of a cube shape, in their 

daily lives the most common is the computer's CD-ROM drive, using a rotary disc pieces to bring the whole 

flow field, hoping to apply the same theory to understand the internal structure of the rotating disk-driven flow, 

the paper is a continuation of the literature Chiang et al. study [11] was made to continue. To investigate the 

flow structure when 2000Re    after arising. 

Benjamin and Denny [1] with the vorticity-stream function method to simulate the two-dimensional 

closed pull hole course and supplemented with multi-grid method, will increase the numerical simulation of the 

Reynolds number to 104, expressly found that the two-dimensional geometry of a closed pulling hole course 

located primary vortical center and three times the corner vortical. Koseff and Street [2] employed the 

experimental data for a series of studies with discussion. Koseff and Street [3] were the top three drivers pulled 

closed experimental observation point field, when the Reynolds number is between 6000-8000, the structure of 

the turbulent rotating disk-driven flow for the first time the show. Fenstermacher [4] used laser-Doppler 

velocimetry explore concentric circles in the middle of the restricted fluid flow from the column transition 

situations arising from the rotation. Chenoweth and Eyret [5] found that when the Reynolds number is higher 

than a certain value, the main component of the two-dimensional flow field in the following structure: the 

geometric center of the vortical in the main (primary eddy), located at the corner of the three sub-swirl 

(secondary eddy). 

 

ABSTRACT: 
This paper is to explore when the rotating disk-driven cube container structure flow generated 

by different Reynolds numbers to observe structural reasons and swirl flow field generated in the space 

discretization dispersion-relation-preserving (DRP) scheme finite difference method, time item then use 

total variation diminishing (TVD) Runge-Kutta method format, thereby to achieve the accuracy of its 

value, the paper also use topological theory to analyze the characteristics of singularity, and draw a 

three-dimensional flow field pattern thereby to observe the structure and flow of the flow field case, 

with the result that the Reynolds number increased flow into the spiral point position will gradually 

close the bottom of the cavity, and with the impact of an increase in the Reynolds number at the bottom 

of the singular point significantly smaller. 
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Liao et al. [6] using numerical simulation method of rotating between the cylinder when the non-

denaturing conditions axisymmetric ilk, and the use of numerical methods for solving the three-dimensional 

Navier-Stokes equations, the accuracy of its value on having a second-order accurate in time and space, in 

changing Couette-Taylor flow field, Liao et al clearly parsed revolving cylinder, transitional flow conditions and 

the structural characteristics of the flow patterns between. Tam et al. [7] proposed to keep the format dispersion 

relation scheme, the use of the best ways to improve spatial discrete wave number format analog capability. We 

can also use its spherical shaped segments to observe the distribution of the entire three-dimensional rotating 

driven cavity flow. Inamuro et al. [8] use variables to calculate the angular velocity )( R , drawing plane 

streamlines and velocity vectors to observe the driven cavity flow. 

In this paper, in order to make more accurate numerical studies, spatial discrete part of the Navier-

Stokes equation literature [9] ownership dispersion-relation-pressure formulation finite difference method, at the 

time part of discrete items literature [10] retain TVD Runge-Kutta method and for different Reynolds number of 

numerical results are discussed its flow structure, and to explore the reasons for its physical phenomena and 

secondary flow generated. 

 

II. WORKING EQUATIONS 
We consider in this paper the Navier-Stokes equations for velocity u  and pressure p : 
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The above equations of motion are under the constraint condition of fluid incompressibility,  
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The above two equations will be solved subject to the initial divergence-free velocity condition and boundary 

velocities to close the problem. In this primitive-variable formulation, specification of velocity boundary 

conditions has been rigorously proven [11]. For this study, we concentrate to steady and laminar conditions. The 

Reynolds number Re  is defined by choosing the maximum rotation speed of the disk )( R  as the characteristic 

speed and the radius of the rotating disk )( R  as the characteristic length. In this study, the pressure has been 

normalized by )(
22

Rp  where   denotes the angular velocity of the disk. 

The rationale behind adopting the velocity -pressure formulation is that it provides closure boundary 

conditions [8], Referring to Figure 1, no-slip boundary conditions for velocities 
i

u  are specified everywhere 

except at the upper wall, where a disk of radius 1 rotates with a constant value of   which is referred to as the 

disk angular speed. No pressure boundary condition is permitted at the boundary where velocities are specified; 

otherwise, the investigated elliptic system will be over determined [8]. 

The appearance and disappearance of non-wandering set is called bifurcation. knowledge about the 

changes in flow stability and bifurcation, which always coincide in nonlinear dynamics, is thus crucial to get a 

better understanding of the currently investigated nonlinear differential system. Another main objective in 

conducting this study is to explore the hydrodynamic details based on the topology theory. 

 
Figure 1. Description of the investigated rotating disk-driven cavity problem and the non-uniform grid distribution 613 on the 

bounding surfaces. 

 

III. FINITE DIFFERENCE METHOD 
Discrete numerical methods of solving numerical simulation of rotating disk-driven flow compression 

is not available to the general use of discrete intermediate pressure gradient difference method detects the 

unreasonable pressure field, so the literature [9-10] have proposed on the same grid size position high-precision, 
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high- resolution compact model and can suppress the fluctuation-induced generalized principle and the principle 

of stability of the momentum equation to deal with the pressure gradient term, and the other according to Tam 

and Webb [9] proposed dispersion-relation-preserving (DRP) scheme discrete governing equations using best of 

space discrete method to improve the format for the wave number of simulation capabilities. Its core idea is 

assumed that the function )( x  of the Fourier transform of )(
~

 , is x  the Fourier transform of )(
~

i . The 

corresponding difference scheme inevitably transformed with the presence of poor guide. The DRP format to 

maintain a certain precision, the optimized dispersion coefficient difference can lead to a minimum. 

 

3.1. Dispersion-relation-preserving advection scheme 

In this paper, the advection term in the level set equation is discretized using the DRP dual-compact 

scheme [12], and the advection term in the momentum equation is discretized using the multi-dimensional DRP 

upwinding scheme [13]. The underlying idea in the DRP method is as follows: to physically predict the first 

derivative term accurately, the dispersive nature embedded in it must be retained as much as possible. The 

reason for this is that the dispersion relation governs the relationship between the angular frequency and the 

wavenumber of the first-order dispersive term [9]. In other words, it is possible to predict the solution accurately 

provided that the dispersion relation is well preserved. To achieve this, we combine the Taylor series expansion 

analysis with the Fourier transform analysis to derive the discretized coefficients. For details of the derivations, 

the interested reader is invited to refer to [12] and [13]. 

 

3.2. Solver in non-staggered grids 

Within the context of velocity-pressure formulation, one has a choice of employing a staggering [14] or 

a collocating [15] grid strategy for the storage of working variables. While use of both approaches can suppress 

node-to-node pressure oscillations, we adopt in this study the collocating grid approach for the sake of 

programming simplicity. When solving the incompressible Navier-Stokes equations (1-2), two well-known 

numerical instabilities may be encountered in cases when the convection term dominates the diffusion term. We 

will employ the DRP upwinding scheme detailed in [16] to resolve this numerical instability problem. 

The second computational difficulty is to assure the discrete divergence-free condition for the working 

velocity vector. While this constraint condition can be automatically satisfied in the approach based on a mixed 

formulation, a much larger algebraic system needs to be solved due to the mass conservation equation. The 

convergent solutions for ),( pu
i

, which 3~1i , in a domain with a large number of mesh points become much 

difficult to be calculated using a computationally less expensive iterative solver [17]. Derivation of a proper 

equation for the p  replace the divergence-free equation (2) is therefore adopted in this study. This class of 

approaches involves using a rigorously derived integral boundary condition [18,19] and the calculation of matrix 

solutions becomes computationally more challenging. Due to these drawbacks, we employ in this study the 

fractional-step method to advance the calculation through a sequence of sub-steps. 

 
Figure 2. Rates of convergence for velocity magnitude (u2+v2+w2)1/2 well as pressure. 

 

3.3. Velocity-pressure coupling 

When solving the incompressible flow equation, special care must be taken for the velocity and 

pressure coupling. While a staggered grid has been demonstrated to be able to eliminate the odd-even 

decoupling problem, the resulting programming complexity is still a key task. For our purposes, we use a semi-

staggered grid to couple the velocity and pressure [20]. The velocity vectors are stored at the edge of the cell, 

whereas pressure and other scalar fields are stored at the center, as shown in Figure 2. The programming 

complexity is much lower for this grid system, compared to the staggered grid, and the coupling may be easily 

achieved if one employs a pressure interpolation from cell center to edge. 



Application of DRP scheme solving… 

www.ijceronline.com                                             Open Access Journal                                             Page 49 

We have benchmarked the computer code employed here by taking the analytic velocity vector 

)0,( txu
i

, as given in the problem of Ethier and Steinman [21], the specified boundary velocities. In this study, 

solutions computed at the finest grid )61/1( h  are regarded as reference va1ues for conducting the rate of 

convergence test. According to our previous work [8], the rates of convergence for velocities and pressure are 

plotted in Figure 2. The success in va1idating the analysis code provides us with strong confidence to study the 

driven cavity flow subjected to a rotating disk. 

In this study, first chosen 1000Re  , 2000, 3000, 4000 with experimental data and references each 

comparison and verification can clearly be seen from Figure 2, with the increase in the number of apparent 

speed will increase. This article draws from the numerical results of different Reynolds numbers into the speed 

chart, the pressure diagram, fluid flow map, vorticity map to explore several Reynolds number is not found in 

the structure of the flow field in the gap is too large, and so this article will explore the entire steady since the 

structure of the flow field. 

 

IV. RESULTS AND DISCUSSIONS 
4.1. Problem description 

The disk-container assembly is shown schematically in Figure 1. On the roof of the cavity, a disk of 

radius 1 is mounted coaxially with the centroid of the cubical cavity, which has a length of 2. This disk rotates 

constantly with an angular speed  , driving an initially resting liquid fluid and thereby resulting in a vortical 

flow. For this study, we address the effect of the rotation speed, or Reynolds number as defined in Section 2, of 

the disk on the established vortical flow structure. We also explore into the kinematic aspect of the primary 

vortical flow and the secondary flow. 

On the roof of the rotating disk-cavity flow, a disk of radius 1 is mounted coaxially with the centroid of 

the cube, which has a length of 2. This rotating disk-cavity flow constantly with an angular speed  , driving an 

initially resting liquid fluid and thereby resulting in a vortical flow. The Reynolds number chosen for this study 

is defined by the lid speed, the width of the cavity, and the kinematic viscosity of the working fluid. 

 

4.2. Disk-driven vortical flows 

Figure 3 compares the rate for the z direction, from the figure that as the Reynolds number can increase 

the speed will be higher. Then from Figure 4 in the plane 0y  for four different Reynolds number flow field 

pattern, can be observed from the figure had one pair of swirl and eddy currents in different directions of 

rotation near the top center of the cavity, it is because the top a rotating disk ( z  direction is the angular 

velocity), prompting the fluid passes through the center of the chamber to flow upward, fluid particles flowing 

near the cavity direction downwardly into the vertical end wall, thereby forming a secondary flow structure is 

inverted. Different faces from Figure 5(a) z  direction of the flow field, can observe all of the flow is to the 

middle of the stream into the boundary wall, the structure of the flow field around the rotation coupled fluid 

flow into the middle part caused by distortions phenomenon, in the plane 4.0z  can be observed that the four 

corners of the visible presence four secondary flow, because of the adverse pressure gradient caused by the 

occurrence of reflux, the formation of secondary flow in the four corners of the biggest reason is because effect 

of viscosity caused by shear stress. 

From Figure 5(b) observed vorticity z direction, this flow field is a rotating flow it will generate 

vorticity, vorticity can be seen from the middle part of the vorticity maximum, because with the amount of 

rotation in the middle of both the shear stress so large relative vorticity is relatively large near the smaller 

boundary layer vorticity, and the greater the surface vorticity near the top of the disk. And from the speed can 

also explain why in the middle of the main vortical vorticity will be greater than four secondary flow vorticity. 

Topological theory can be obtained by the use of flow into the spiral point (attracting-spiral2d), at 6.0y , 

6.0x , 6.0z  and 6.0z  has two faces, three-dimensional map plotted as Figure 6, from the figure can be 

found at the top of a counter-clockwise rotation of the disk can be used to drive the flow field, from each of the 

boundary wall flows into the direction of flow can be learned, when 1000Re   the entire flow field flow 

direction are along the flow direction of rotation of disk. 

When 3000Re   when, from Figure 7 can be observed, as the Reynolds number increases speed 

becomes faster so the fluid flow lines are more intensive in the 4.0z  surface persistence of four secondary 

flow in 59.0z  surface location can be found in the direction of rotation along four distinct swirl 

counterclockwise also followed a slight change in the main part of the increase in the speed of the vortical near 

the boundary at four whirlpool reduced, and the pressure is just the opposite this also explains why the primary 

vortical vorticity increased four secondary flow vorticity smaller reasons. Figure 8 can be more clearly seen in 

the case of the speed of each plane and the flow. In Figure 9, when 6.0z , 6.0y , 6.0x , to produce a 
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spiral flow into the point to drive the entire flow, the entire flow way and are rotating disk-driven cavity flow 

counterclockwise along without any change. 

 

V. CONCLUSIONS 
This study is mainly aimed at different Reynolds number as explore its structure flow mechanism and 

physical behavior. Discussion In this study, the top three-dimensional rotating disk-driven cavity flow impose 

certain practical value of the angular velocity   clockwise, we will chose 4000Re500  , to analyze the 

singularity into the spiral flow characteristics calculated for each surface point using topology theory, from 

three-dimensional disk-driven cavity  flow can understand the situation led the whole flow. At 4000Re500   

analysis found that the flow of the flow field is very similar, except that with the Reynolds number increases 

speed and pressure will change, because the speed of the flow field flow lines caused by change-intensive, but 

the basic structure of the flow field which no significant change in disk-driven cavity flow pattern. Topology 

through a singular point of theoretical calculations can be found as the Reynolds number increases to flow into 

the position will gradually spiral point near the bottom of the cavity, and with the impact of an increase in the 

Reynolds number at the bottom of the singular point significantly smaller. In the face of 59.0z  four vortical 

continued close to the end wall, this is because as the Reynolds number increases speed along faster, so when 

the speed increases viscous force it will be relatively minor role to the boundary near the end wall. 
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(a) (b) (c) 

Figure 3. Grid independence tests for the prob1em, shown in Figure 1, with 1000Re  : (a) )9.0,,0( yu  and )9.0,0,( xv ; (b) 

)0,,0( yu and )0,0,( xv ; (c) )9.0,,0( yu  and ),0,0( zw . 

  
(a)                         (b) 

Figure 4. Changes of velocity against Reynolds numbers for the case conducted on 
3

61 meshes: (a) )0,,0( yu and )0,0,( xv ; 

(b) ),0,0( zw . 

   
(a) (b) (c) 

Figure 5. Computed secondary flow structure for the case of 1000Re  ; (a) computed pseudo-streamlines at the 0x  

plane; (b) computed pseudo-streamlines at the 0y  plane; (c) 0z  at xy  plane. 

 

 
Figure 6. A three-dimensional plot for showing the positive   velocity component (shaded area) in the cavity which has a 

disk angular speed   in the corresponding Reynolds number of 1000. 
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(a) (b) (c) 

Figure 7. An illustration of the contour surface of 0w  in the cavity for the cases of (a) 2000Re  ; (b) 3000Re  ; 

(c) 4000Re  . 

 

   
(a) (b) (c) 

Figure 8. The computed pseudo-streamlines for the cases with different Reynolds numbers: (a) 2000Re  ; (b) 3000Re  ; 

(c) 4000Re  . 

   
(a) (b) (c) 

Figure 9. Dctai1cd flow topologies in the marked area shown in Figure 7. (a) 2000Re  ; (b) 3000Re   ; (c) 4000Re  . 
 


