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I. INTRODUCTION 
 Time derivative of the thoracic impedance is known as the impedance cardiogram (ICG) and it is used 

for estimating the ventricular ejection time (TLVET), the negative peak of ICG ((-dz/dt)max), the stroke volume, 

and some other cardiovascular indices. Respiratory and motion artifacts cause baseline drift in the sensed 

impedance waveform, particularly during or after exercise, and this drift results in errors in the estimation of the 

parameters [1], [2]. Ensemble averaging [2], a classical statistical technique for baseline cancellation, can be 

used to suppress the artifacts, but it also subdues the beat-to-beat variations and tends to blunt the peak in the 

ICG. The characteristics of the waveform which are less distinct may get blurred or even suppressed, thereby 

resulting in error in the estimation.  

 
Baseline removal has been addressed in many different ways in literature. In [3], baseline estimation 

method using cubic spline which is a portion of the Maclaurin series (higher than the 4th derivatives are 

neglected) is proposed. This is a third order approximation where the baseline is estimated by polynomial 

approximations and then subtracted from the original raw ECG signal. This is a nonlinear method, and its 

performance is based on estimation of reference points in the PR intervals. The main disadvantage of this 

method is estimating reference points that may not belong to baseline. In [4], a linear time-varying filtering 

approach is undertaken to suppress the baseline drift in the ECG signal. Beat average is subtracted from the 

signal and then decimated. Low-pass filtering is applied to estimate the baseline wander and is interpolated. 

Then it is subtracted from the original signal. This is a nonlinear approach so it is complex and highly dependent 

to beat rate calculations and becomes less accurate in low heart rates. Linear filtering is another method applied 

to baseline wander problem. Using this approach a digital narrow-band linear-phase filter with cut-off frequency 

of 0.8 Hz has been suggested in [5]. Another filtering technique using digital and hybrid linear-phase with cut-
off frequency of 0.64 Hz is used in [6]. Though the method looks quite simple to implement, the number of 

coefficients used the FIR structure is too high and results in long impulse responses.Most of the baseline wander 

removal algorithms in the literature have been implemented for denoising the ECG signal and very less work 

has been done in bioimpedance signals.  In addition, there is an overlap on the spectrums of the baseline and 
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bioimpedance signals. Thus removing baseline spectrum will cause distortion in the signal components also. 

Time-varying filtering was proposed in [4]. Filter banks with different cut-off frequencies which depend on 

heart rate and baseline level was implemented. Due to a partial overlap between the spectra of ICG and the 

artifacts, non-adaptive digital filters are not effective in removing the artifacts. Adaptive filtering may be used 

for canceling the respiratory artifacts [7], but it is generally difficult to identify the filter parameters related to 

the sources of various motion artifacts. 
 

II. BIOIMPEDANCE SIGNAL AND THE NOISE ASSOCIATED WITH IT 
Bioimpedance is a branch of biophysics concerned with the electrical hindrance offered by biological 

tissues to the flow of low amplitude, high frequency alternating current (AC). The bioimpedance signal is 

obtained by applying a constant amplitude AC current across a defined body segment, and the variation in the 

voltage across this segment is measured. Applying the Ohm’s law, this variation in the voltage is directly 

proportional to the variation in the impedance, as the current is maintained constant. A typical ICG waveform 

measured across the thorax of the human body and its characteristic points is shown in Fig. 1. Points B, C and X 

are the three main characteristic of ICG trace. Point B represents opening of the aortic valve, while point X 
denotes closing of the aortic valve. The point C corresponds to peak of the ICG waveform, while the point X is 

the lowest point in the ICG waveform. The time interval between point B and point X is the Left Ventricle 

Ejection Time (LVET) [8]. SV is generally calculated using Kubicek's equation using two hemodynamic 

parameters: the LVET and the dz/dtmax of ICG [9]. 

 

 There are two major artifacts in the ICG signal: respiratory and motion artifacts. Respiratory artifacts 

have very low frequency (0.04-2 Hz), and the frequency of motion artifacts is about 0.1-10 Hz. The baseline 

drift is due to the respiratory artifacts, while the peaks variation is due to motion artifacts. ICG signal range is 

0.8 to 20 Hz, therefore respiratory and motion artifacts lie within the same band [10]. The electrical impedance 

change caused by blood volume change in aorta typically accounts for 2-4% of the base impedance (usually 

about 20ohm), while the electrical impedance change caused by the respiratory artifact and motion artifact may 

be 30% or even more [9]. Therefore the motion and respiratory artifacts may lead to a large baseline drift in the 
ICG signal, subsequently resulting in errors in characteristic points extraction and calculation of the 

hemodynamic parameters. ICG signal is modulated by breath which can cause its fluctuation around base 

impedance Z0, thus baseline drift is inevitable during exercise. Subsequently baseline drift might cause 

inaccurate calculations of hemodynamic parameters when the zero level is used to calculate dz/dtmax. Therefore 

removing respiratory artifact from ICG signal is prime importance. Moreover, the noise sources such as power 

line hum, change in impedance of the electrodes due to perspiration can also cause the baseline drift. 

 

 
Figure 1: ICG and ECG signals 

 

Wavelets and wavelet packet approximation : There is fair amount overlap in the signal as well as the noise 

spectra in case of the bioimpedance signal. Hence, the baseline wander elimination algorithm should be able to 

decompose the signal frequency components into precise levels to clearly distinguish between the signal and the 
wander. Wavelet decomposition can serve appropriate in this regard. A wavelet system is a set of building 

blocks from which one can construct or represent a signal or a function. It is a two-dimensional expansion set. 

The wavelet transform is a time-scale representation method that decomposes signal x(t) into basis functions of 

time and scale which are dilated and translated versions of a basis function ψ(t) which is called mother wavelet 

[11,12]. Translation is accomplished by considering all possible integer translations of ψ(t) and dilation is 
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obtained by multiplying t by a scaling factor which is usually factors of 2. The following equation shows how 

wavelets are generated from the mother wavelet as given in Eq.1. 
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where j indicates the resolution level and k is the translation in time. This is called dyadic scaling, since the 

scaling factor is taken to be 2. Wavelet decomposition is a linear expansion and it is expressed as :  
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where(t) is called the scaling function or father wavelet and ck and dj,k are the coarse and detail level 
expansion coefficients, respectively. Eq. 2 effectively means finding projections of the signal on the basis 

functions for the approximation and detail branches, (t) and (t) respectively. In practice, one never has to deal 
with the basis functions. Finding projections on approximation level basis function essentially means averaging 

or passing the signal through a low pass filter, while the detail level basis function high pass filters the signals as 

shown in  Fig.2.  

 
Figure 2: Filter bank representation of wavelet decomposition 

Here G0(z) and H0(z) are essentially low pass and high pass filters respectively, which split the signal 

bandwidth into half. To achieve the next level decomposition, the approximation coefficient is further passed 

through this quadrature mirror filter bank formed by the low and high pass filters. These filters are related to 

wavelet (t) and scaling functions (t) as expressed below [13]:  
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Figure 3: Wavelet Packet decomposition tree 

 

Wavelets are useful in applications such as signal denoising, wave detection, data compression, feature 

extraction, and so forth. There are many techniques based on wavelet theory, such as wavelet packets, wavelet 
approximation and decomposition, discrete and continuous wavelet transform etc. The basic wavelet transform 

has only one-sided decomposition of the approximate coefficients. This is not sufficient in removal of noise 

sometimes. Hence to obtain more flexibility, the detail coefficient can also be decomposed in approximate and 

detail branches as shown in Fig.3. This aids in exploring the other frequency bands to correctly estimate the 

noise signal. 

 

 

x(t) 
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III. PROPOSED ALGORITHM 
 The algorithm for baseline wander removal using wavelet packet decomposition has been proposed in 

this paper. The algorithm is based on the assumption that the baseline drift signal is mixed with the 

bioimpedance signal in a linear fashion. The signal is not obtained using the usual thoracic impedance 
cardiography technique. It is rather obtained on the radial pulse (wrist of the left hand). The volume of blood 

flow in this section of the body is much smaller as compared to the thoracic region, due to the smaller diameters 

of the blood carrying vessels in this region as compared to the aorta. Hence the amount of variation in the 

impedance due to the pulsatile blood flow is also much smaller. In addition to the spectral overlap between the 

signal and drift, the amplitudes of the two signals are also comparable; thus making the process of drift removal 

even more challenging. Fig.4 shows the flowchart for estimation and cancellation of the baseline wander.  First, 

the wavelet packet decomposition of the bioimpedance signal is computed. 

 

 
 

Figure 4: Flowchart of bioimpedance baseline drift removal algorithm 

 

 Since the high frequency components are highlighted at low level scales, it is expected to observe the 

baseline drift at larger scales.  The energy of a signal is given in terms of the wavelet coefficients by Parseval’s 

relation as 
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 At each step the energy of both, the approximation as well as the detail coefficients is calculated. The 

branch with the higher energy is decomposed further. This will be followed till the energy difference in the 

subsequent levels exceeds the preset threshold value. The algorithm adaptively computes the preset threshold for 

each signal. It was experimentally observed that, whenever this value is between 0.7 % to 2% of the energy of 

the original signal, the last scale has been reached. Taking an average value of 1.0875% of the signal energy, 

gave acceptable results for all the subjects. 

 

IV. SIMULATION RESULTS 
 In this section, the results of the proposed algorithm for different signals are presented to illustrate the 

effectiveness of the algorithm. The dyadic wavelet packet decomposition of the signal at a given level represents 

the projections of the signal on the basis functions of that level. To ensure that the representation is most 

accurate, the basis function should have higher resemblance with the signal variations. Initially the 

decomposition was carried out using the Daub-4 mother wavelet, Bior 2.8 and Symlet 4, and the one which gave 

highest SNR was selected. Table 5.1 and Table 5.2 show the noise mean, noise variance and SNR obtained with 

each of these wavelets. The Daub-4 scaling function resembles the bioimpedance signal the most. The noise, 
SNR obtained using the Daub-4 is also better than the other two. Thus the wavelet packet decomposition of the 

signal was done using Daub-4 wavelet. The time of execution and thus the number of levels of decomposition 

were also found to be lesser in case of Daub-4.  Fig. 5 shows the results of the baseline wander removal 

algorithm for five subjects with wavelet packet decomposition using Daub-4 mother wavelet. Decrease in the 

variance is calculated as : 

 
 

Table 5.1 Comparison of noise mean, noise variance and reduction in signal variance after noise removal with 

different wavelet functions 

 

Subject Noise mean  Noise variance % Decrease in variance 

  db4 bior 2.8 sym 4 db4 bior 2.8 sym 4 db4 bior 2.8 sym 4 

Subject 1 73.746 73.746 73.747 57.901 57.237 57.515 76.571 76.369 76.781 

Subject 2 75.437 75.435 75.435 56.956 57.956 56.378 71.051 69.838 70.219 

Subject 3 76.001 76.001 76.001 68.465 68.105 68.036 87.610 85.844 85.751 

Subject 4 79.098 79.099 79.098 45.246 45.191 44.802 84.829 81.939 81.136 

Subject 5 76.879 76.878 76.878 249.822 248.390 246.387 94.457 91.647 94.396 

Table 5.1 Comparison of SNR after noise removal and the time required for execution with different wavelet 

functions 

 

Subject SNRout (DB) Time for execution (sec) 

  db4 bior 2.8 sym 4 db4 bior 2.8 sym 4 

Subject 1 28.682 24.550 24.612 0.814 0.914 0.874 

Subject 2 29.354 25.053 23.289 0.835 0.835 0.872 

Subject 3 26.947 26.897 26.974 0.891 0.891 0.868 

Subject 4 26.404 26.551 26.603 0.752 0.952 0.835 

Subject 5 29.391 26.495 26.622 1.014 1.214 1.067 
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V. CONCLUSION 
 The bioimpedance signal is of great importance in calculating the cardiac output, stroke volume and 

other cardiovascular parameters. It is of utmost importance to correctly locate the characteristic points on the 

signal, thereby avoiding error estimation of the parameters for diagnosis. Various baseline wander removal 

algorithms have been implemented in the literature, but the major challenge in this implementation was the 

spectral overlap between the noise and the signal and comparable amplitudes. Since the signals were acquired at 

the wrist of the left hand, the original signal itself was weaker in amplitude. It was extremely important to 

preserve the energy and characteristic points of the signal after removal of the baseline drift. The proposed 
adaptive wavelet packet based algorithm removes the baseline wander and preserve the clinical information of 

the bioimpedance records, without introducing any deformities in the signal. Since the number of levels of 

decomposition are calculated using the energy of the signal itself, each signal receives a different treatment for 

removal of the baseline drift. Eight to ten levels of dyadic wavelet packet decomposition were needed in each of 

the subject for correctly estimating the baseline drift. 

 

 

  
a. Subject 1 b. Subject 2 

  
c. Subject 3 d. Subject 4 

 
e. Subject 5 

Figure 5: Filtered results obtained with the proposed baseline wander algorithm for five subjects 
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