
International Journal of Computational Engineering Research||Vol, 03||Issue, 7||

||Issn 2250-3005 || ||July||2013|| Page 73

Emergence of Hop Integrity in Computer Networks with

Algorithms and Description of Protocols

Ashis Saklani
Assistant Professor Dept. Of Computer Science H.N.B Garhwal Central University Srinagar Garhwal

Uttarakhand

I. INTRODUCTION
Most computer networks suffer from the following security problem: in a typical network,

an adversary, that has an access to the network, can insert new messages, modify current messages, or

replay old messages in the network. In many cases, the inserted, modified, or replayed messages

can go undetected for some time until they cause severe damage to the network. More

importantly, the physical location in the network where the adversary inserts new messages, modifies

current messages, or replays old messages may never be determined.Two well-known examples of

such attacks in networks that support the Internet Protocol (or IP, for short) and the Transmission Control

Protocol (or TCP, for short) are as follows.

II. SMURF ATTACK:
In an IP network, any computer can send a "ping" message to any other computer which

replies by sending back a "pong" message to the first computer as required by Internet Control Message

Protocol (or ICMP, for short) [14]. The ultimate destination in the pong message is the same as the

original source in the ping message. An adversary can utilize these messages to attack a computer d

in such a network as follows. First, the adversary inserts into the network a ping message whose original

source is computer d and whose ultimate destination is a multicast address for every computer in the

network. Second, a copy of the inserted ping message is sent to every computer in the network.
Third, every computer in the network replies to its ping message by sending a pong message to

computer d. Thus, computer d is flooded by pong messages that it did not requested.

III. SYN ATTACK:
To establish a TCP connection between two computers c and d, one of the two computers c

sends a "SYN" message to the other computer d. When d receives the SYN message, it reserves some

of its resources for the expected connection and sends a "SYN-ACK" message to c. When c receives the
SYN-ACK message, it replies by sending back an "ACK" message to d. If d receives the ACK

message, the connection is fully established and the two computers can start exchanging their data

messages over the established connection. On the other hand, if d does not receive the ACK message

for a specified time period of T seconds after it has sent the SYN-ACK message, d discards the

partially established connection and releases all the resources reserved for that connection. The net effect of

this scenario is that computer d has lost some of its resources for T seconds. An adversary can take

advantage of such a scenario to attack computer d as follows [1, 18].

ABSTRACT
A computer network is said to provide hop integrity iff when any router p in the network

receives a message msupposedly from an adjacent router q, then p can check that m was indeed

sent by q, was not modified after it wassent, and was not a replay of an old message sent from q to

p. In this paper, we describe three protocols that canbe added to the routers in a computer network

so that the network can provide hop integrity. These three protocolsare a secret exchange protocol,

a weak integrity protocol, and a strong integrity protocol. All three protocols are

stateless, require small overhead, and do not constrain the network protocol in the routers in any
way.

KEYWORDS : Security,Hop Integrity,Secret Exchange Protocol,Hop Integrity Protocol,Weak

Integrity Protocol.

Emergence Of Hop Integrity In Computer Networks…

||Issn 2250-3005 || ||July||2013|| Page 74

 First, the adversary inserts into the network successive waves of SYN messages

whose original sources are different (so that these messages cannot be easily detected and filtered

out from the

network) and whose ultimate destination is d. Second, d receives the SYN messages, reserves its

resources for the expected connections, replies by sending SYN-ACK messages, then waits for the

corresponding ACK messages which will never arrive. Third, the net effect of each wave of inserted SYN
messages is that computer d loses all its resources for T seconds. In these (and other [7]) types of attacks, an

adversary inserts into the network messages with wrong original sources. These messages are accepted by

unsuspecting routers and routed toward the computer under attack. To counter these attacks, each router p in the

network should route a received m only after it checks that the original source in m is a computer adjacent to p

or m is forwarded to p by an adjacent router q. Performing the first check is straightforward, whereas

performing the second check requires special protocols between adjacent routers. In this paper, we present a

suite of protocols that provide hop integrity between adjacent routers: whenever a router p receives a message m

from an adjacent router q, p can detect whether m was indeed sent by q or it was modified or replayed by an

adversary that operates between p and q. It is instructive to compare hop integrity with secure routing [2, 11,

17], ingress filtering [4], and IPsec [8]. In secure routing, for example [2], [11], and [17], the routing update

messages that routers exchange are authenticated. This authentication ensures that every routing update
message, that is modified or replayed, is detected and discarded. By contrast, hop integrity ensures that all

messages (whether data or routing update messages), that are modified or replayed, are detected and discarded.

Using ingress filtering [4], each router on the network boundary checks whether the recorded source in each

received message is consistent with where the router received the message from. If the message source is

consistent, the router forwards the message as usual. Otherwise, the router discards the message. Thus, ingress

filtering detects messages whose recorded sources are modified (to hide the true sources of these messages),

provided that these modifications occur at the network boundary. Messages whose recorded sources are

modified between adjacent routers in the middle of the network will not be detected by ingress filtering, but will

be detected and discarded by hop integrity. The hop integrity protocol suite in this paper and the IPsec protocol

suite presented in [8], [9], [10], [12], and [13] are both intended to provide security at the IP layer. Nevertheless,

these two protocol suites provide different, and somewhat complementary, services. On one hand, the hop

integrity protocols are to be executed at all routers in a network, and they provide a minimum level of security
for all communications between adjacent routers in that network. On the other hand, the IPsec protocols are to

be executed at selected pairs of computers in the network,and they provide sophisticated levels of security for

the communications between these selected computer pairs. Clearly, one can envision networks where the hop

integrity protocol suite and the IPsec protocol suite are both supported. Next, we describe the concept of hop

integrity in some detail. 2. Hop Integrity Protocols

A network consists of computers connected to subnetworks. (Examples of subnetworks are local area

networks, telephone lines, and satellite links.) Two computers in a network are called adjacent iff both

computers are connected to the same subnetwork. Two adjacent computers in a network can exchange messages

over any common subnetwork to which they are both connected. The computers in a network are classified into

hosts and routers. For simplicity, we assume that each host in a network is connected to one subnetwork, and
each router is connected to two or more subnetworks. A message m is transmitted from a computer s to a

faraway computer d in the same network as follows. First, message m is transmitted in one hop from computer s

to a router r.1 adjacent to s. Second, message m is transmitted in one hop from router r.1 to router r.2 adjacent to

r.1, and so on. Finally, message m is transmitted in one hop from a router r.n that is adjacent to computer d to

computer d. A network is said to provide hop integrity iff the following two conditions hold for every pair of

adjacent routers p and q in the network. i. Detection of Message Modification: Whenever router p receives a

message m over the subnetwork connecting routers p and q, p can determine correctly whether message m was

modified by an adversary after it was sent by q and before it was received by p. ii. Detection of Message Replay:

Whenever router p receives a message m over the subnetwork connecting routers p and q, and determines that

message m was not modified, then p can determine correctly whether message m is another copy of a message

that is received earlier by p. For a network to provide hop integrity, two "thin" protocol layers need to be added
to the protocol stack in each router in the network. As discussed in [3] and [16], the protocol stack of each router

(or host) in a network consists of four protocol layers; they are (from bottom to top) the subnetwork layer, the

network layer, the transport layer, and the application layer. The two thin layers that need to be added to this

protocol stack are the secret

Emergence Of Hop Integrity In Computer Networks…

||Issn 2250-3005 || ||July||2013|| Page 75

Figure 1. Protocol stack for achieving hop integrity.

xchange layer and the integrity check layer. The secret exchange layer is added above the network

layer (and below the transport layer), and the integrity check layer is placed below the network layer (and above

the subnetwork layer). The function of the secret exchange layer is to allow adjacent routers to periodically

generate and exchange (and so share) new secrets. The exchanged secrets are made available to the integrity

check layer which uses them to compute and verify the integrity check for every data message transmitted

between the adjacent routers. Figure 1 shows the protocol stacks in two adjacent routers p and q. The secret

exchange layer consists of the two processes pe and qe in routers p and q, respectively. The integrity check layer

has two versions: weak and strong. The weak version consists of the two processes pw and qw in routers p and

q, respectively. This version can detect message modification, but not message replay. The strong version of the

integrity check layer consists of the two processes ps and qs in routers p and q, respectively. This version can

detect both message modification and message replay. Next, we explain how hop integrity, along with ingress
filtering, can be used to prevent smurf and SYN attacks (which are described in the Introduction). Recall that in

smurf and SYN attacks, an adversary inserts into the network ping and SYN messages with wrong original

sources. These forged messages can be inserted either through a boundary router or between two routers in the

middle of the network. Ingress filtering (which is usually

installed in boundary routers [4]) will detect the forged messages if they are inserted through a

boundary router because the recorded sources in these messages would be inconsistent with the hosts from

which these messages are received. However, ingress filtering may fail in detecting forged messages if these

messages are inserted between two routers in the middle of the network. For example, an adversary can log into

any host located between two routers p and q, and use this host to insert forged messages toward router p,

pretending that these messages are sent by router q. The real source of these messages can not be determined by
router p because router p cannot decide whether these messages are sent by router q or by some host between p

and q. However, if hop integrity is installed between the two routers p and q, then the (weak or strong) integrity

check layer in router p concludes that the forged messages have been modified after being sent by router q

(although they are actually inserted by the adversary and not sent by router q), and so it discards them. Smurf

and SYN attacks can also be launched by replaying old messages. For example, the adversary can log into any

host located between two routers p and q. When the adversary spots some passing legitimate ping or SYN

message being sent from q to p, it keeps a copy of the passing message. At a later time, the adversary can replay

these copied messages over and over to launch a smurf or SYN attack. Hop integrity can defeat this attack as

follows. If hop integrity is installed between the two routers p and q, then the strong integrity check layer in

Emergence Of Hop Integrity In Computer Networks…

||Issn 2250-3005 || ||July||2013|| Page 76

router p can detect the replayed messages and discard them. In the next three sections, we describe in some

detail the protocols in the secret exchange layer and in the two versions of the integrity check layer. The first

protocol between processes pe and qe is discussed in Section 3. The second protocol between processes pw and

qw is discussed in Section 4. The third protocol between processes ps and qs is discussed in Section 5. These

three protocols are described using a variation of the Abstract Protocol Notation presented in [5]. In this

notation, each process in a protocol is defined by a set of inputs, a set of variables, and a set of actions. For

example, in a protocol consisting of processes px and qx, process px can be defined as follows. process px

Comments can be added anywhere in a process definition; each comment is placed between the two brackets {

and }. The inputs of process px can be read but not updated by the actions of process px. Thus, the value of each

input of px is either fixed or is updated by another process outside the protocol consisting of px and qx. The

variables of process px can be read and updated by the actions of process px. Each <action> of process px is of

the form: <guard> <statement> The <guard> of an action of px is either a <boolean expression> or a

<receive> statement of the form: rcv <message> from qx The <statement> of an action of px is a sequence of

skip, <assignment>, <send>, or <selection> statements. An <assignment> statement is of the form: <variable of

px> := <expression> A <send> statement is of the form: send <message> to qx A <selection> statement is of the

form:

Executing an action consists of executing the statement of this action. Executing the actions (of differen
processes) in a protocol proceeds according to the following three rules. First, an action is executed only when

its guard is true. Second, the actions in a protocol are executed one at a time. Third, an action whose guard is

continuously true is eventually executed. Executing an action of process px can cause a message to be sent to

process qx. There are two channels between the two processes: one is from px to qx, and the other is from qx to

px. Each sent message from px to qx remains in the channel from px to qx until it is eventually received by

process qx or is lost. Messages that reside simultaneously in a channel form a sequence <m.1; m.2;  ; m.n> in

accordance with the order in which they have been sent. The head message in the sequence, m.1, is the earliest

sent, and the tail message in the sequence, m.n, is the latest sent. The messages are to be received in the same

order in which they were sent. We assume that an adversary exists between processes px and qx, and that this

adversary can perform the following three types of actions to disrupt the communications between px and qx.

First, the adversary can perform a message loss action where it discards the head message from one of the two
channels between px and qx. Second, the adversary can perform a message modification action where it

arbitrarily modifies the contents of the head message in one of the two channels between px and qx.

Emergence Of Hop Integrity In Computer Networks…

||Issn 2250-3005 || ||July||2013|| Page 77

 Third, the adversary can perform a message replay action where it replaces the head message in one of

the two channels by a message that was sent previously. For simplicity, we assume that each head message in

one of the two channels between px and qx is affected by at most one adversary action. 3. The Secret Exchange

Protocol In the secret exchange protocol, the two processes pe and qe maintain two shared secrets sp and sq.

Secret sp is used by router p to compute the integrity check for each data message sent by p to router q, and it is

also used by router q to verify the integrity check for each data message received by q from router p. Similarly,

secret sq is used by q to compute the integrity checks for data messages sent to p, and it is used by p to verify
the integrity checks for data messages received from q. As part of maintaining the two secrets sp and sq,

processes pe and qe need to change these secrets periodically, say every te hours, for some chosen value te.

Process pe is to initiate the change of secret sq, and process qe is to initiate the change of secret sp. Processes pe

and qe each has a public key and a private key that they use to encrypt and decrypt the messages that carry the

new secrets between pe and qe. A public key is known to all processes (in the same layer), whereas a private key

is known only to its owner process. The public and private

keys of process pe are named B p and R p respectively; similarly the public and private keys of process
qe are named B q and R q respectively. For process pe to change secret sq, the following four steps need to be

performed. First, pe generates a new sq, and encrypts the concatenation of the old sq and the new sq using qe's

public key B q, and sends the result in a rqst message to qe. Second, when qe receives the rqst message, it

decrypts the message contents using its private key R q and obtains the old sq and the new sq. Then, qe checks

that its current sq equals the old sq from the rqst message, and installs the new sq as its current sq, and sends a

rply message containing the encryption of the new sq using pe's public key B p. Third, pe waits until it receives

a rply message from qe containing the new sq encrypted using B p. Receiving this rply message indicates that qe

has received the rqst message and has accepted the new sq. Fourth, if pe sends the rqst message to qe but does

not receive the rply message from qe for some tr seconds, indicating that either the rqst message or the rply

message was lost before it was received, then pe resends the rqst message to qe. Thus tr is an upper bound on

the round trip time between pe and qe. Note that the old secret (along with the new secret) is included in each

rqst message and the new secret is included in each rply message to ensure that if an adversary modifies or
replays rqst or rply messages, then each of these messages is detected and discarded by its receiving process

(whether pe or qe). Process pe has two variables sp and sq declared as follows.

Similarly, process qe has an integer variable sq and an array variable sp. In process pe, variable sp is

used for storing the secret sp, variable sq[0] is used for storing the old sq, and variable sq[1] is used for storing

the new sq. The assertion sq[0] sq[1] indicates that process pe has generated and sent the new secret sq,

and that qe may not have received it yet. The assertion sq[0] = sq[1] indicates that qe has already received and

accepted the new secret sq. Initially, sq[0] in pe = sq[1] in pe = sq in qe, and sp[0] in qe = sp[1] in qe = sp in pe.

Process pe can be defined as follows. (Process qe can be defined in the same way except that each occurrence of

R p in pe is replaced by an occurrence of R q in qe, each occurrence of B q in pe is replaced by an occurrence of

Bp in qe, each occurrence of sp in pe is replaced by an occurrence of sq in qe, and each occurrence of sq[0] or
sq[1] in pe is replaced by an occurrence of sp[0] or sp[1], respectively, in qe.) process pe

end The four actions of process pe use three functions NEWSCR, NCR, and DCR defined as follows. Function

NEWSCR takes no arguments, and when invoked, it returns a fresh secret that is different from any secret that

was returned in the past. Function NCR is an encryption function that takes two arguments, a key and a data

item, and returns the encryption of the data item using the key. For example, execution of the statement e :=
NCR(B q, (sq[0]; sq[1])) causes the concatenation of sq[0] and sq[1] to be encrypted using the public key B q,

and the result to be stored in variable e. Function DCR is a decryption function that takes two arguments, a key

var sp : integer

sq : array [0 .. 1] of

integer

Emergence Of Hop Integrity In Computer Networks…

||Issn 2250-3005 || ||July||2013|| Page 78

and an encrypted data item, and returns the decryption of the data item using the key. For example, execution of

the statement d := DCR(R p, e)

causes the (encrypted) data item e to be decrypted using the private key R p, and the result to be stored

in variable d. As another example, consider the statement (d, e) := DCR(R p, e) This statement indicates that the

value of e is the encryption of the concatenation of two values (v 0; v 1) using key R p. Thus, executing this

statement causes e to be decrypted using key R p, and the resulting first value v to be stored in variable d, and

the resulting second value v1 to be stored in variable e. A proof of the correctness of the secret exchange

protocol is presented in the full version of the paper [6]. 4. The Weak Integrity Protocol The main idea of the

weak integrity protocol is simple. Consider the case where a data(t) message, with t being the message text, is

generated at a source src then transmitted through a sequence of adjacent routers r.1, r.2,  , r.n to a destination

dst. When data(t) reaches the first router r.1, r.1 computes a digest d for the message as follows: d := MD(t; scr)
where MD is the message digest function, (t; scr) is the concatenation of the message text t and the shared secret

scr between r.1 and r.2 (provided by the secret exchange protocol in r.1). Then, r.1 adds d to the message before

transmitting the resulting data(t, d) message to router r.2. When the second router r.2 receives the data(t, d)

message, r.2 computes the message digest using the secret shared between r.1 and r.2 (provided by the secret

exchange process in r.2), and checks whether the result equals d. If they are unequal, then r.2 concludes that the

received message has been modified, discards it, and reports an adversary. If they are equal, then r.2 concludes

that the received message has not been modified and proceeds to prepare the message for transmission to the

next router r.3. Preparing the message for transmission to r.3 consists of computing d using the shared secret

between r.2 and r.3 and storing the result in field d of the data(t, d) message. When the last router r.n receives

the data(t, d) message, it computes the message digest using the shared secret between r.(n-1) and r.n and checks

whether the result equals d. If they are unequal, r.n discards the message and reports an adversary. Otherwise,
r.n sends the data(t) message to its destination dst. Note that this protocol detects and discards every modified

message. More importantly, it also determines the location where each message modification has occurred.

Process pw in the weak integrity protocol has two inputs sp and sq that pw reads but never updates. These two

inputs in process pw are also variables in process pe,and pe updates them periodically, as discussed in the

previous section. Process pw can be defined as follows. (Process qw is defined in the same way except that each

occurrence of p, q, pw, qw, sp, and sq is replaced by an occurrence of q, p, qw, pw, sq, and sp, respectively.)

process pw

end In the first action of process pw, if pw receives a data(t, d) message from qw while sq[0] sq[1], then

pw cannot determine beforehand whether qw computed d using sq[0] or using sq[1]. In this case, pw needs to

compute two message digests using both sq[0] and sq[1] respectively, and compare the two digests with d. If

Emergence Of Hop Integrity In Computer Networks…

||Issn 2250-3005 || ||July||2013|| Page 79

either digest equals d, then pw accepts the message. Otherwise, pw discards the message and reports the

detection of an adversary. The three actions of process pw use two functions named MD and NXT, and one

statement named RTMSG. Function MD takes one argument, namely the concatenation of the text of a message

and the appropriate secret, and computes a digest for that argument. Function NXT takes one argument, namely

the text of a message (which we assume includes the message header), and computes the next router to which

the message should be forwarded. Statement RTMSG is defined as follows.

A proof of the correctness of the weak integrity protocol is presented in the full version of the paper
[6]. 5. The Strong Integrity Protocol The weak integrity protocol in the previous section can detect message

modification but not message replay. In this section, we discuss how to strengthen this protocol to make it detect

message replay as well. We present the strong integrity protocol in two steps. First, we present a protocol that

uses "soft sequence numbers" to detect and discard replayed data messages. Second, we show how to combine

this protocol with the weak integrity protocol (in the previous section) to form the strong integrity protocol.

Consider a protocol that consists of two processes u and v. Process u continuously sends data messages to

process v. Assume that there is an adversary that attempts to disrupt the communication between u and v by

inserting (i.e. replaying) old messages in the message stream from u to v. In order to overcome this adversary,

process u attaches an integer sequence number s to every data message sent to process v. To keep track of the

sequence numbers, process u maintains a variable nxt that stores the sequence number of the next data message

to be sent by u and process v maintains a variable exp that stores the sequence number of the next data message

to be received by v. To send the next data(s) message, process u assigns s the current value of variable nxt, then
increments nxt by one. When process v receives a data(s) message, v compares its variable exp with s. If exp

s, then q accepts the received data(s) message and assigns exp the value s + 1; otherwise v discards the data(s)

message. Correctness of this protocol is based on the observation that the predicate exp nxt holds at each

(reachable) state of the protocol. However, if due to some fault (for example an accidental resetting of the values

of variable nxt) the value of exp becomes much larger than value of nxt, then all the data messages that u sends

from this point on will be wrongly discarded by v until nxt becomes equal to exp. Next, we describe how to

modify this protocol such that the number of data(s) messages, that can be wrongly discarded when the

synchronization between u and v is lost due to some fault, is at most N, for some chosen integer N that is much

larger than one. The modification consists of adding to process v two variables c and cmax, whose values are in

the range 0..N- 1. When process v receives a data(s) message, v compares the values of c and cmax. If c

cmax, then process v increments c by one (mod N) and proceeds as before (namely either accepts the data(s)
message if exp s, or discards the message if exp > s). Otherwise, v accepts the message, assigns c the value

0, and assigns cmax a random integer in the range 0..N-1.

This modification achieves two objectives. First, it guarantees that process v never discards more than

N data messages when the synchronization between u and v is lost due to some fault. Second, it ensures that the

adversary cannot predict the instants when process v is willing to accept any received data message, and so

cannot exploit such predictions by sending replayed data messages at those instants. Formally, process u and v

in this protocol can be defined as follows. process u

Emergence Of Hop Integrity In Computer Networks…

||Issn 2250-3005 || ||July||2013|| Page 80

Processes u and v of the soft sequence number protocol can be combined with process pw of the weak
integrity protocol to construct process ps of the strong integrity protocol. A main difference between processes

pw and ps is that pw exchanges messages of the form data(t, d), whereas ps exchanges messages of the form

data(s, t, d), where s is the message sequence number computed according to the soft sequence number protocol,

t is the message text, and d is the message digest computed over the concatenation (s; t; scr) of s, t, and the

shared secret scr. Process ps in the strong integrity protocol can be defined as follows. (Process qs can be

defined in the same way.) process ps

Emergence Of Hop Integrity In Computer Networks…

||Issn 2250-3005 || ||July||2013|| Page 81

IV. IMPLEMENTATION CONSIDERATIONS
In this section, we discuss several issues concerning the implementation of hop integrity protocols

presented in the last three sections. In particular, we discuss acceptable values for the inputs of each of these

protocols. There are four inputs in the secret exchange protocol in Section 3. They are R p, B q, te and tr. Input

R p is a private key for router p, and input B q is a public key for router q. These are long-term keys that remain

fixed for long periods of time (say one to three months), and can be changed only off-line and only by the

system administrators of the two routers. Thus, these keys should consist of a relatively large number of bytes,

say 1024 bytes each. There are no special requirements for the encryption and decryption functions that use
these keys in the secret exchange protocol. Input te is the time period between two successive secret exchanges

between pe and qe. This time period should be small so that an adversary does not have enough time to deduce

the secrets sp and sq used in computing the integrity checks of data messages. It should also be large so that the

overhead that results from the secret exchanges is reduced. An acceptable value for te is around 4 hours. Input tr

is the time-out period for resending a rqst message when the last rqst message or the corresponding rply

message was lost. The value of tr should be an upper bound on the round-trip delay between the two adjacent

routers. If the two routers are connected by a high speed Ethernet, then an acceptable value of tr is around 4

seconds. Next, we consider the two inputs sp and sq and function MD used in the integrity protocols in Sections

4 and 5. Inputs sp and sq are short-lived secrets that are updated every 4 hours. Thus, this key should consist of a

relatively small number of bytes, say 8 bytes. Function MD is used to compute the digest of a data message.

Function MD is computed in two steps as follows. First, the standard function MD5 [15] is used to compute a
16- byte digest of the data message. Second, the first 4 bytes from this digest constitute our computed message

digest. As discussed in Section 5, input N needs to be much larger than 1. For example, N can be chosen 200. In

this case, the maximum number of messages that can be discarded wrongly whenever synchronization between

two adjacent routers is lost is 200, and the probability that an adversary who replays an old message will be

detected is 99 percent. The message overhead of the strong integrity protocol is about 8 bytes per data message:

4 bytes for storing the message digest, and 4 bytes for storing the soft sequence number of the message.

Emergence Of Hop Integrity In Computer Networks…

||Issn 2250-3005 || ||July||2013|| Page 82

V. CONCLUDING REMARKS IN THIS PAPER,
i introduced the concept of hop integrity in computer networks. A network is said to provide hop

integrity iff whenever a router p receives a message supposedly from an adjacent router q, router p can check

whether the received message was indeed sent by q or was modified or replayed by an adversary that operates
between p and q. I also presented three protocols that can be used to make any computer network provide hop

integrity. These three protocols are a secret exchange protocol (in Section 3), a weak integrity protocol (in

Section 4), and a strong integrity protocol (in Section 5). These three protocols have several novel features that

make them correct and efficient. First, whenever the secret exchange protocol attempts to change a secret, it

keeps both the old secret and the new secret until it is certain that the integrity check of any future message will

not be computed using the old secret. Second, the integrity protocol computes a digest at every router along the

message route so that the location of any occurrence of message modification can be determined. Third, the

strong integrity protocol uses soft sequence numbers to make the protocol tolerate any loss of synchronization.

All three protocols are stateless, require small overhead at each hop, and do not constrain the network protocol

in any way. Thus, we believe that they are compatible with IP in the Internet, and it remains to estimate or

measure the performance of IP when augmented with these protocols.

REFERENCES
[1] TCP SYN Flooding and IP Spoofing Attacks", CERT Advisory CA-96.21, available at http://www.cert.org/.

[2] S. Cheung, "An Efficient Message Authentication Scheme for Link State Routing", Proceedings of the 13th Annual Computer

Security Applications Conference, San Diego, California, December 1997, pp. 90-98.

[3] D. E. Comer, Internetworking with TCP/IP: Vol. I: Principles, Protocols, and Architecture, Prentice-Hall, Englewood Cliffs, NJ,

1988.

[4] P. Ferguson and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address

Spoofing", RFC 2267, January 1998. [5] M. G. Gouda, Elements of Network Protocol Design, John Wiley & Sons, New York,

NY, 1998. [6] M. G. Gouda, E. N. Elnozahy, C.-T. Huang, T. M. McGuire, "Hop Integrity in Computer Networks", Technical

Report TR-00-19, Department of Computer Sciences, The University of Texas at Austin, August 2000.

[5] L. Joncheray, "A Simple Active Attack Against TCP", Proceedings of the 5th USENIX UNIX Security Symposium, 1995, pp. 7-

19.

[6] [8] S. Kent and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 2401, November 1998.

[7] S. Kent and R. Atkinson, "IP Authentication Header", RFC 2402, November 1998.

[8] S. Kent and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, November 1998. [11] S. Murphy and M.

Badger, "Digital Signature Protection of the OSPF Routing Protocol", Proceedings of the 1996 Internet Society Symposium on

Network and Distributed Systems Security, San Diego, California, February 1996. [12] D. Maughan, M. Schertler, M. Schneider,

and J. Turner, "Internet Security Association and Key Management Protocol (ISAKMP)", RFC 2408, November 1998.

[9] H. Orman, "The OAKLEY Key Determination Protocol", RFC 2412, November 1998.

[10] J. Postel, "Internet Control Message Protocol", RFC 792, September 1981. [15] R. L. Rivest, "The MD5 Message-Digest

Algorithm", RFC 1321, April 1992.

[11] [W. R. Stevens, TCP/IP Illustrated, Vol. I: The Protocols, Prentice-Hall, Englewood Cliffs, NJ, 1994.

[12] B. Smith, S. Murthy, and J. J. Garcia-Luna-Aceves, "Securing Distance Vector Routing Protocols", Proceedings of the 1997

Internet Society Symposium on Network and Distributed Systems Security, San Diego, California, February 1997.

[13] M. de Vivo, G. de Vivo, and G. Isern, "Internet Security Attacks at the Basic Levels", Operating Systems Review, Vol. 32, No. 2,

SIGOPS, ACM, April 1998.

BIOGRAPHY
Ashis Saklani :- Received M.tech in Computer Science from Karnataka University, and MCA from Graphic Era

Institute of Technology (Now Graphic Era University) Dehradoon.He is a CISCO And Microsoft Certified

Professional. He worked as a VPN Support Engineer at HCL Infinet, Noida.Presently he is working as Assistant

Professor, at H.N.B Garhwal Central University, Srinagar, Uttarakhand, India.

http://www.cert.org/

