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Abstract: 
Most demosaicing algorithms today are based on first reconstructing the green (G) color component 

followed by the reconstruction of the red (R) and the blue (B) components based on the green. This approach 

and the associated methods of using the differences R−G and B−G are arbitrary and in most cases not optimal. 

Instead, we propose optimal color transforms for demosaicing. This optimization is based on energy 

compactness and smoothness of the color components. We compare the performance of the proposed algorithms 

to presently available demosaicing methods and show that the new optimized approaches are superior both 

visually and quantitatively. Our conclusion is that the proposed color transforms improve the performance of 

demosaicing algorithms. 

Keywords: Bayer pattern, Color transform, Demosaicing, Energy compactness, Image interpolation, 
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1. Introduction  
Since many acquisition devices are based on a single sensor using a color filter array (CFA), only 

partially sampled versions of the primary colors R, G, B are recorded. This is done in most cases according to 

the Bayer pattern [1], as shown in Fig. 1. In this case, the green has twice as much samples as the red and the 

blue, making the green interpolation easier to accomplish due to reduced potential of aliasing [2,3]. Then the red 

and the blue components can be reconstructed based on inter-color correlations, which are usually high in 

natural images [4-8]. Straightforward algorithms for demosaicing, such as bilinear or bicubic interpolation 

methods, however, do not use these inter-color correlations and operate on each color component independently. 

Better performance is achieved by algorithms that are based on the above sequential scenario of reconstructing 

G first, followed by the reconstruction of R and B, e.g., [9-14]. In such algorithms the inter-color correlations 

are usually exploited by interpolating the differences R−G and B−G. However, since no optimization is 

performed, it can be shown that using these differences is not the best method to perform the task efficiently. 

For the sake of completeness, we should add that non-sequential demosaicing methods have also been proposed, 

e.g. the iterative techniques of [15] or [16] as well as vector CFA demosaicing [17]. In this work we propose 

methods of choosing other color transforms for the interpolation of the red and the blue according to different 

optimization criteria. 

 

We consider the following demosaicing algorithm.  

1.1 The basic demosaicing algorithm 

The stages of the algorithm are:  

1. The green color component is interpolated using the method in [9]. It consists of filtering the CFA pattern 

horizontally and vertically, then choosing the direction of interpolation corresponding to the smaller 

estimated gradient (to avoid interpolation across edges): horizontal or vertical. In case of equal gradients the 

average of the horizontal and vertical interpolators is taken. This technique of interpolation was chosen 

because it provides good performance at low complexity.  

2. The interpolated green component Ĝ is used in the reconstruction of the red and the blue colors. The color 

differences ˆRG R G  ,  ˆBG B G   are calculated at the known pixels of the red and the blue colors, 

respectively. Then the red-green difference is interpolated at the locations of the known blue samples and 

the blue-green difference at the locations of the red samples using the local polynomial approximation 

(LPA) filter [13]. Better performance can be achieved by this filter compared to simple bilinear 

interpolation.  
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3. The missing pixels in the red and blue - those at the locations of the known green pixels are interpolated 

using simple averaging of their two vertical and two horizontal pixels (bilinear interpolation). The 

interpolation is performed once again on the 
RG and 

BG  differences resulting in full images ˆ RG  and 

ˆ BG . 

 

 

The final red and blue components are calculated according to 
ˆ ˆˆ RGR G    and 

ˆ ˆˆ BGB G   . 

 
 

 

Figure 1. The Bayer CFA pattern. 

 

The structure of this work is as follows. Color transforms for demosaicing based on optimization of different 

properties of the image are presented in Section 2. Demosaicing results for the proposed method and comparison 

to other available techniques are given in Section 3. Section 4 provides summary and conclusions.  

 

2. Optimal Color Transforms 
All printed material, including text, illustrations, and charts, must be kept within a print area of 6-1/2 

inches (16.51 cm) wide by 8-7/8 inches (22.51 cm) high. Do not write or print anything outside the print area. 

All text must be in a single-column format. Columns are to be 3-1/16 inches (7.85 cm) wide, with The basic 

algorithm performs its interpolation in the ,  ,  G R G B G  color space. This choice is not necessarily optimal 

and thus other color transforms can be considered following an optimization process [18]. The change of the 

color space is not possible prior to the reconstruction of the green since at each pixel of the image only one of 

the primary colors is available. However, it becomes possible after the reconstruction of G in Subsection 1.1, 

Step 1. We thus propose a new general color space:  

  1 2 1 2 3 1 2, ,C G C a R a G C d B d G    (1) 
 

 

for some constants 
1 2 1 2, , ,a a d d  instead of the regular choice. To avoid the solution of 1 2 0a a   in the 

optimization problems presented below, a constraint has to be added forcing the L1 norm, for example, of the a 

coefficients to be 1 (similarly for the d coefficients). Thus  

(2)  
1 2 1 21 and 1.a a d d     

 

 

2.1  Energy compactness and non-singularity 

A Rate-Distortion model for color image coders was developed and optimized in [19]. As a result the 

optimal Color Transform (CT) was derived. Denoting the CT matrix by M , the target function to be minimized 

for the optimal CT was found to be   
3

1

1

T

k
kkk

GM




 MM , where 
kGM  is the geometric mean of the subband 

variances. Based on this result, the following target function can be proposed for our demosaicing algorithm:  

(3)     
3

1

2

,T

k
kkk

var C




 MM  

where Ck and the RGB components are connected by  
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The expression in (3) is made of two terms:  
3

2

k

k

var C


 , which is a measure of the energy compactness in the 

new color space and   
3

1

2

T

kkk





 MM , which is a measure of the non-singularity of M. The optimal 

coefficients minimizing (3) under the norm constraint of (2) are  

(5)

 

1 2 1 2

( ) ( , ) ( ) ( , )
,    ,  ,  .

( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )

var G cov R G var G cov B G
a a d d

var G cov R G var G cov R G var G cov B G var G cov B G
     

   

 

Since the target function of (3) combines the properties of energy compactness and non-singularity of the color 

transform, we refer to this algorithm as ECNS, which is the acronym of Energy Compactness and Non-

Singularity.  

2.2  Smoothness of the C2 and C3 components 

The energy of the difference signals 
RG R G   and 

BG B G    is mostly concentrated in the low 

frequencies [11]. This is the reason for the good performance achieved by interpolating these differences using 

averaging [11-13]. This also means that 
RG  and 

BG  are smooth. To further impose this smoothness on 
2C  

and 
3C , the following methods are proposed.  

2.2.1  Minimal high pass energy  

The idea here is to minimize the energy of
2C  and 

3C , filtered by a two dimensional High Pass (HP) 

filter. We denote the filtered color components at pixel ( , )i j  by  HP

k ij
C and minimize 

 
2

1 1

,
M N

HP

k ij
i j

C
 

 2,3k  for an image of size M×N. Alternatively, a pair of one dimensional HP filters 
xHP  and 

yHP can be used to filter 
2C  or 

3C  horizontally and vertically, respectively. Usually, 
yHP  is chosen as 

T

y xHP HP . Then the expression to be minimized becomes    
22

yx
HPHP

k k
ij ij

i j i j

C C  , 2,3k  , 

where xHP

kC is 
kC  filtered by 

xHP  and similarly for yHP

kC . The optimal 1 2,  a a  coefficients for this problem are 

(6) 
12 22 12 11

1 2

11 12 22 11 12 22

, ,
2 2

a a
   

     

 
  

   
  

where 

    

(7)
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The solution for the 
1d  and 

2d coefficients is the same as the solution for 
1a  and 

2a , respectively,  in (6) with 

B replacing R everywhere in (7). For simple choices of 
xHP , such as the backward/forward approximation of 

the horizontal derivative  
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 [1 1]xHP   , the calculations can be performed on the available small images obtained from the CFA (Fig. 

2). Alternatively, R and B can be first reconstructed using a simple technique, such as bilinear filtering of the 

R G and B G differences, and then used for the estimation of the derivatives. In this work we use the Sobel 

gradient operator given by 

1 0 1

2 0 2 .

1 0 1

xHP

 
 

 
 
  

 

 

 
 

Figure 2. The Bayer pattern components: RR, BB, GR and GB (from left to right). 

2.2.2  Minimal energy in the wavelet domain 

Another approach is to consider the energy of the 
2C  and 

3C color components in the high 

frequencies and to search for the coefficients 
ka and 

kd    2,3k   that minimize this energy. One possible 

formulation for this problem is to minimize
2

{ , , }

( , )kC

f

f LH HL HH m n

W m n


  ,    2,3k  , where ( , )kC

fW m n is 

the one level Discrete Wavelet Transform (DWT) of 
kC  at position ( , )m n  in subband f , which is one of the 

high frequency subbands (LH, HL or HH) above. The solution for this problem is as in (6), but now  

(8) 

2 2

11 22

{ , , } { , , }
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( , ) ,  ( , )

( ,

,

) ( , )

 

.

R G

f f
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f f

f LH HL HH m n

W m n W m n

W m n W m n
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

 



   
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 


 

 

The solution for 
1d  and 

2d  is similar.  

2.2.3  Minimal relative energy in the Fourier domain 

The energy in the high frequencies can be expressed in the frequency domain of the Discrete Fourier 

Transform (DFT) as well. In this case taking the relative energy of 
2C  or 

3C  provides better results. Therefore, 

we seek to minimize (for an image of size M N assuming M and N are multiples of 4) 

(9) 

/2 1 /2 1
2

/4 /4
/2 1 /2 1

2

0 0

( , )

, 2,3.

( , )

k

k

M N
C

m M n N
M N

C

m n

DFT m n

E k

DFT m n

 

 
 

 


 

 
  

( , )kC
DFT m n here denotes the DFT coefficient of 

kC  at position ( , )m n  in the frequency domain. The solution 

of this problem requires solving third order polynomial equations resulting in long expressions for the a and d 

coefficients. For simplicity we do not provide them here. 

  

3. Demosaicing Results 
The basic algorithm (Section 1.1) was implemented with and without the optimization techniques of 

Section 2. We also added the refinement method [20] as post-processing. This method provides further 

utilization of the inter-color and intra-color correlations and works well with our algorithms. The set of images 

given in Fig. 3 was used in our simulations,i.e., for each one the Bayer pattern was built, interpolated by the 

different algorithms and compared to the original image. The distortion measure used was the S-CIELAB metric 

[21]. The comparison of the proposed algorithms is given on the left side of Table 1. We can see that all the 

proposed algorithms achieve better results than the basic algorithm and the bilinear interpolation. The best 

performance with respect to the S-CIELAB metric is achieved by the minimal high pass energy (Min HP)  



Optimized Color Transforms For Image… 

 

5 

||Issn||2250-3005|| (Online)                                                      ||March||2013||                                                               ||www.ijceronline.com|| 

 

algorithm (Section 2.2.1). This shows the importance of the smoothness of the 
2C  or 

3C  color components for 

our interpolation process. The second best algorithm is ECNS, which means energy compactness and non-

singularity of the color transform are important for demosaicing as well as image coding [18].It is of interest to 

compare the proposed methods to other available algorithms. We have chosen some of the available state of the 

art techniques: Alternating Projections (AP [10]), Directional Linear Minimum Mean Square Error (DLMMSE 

[11]), Variance of Color Differences (VCD [12]), Local Polynomial Approximation (LPA [13]) and Successive 

Approximation (SAP [16]). The results for these algorithms can be seen on the right side of Table 1. From the 

table we can see that the Min HP algorithm is superior to the  

 

other methods, while the performance of ECNS is similar to that of the VCD method that provides the 

best results among the algorithms chosen for comparison. Visual results for the new methods as well as existing 

algorithms for part of Image 8 are given in Fig. 4. As can be seen, the proposed methods provide better results 

than the other algorithms (including VCD that provides the most competitive performance). The values of the a 

and d coefficients for these algorithms are given in Table 2. Note that even if the values are close to 

1 2 0.5a a   and 
1 2 0.5d d   , which would result in taking the common R G  and B G differences 

(after scaling), the new methods outperform the basic algorithm.  

 

4. Summary And Conclusions 
An optimization approach to demosaicing has been introduced. Instead of using the common choice of 

the R G  and B G differences for the reconstruction process, better performance can be achieved by 

choosing an optimized color space according to the desired properties of the image. Such properties can be 

energy compactness as in the ECNS algorithm or smoothness as in the Min HP algorithm. A basic demosaicing 

algorithm has been optimized to achieve these properties and compared to other available demosaicing methods. 

Our results show that the proposed optimization method significantly improves the interpolation performance 

and that the best performance is achieved by minimizing the high pass energy in the new color space. The 

second best is the algorithm that combines energy compactness and non-singularity of the color transform, 

providing better results also in the case of color image coding [18]. Our conclusion is that the proposed 

optimization approach is useful for demosaicing of color images. 

 

 

Table 1. S-CIELAB results for the algorithms (from left to right): minimal High Pass energy, ECNS, 

minimal DWT energy, minimal relative DFT energy, the basic algorithm, bi-linear interpolation, AP, 

SAP, DLMMSE, LPA and VCD. 

 

 
Proposed Algorithms Other Algorithms 

Image 
Min 

HP 
ECNS 

Min 

DWT 

Min Rel 

DFT 
Basic BL AP SAP 

DL 

MMSE 
LPA VCD 

1 0.733 0.729 0.752 0.730 0.769 1.505 0.851 0.897 0.723 0.758 0.850 

2 0.779 0.786 0.794 0.830 0.796 1.201 1.032 1.215 0.749 0.766 0.778 

3 0.747 0.732 0.791 0.812 0.808 1.501 1.165 1.177 0.832 0.832 0.795 

4 0.645 0.654 0.650 0.659 0.656 0.833 0.787 0.877 0.644 0.611 0.687 

5 0.579 0.595 0.571 0.593 0.578 0.928 0.838 0.828 0.561 0.530 0.593 

6 0.576 0.611 0.594 0.577 0.606 1.149 0.654 0.760 0.524 0.581 0.526 

7 1.408 1.475 1.456 1.467 1.488 3.272 1.862 1.810 1.431 1.321 1.312 

8 1.490 1.508 1.569 1.569 1.608 2.742 1.867 2.168 1.689 2.154 1.563 

Mean 0.870 0.886 0.897 0.905 0.914 1.641 1.132 1.216 0.894 0.944 0.888 
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Table 2. a and d coefficients for Image 8 for the proposed algorithms (same order of columns as in Table 

1). Even if the values are close to 
1 2 0.5a a    and 

1 2 0.5d d    as in the basic method, the new methods 

outperform the basic algorithm. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
 

 

 

 

 

 
Min HP  ECNS  Min DWT  Min Rel DFT  

a1  0.539  0.578  0.506  0.460  

a2  -0.461  -0.422  -0.494  -0.540  

d1  0.551  0.597  0.509  0.559  

d2  -0.449  -0.403  -0.491  -0.441  

Original   SAP AP 

DLMMSE VCD LPA 

New Alg 1: Min HP New Alg 2: ECNS 
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Figure 4. Demosaicing results for the different algorithms for part of Image 8. New Alg. 1-4 are the 

new algorithms. 

 

References 
[1] B. E. Bayer. Color imaging array. U.S. Patent 3971065, July 1976.  

[2] B. Gunturk, X. Li and L. Zhang. Image demosaicing: A systematic survey. In Proc. of SPIE, 68221J-68221J-15, 

2008. 

[3] H. Kirshner and M. Porat. On the Approximation of L2 Inner Products from Sampled Data. IEEE Trans. on Signal 

Processing 55:2136-2144, 2007.  

[4] H. Kotera and K. Kanamori. A Novel Coding Algorithm for Representing Full Color Images by a Single Color 

Image. J. Imaging Technology 16:142-152, Aug. 1990.  

[5] J. O. Limb and C.B. Rubinstein. Statistical Dependence Between Components of A Differentially Quantized Color 

Signal. IEEE Trans. on Communications 20:890-899, Oct. 1971.  

[6] H. Yamaguchi. Efficient Encoding of Colored Pictures in R, G, B Components. IEEE Trans. on Communications 

32:1201-1209, Nov. 1984. 

[7] Y. Roterman and M. Porat. Color image coding using regional correlation of primary colors. Image and Vision 

Computing 25:637-651, 2007.  

[8] E. Gershikov and M. Porat. Optimal color image compression using localized color component transforms. In Proc. 

EUSIPCO 2008, Lausanne, Switzerland, Aug. 2008. 

[9] J. F. Hamilton and J. E. Adams. Adaptive Color Plane Interpolation in Single Sensor Color Electronic Camera. U.S. 

Patent 5629734, 1997.  

[10] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau. Color plane interpolation using alternating projections. IEEE 

Trans. Image Processing 11:997-1013, 2002. 

[11] L. Zhang and X. Wu. Color demosaicking via directional linear minimum mean square-error estimation. IEEE Trans. 

on Image Processing 14:2167-2178, 2005. 

[12] K.-H. Chung and Y.-H. Chan. Color demosaicing using variance of color differences. IEEE Trans. on Image 

Processing 15:2944-2955, 2006.  

[13] D. Paliy, V. Katkovnik, R. Bilcu, S. Alenius, and K. Egiazarian. Spatially adaptive color filter array interpolation for 

noiseless and noisy data. Int. Journal of Imag. Sys. and Technology 17:105-122, 2007.  

[14] R. Sher and M. Porat. CCD Image Demosaicing using Localized Correlations. In Proc. of EUSIPCO, Poznan, 

Poland, Sept. 2007. 

[15] R. Kimmel. Demosaicing: Image reconstruction from color ccd samples. IEEE Trans. on Image Processing 8:1221-

1228, 1999. 

[16] X. Li. Demosaicing by successive approximation. IEEE Trans. Image Processing 14:370-379.  

[17] M. R. Gupta and T. Chen. Vector color filter array demosaicing. In Proc. of SPIE, Sensors and Camera Systems for 

Scientific, Industrial, and Digital Photography Applications II 4306:374-382, 2001. 

[18] E. Gershikov and M. Porat. A rate-distortion approach to optimal color image compression. In Proc. EUSIPCO, 

Florence, Italy, Sept. 2006. 

[19] E. Gershikov and M. Porat. On color transforms and bit allocation for optimal subband image compression. Signal 

Processing: Image Communication 22:1-18 ,2007.  

[20] L. Chang and Y. P. Tam. Effective use of spatial and spectral correlations for color filter array demosaicing. IEEE 

Trans. Consumer Electronics, 50:355-365, Feb 2004. 

[21] X. Zhang and B. A. Wandell. A spatial extension of CIELAB for digital color image reproduction. SID Journal 5:61-

63, 1997. 

New Alg 3: Min DWT New Alg 4: Min Rel DFT 


