
                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 2 

 
 

 

||Issn 2250-3005(online)||                                               ||February|| 2013                              Page 128 

Deploying Self-Organizing-Healing Techniques for Software 

Development of Iterative Linear Solver. 

Okon S. C.
1
 and Asagba P. O.

2
 

1
Department Of Computer Science, Akwa Ibom State University, Ikot Akpaden, Mkpat Enin L. G. A. Akwa 

Ibom State, Nigeria. 
2
Department Of Computer Science, University Of Portharcourt, Choba, Rivers State, Nigeria. 

 

Abstract: 
Self-Organization and Self-Healing are fundamental survival/evolutionary technique in natural complex 

Systems.  In this work we present a formal approach to the specification and design of Software that can apply the 

technique of Self-Organization and Self-Healing to survive unforeseen circumstances.  We achieved this by engineering a 

System that can autonomously reconfigure, reorganized its states to overcome faults/errors thus continuing normal, 

gracefully degrading or enhanced performance at execution time.Our specification shows how we apply structured system 

analysis and design methodology, neural network and descriptive model as methodologies to engineer Software whose 

constituent parts are designed and developed as rule players as is obtainable in autonomous natural complex system.  Our 

Prototype Software is in the area of solving systems of linear equations iteratively. This work can easily be adopted for 
other Software Projects by making all modules participate in the Software Architecture as rule players. 

 

Keywords: Self-Organization, Self-Healing, Software Component Capacity, Rule Player 

 

1. Introduction 
This paper presents the methodology used, the analysis and design of the proposed system.  We will also present 

the algorithms for our software prototype, to demonstrate self-organizing-healing principles. We identify with the fact 

that, it is becoming increasingly important for software to have a built-in capability to adapt at runtime in varying 

resources, system errors and changing environmental parameters.  Our research has shown that various ongoing work 
exist on modeling Self-organizing [5, 6, 7, 14, 15, 19, 21], self-healing [25, 36] based-hardware and/or information 

communication technology systems. We employ a combined therapy for software architecture based on both self-

organizing and self-healing software systems. Finally a self-organizing and self-healing mechanism of the software 

framework is designed and a prototype model developed and analyzed by applying a formal systematic software 

architecture specification and analysis methodology in order to establish that our system has satisfied the system‟s time 

constraint requirements and improve the system‟s availability and reliability.   

 

2. Methodology 
There are several methodologies applicable in the analysis and design of a generic software system. We have 

decided to use; Structured System Analysis and Design Method (SSADM), Neural Network and Descriptive Models as 

our methodologies.   Here we use models to represent the structure and internal dynamics of individual components, or 

the deterministic interactions between components.  Our model provides leverage on the difficult and important problem 

of connecting local, autonomous behaviours of individual component to the global, emergent properties of the system.  

Figure 1 shows the families of models for self-organizing system.  We have used Descriptive model which have assisted 

us in the modularization of both mechanism and components of the system.The transformation from a descriptive, 

validation and analytical model to a self-organizing application is a forward engineering process while that of self-

organizing application to the models is reverse engineering process. 

 

 
 

Figure 1: Families of models for self-organizing system 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 2 

 
 

 

||Issn 2250-3005(online)||                                               ||February|| 2013                              Page 129 

Under modularization, we design the components of our system in modules which are self-similar entities thus defining 

our software organizational structure. In order to allow modular and reusable modeling that minimizes the impact on the 

underlying architecture, we proposed a framework based on an organizational approach. We have adopted the Role-

Interaction-Organization (RIO) model to represent organizations or systems which enables our module to acquire 

mechanism for dynamic role playing. We have leaned on this model since it enables formal specification. 

Neural network principles are used to establish the interaction between the modules. 

 

2.1 Module Capacity 
Large scale systems are expected to organize and cooperate in open environments [34].To satisfy their needs and 

goals, agents in this case modules often have to collaborate. Thus a module has to be able to estimate the competences of 

its future partners to identify the most appropriate collaborator. We have introduced the notion of capacity to deal with 

this issue. The capacity allows us to represent the competences of a module or a set of modules.  A capacity is a 

description of a know-how/service. This description contains at least a name identifying the capacity and the set of its 

input and output variables which may have default values.  The requires field defines the constraints that should be 

verified to guarantee the expected behaviour of the capacity. Then the ensures field describe what properties the capacity 

guarantees, if requires is satisfied. Finally, we add a textual description to informally describe the behaviour of the 

capacity. 

 

2.1.1 Design of Module Capacity for SOR 
Figure 2 defines a modules capacity for SOR Module.  This capacity definition applies for the other four 

modules namely; CGIM, IRM, GSIM, and JAM.  Each of them derived their operational competence from the required 

parameter and their ranking.  Table 1 shows the Ranking and Condition for choice module.  The ranking is based on their 

convergence rate. 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2: The SuccesiveOverRelaxation capacity 

 

However, from the system point of view, we can categorize the systems capacities into three subcategories: 
 

Atomic: The capacity is already present in one of the members of the modules.In this case, the head has to simply request 

the member possessing the required capacity to perform it. 
 

Liaised: The capacity is obtained from a subset of the member‟s capacities. 
 

Emergent: The capacity is not present as an atomic capacity nor obtained as composition of them, but the capacity 

emerges from the interactions of the members. 
 

The capacity is atomic for a system if one of the members provides the capacity, but it does not have any implications on 

how this member obtains this capacity. This taxonomy of capacity is only relative to the system point of view. 
 

3. Analysis Of Self-Organizing-Healing System 
Here we used a descriptive model to analysis the operation of a self-organizing-healing system Figure 3 shows 

input (I/O) being supplied to the system, then a choice (Choose Role Player) is made out of the components present to 

carry out execution, then the system monitors (Self Monitor) itself for indications of anomalous behavior (Anomalous 

Event). When such is detected, the system enters a self-diagnosis mode (Self Diagnosis), that is aimed at identifying the 

fault (Fault Identification) and extract as much information as possible with respect to its cause, symptoms, and impact on 

the system.  Once these are identified, the system tries to adapt (Self Adaptation) itself by generating candidate fixes 

(Candidate Fix Generation), which are tested to find the best target state (Deployment). Output is published if there is no 

error. 

 
Name :SuccesiveOverRelaxation 
Input :The number of equations and unknowns n; the entries aij of matrix A; the entries bi 

of b; the entries XOi of XO; omega; tolerance; maximum number of iterations. 

Output : The approximate solution xi, …, xn or a message that  number of iterations was 
exceeded. 

Requires : Requires the parameter Omega 

Ensures : That the solution vector xi, …, xn is within the tolerance level TOL 

 
Textual Description : provides a solution to a system of linear equations through iteration 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 2 

 
 

 

||Issn 2250-3005(online)||                                               ||February|| 2013                              Page 130 

 

 
 

   Key  
   I/O – Input/Output CR – Choose Role player 

   SM - Self Monitor  AE – Anomalous Event 

   SD – Self Diagnosis FI – Fault Identification  

   SA – Self Adaptation   CFG– Candidate Fix Generation 
   ST – Self Testing  D – Deployment  OP - Output 

 

Figure 3:   Descriptive model of Self-organizing-healing System. 

4. Design 
This section presents the design showing the system architecture with components interconnections. 

 

4.1 Design of the New System 
Research has shown that almost 80% of software fault is due to design flaws, while almost 20% is cause by data 

flaws [9].  Our solution to design flaws is to construct our software in a modular form, where each module has the 

capacity of solving the same problem, thus implicitly applying design diversity.  Some of the techniques used here to 

solve system of linear equations rearrange the matrix A (say into diagonal matrices).  This rearrangement of the data sets 

provides for a solution to an envisaged data flaws by applying data diversity.  Our software prototype is dissected into two 

main operational modes namely; Self-organizing mode as shown in Figure 4 and self-healing mode as shown in Figures 5, 

6, 7, 8 were bio-inspired computing as applied in hardware engineering are now being projected into software reliability 

engineering.  Self-organization refers to a property by which complex systems spontaneously generate organized 

structures, patterns or behaviors from random initial conditions.  It is the process of macroscopic outcomes emerging from 

local interactions of components.  In our software prototype we developed SOR, CGIM, IRM, GSIM, and JAM as module 

and enable them to interact in order to achieve the system goal.  Here the system receives input (the required parameter) 

from the input file, then autonomously choose the module with the capacity to solve the problem. Self-healing mode 
enables our prototype to automatically detects, diagnoses and repairs localized software problems.  Hence it is able to 

perceive that it does not operate correctly and, without human intervention, makes the necessary adjustments to restore 

itself to normalcy (leaning on the ranking of the modules).  Our software prototype is based on five method of solving 

systems of linear equations iteratively.  It demonstrates self-organization and self-healing principles at run time and is 

highly reliable and robust. 

 

4.2 Components of the New System 

Our new system is a programmable Self-Organizing-Healing Systems which has answer the following questions.  

Can software re-arrange its part and evolve towards better performance?   Can a swarm of software agents self-organize, 

self-healed and collectively innovate in problem solving tasks? 

 
Figure 4 shows an overview of Self-organized Software Modules in interaction.  The system behaviour is based 

on the assumption that the role player has the ability and capacity to Solve Linear Equations Iteratively.  As long as the 

implementation honors the constraints established by the capacity, the module is authorized to play the role. In our 

Prototype, five implementations are present. The SOR owns an implementation based on the Successive over relaxation 

algorithm, JAM obtains its capacity through Jacobian method, GSIM obtains its capacity from Gauss Seidel technique, 

CGIM obtains it capacity through conjugate gradient iterative technique while IRM obtains its capacity through iterative 

refinement method. 

 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 2 

 
 

 

||Issn 2250-3005(online)||                                               ||February|| 2013                              Page 131 

 
 

 
 

Figure 4:   Overview of Self-organized Software Modules in interaction (role interaction basis). 
 

4.3 Schematic Diagrams of the Proposed System. 

Here, we will present our proposed system in pictorial forms. Figure 5 shows a descriptive model of our Self-

organizing system, demonstrating a network of five modules namely; SOR, CGIM, IRM, GSI, and JAM.  Figure 6 shows 

a neural network representation, were each module is a node at the hidden level in the network and can processes 

information using a connectionist approach.   Like other artificial neural network our system changes its structure base on 

external or internal information flow through the network. In Table 1, the required parameter is shown. This is the 

external signal, which triggers state change.   Figure 5 forms our descriptive model that enable us to illustrate the network 

of simple processing element (modules) that exhibit complex global behavior determined by connections between 

modules and certain parameters (required parameter).  Our algorithms are designed to alter the strength (capability) of the 

connections in the network to produce the desired signal flow through the system.  Our attraction in using neural network 
is that; given a set of systems of linear equations to be solved, our system can use a set of observations to find the solution 

optimally; this simply means that our system can learn in a supervised manner.    Our System based on artificial neural 

network can self-organize by creating its own organization or representation of the information it receives.  It is also 

capable of graceful degradation in the face of fault or partial destruction, thus retaining the system capability by 

reconfiguring its state were another module will render the needed services as shown in figures 7, 8, 9 and 10. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 5:  A descriptive model of our Self-organizing system 

 

 

CGIM 

SOR 
IRM 

GSIM JAM 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 2 

 
 

 

||Issn 2250-3005(online)||                                               ||February|| 2013                              Page 132 

 

 

Table 1:   Ranking and Condition for choice module 

 

 

 

 

 
 

 

 

 

 
 

    

Input Level Hidden Level  Output Level 

 

 
 

  

 

 

 

 

 

 

  

 

 
 

 

Key:EI/II-External Input (Required Parameter)/ 

Internal Input (Rank), A-Matrix A, b – Vector b, 

OP- Output (Mode, Scheme, Solution Vector, etc). 

  

Figure 6: Neural Network representation of new system 

 

Figure 7 shows self-healing mode with Recovery block Scheme were SOR was used while executing under self-

organization.  Figure 8 is for self-healing mode if IRM was used while executing under self-organization. The system 

continues to change its state/structure based on internal or external input.  Consequently, the network structure continues 

to change until the desired result is found, being one of the benefits of using neural networks.  Thus at the failure of self-
organizing mode the four other modules are used as alternative modules until result is found. 

 

 
 

Figure 7: Recovery block as SOR fails in Self-Organization mode 

 

RANK  MODULE REQUIRES PARAMETER 

1  SOR  Omega 

2  CGIM  Pre-condition inverse matrix 

3  IRM  „A‟ the coefficient of X being ill-conditioned 

4  GSIM  Few iterations needed 

5  JAM  More iteration needed 

EI/II 

A 

b 

SOR 

CGIM 

IRM 

GSIM 

OP 

JAM 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 2 

 
 

 

||Issn 2250-3005(online)||                                               ||February|| 2013                              Page 133 

 
Figure 8: Recovery block as IRM fails at Self-Organization mode. 

 
If the recovery block scheme fails to produce acceptable result, the self-healing mode enters into the N-version scheme as 

shown in Figure 9.  Here the system carry out a majority vote on all the results from all the module, if more than two 

modules have the same/similar result the result is adopted and publish as the answer.  

 

 

 

 

 

 

 

 

Figure 9:  N-version  Scheme. 
 

 

 

 

 

Para venture, N-version scheme of the self-healing mode fails to produce a result, the system state change to 

Consensus Recovery block.  Here the importance of the algorithm use in testing the result for acceptability is reduced 

as like other algorithms it may have its own fault.  The result of the N-version may not agree due to round-off errors 

and or hardware constraints (e.g. word length).  This may lead to rejection of multiple correct results by the N-version 

scheme.   Here some of the results submitted by the N-version are deem to be correct hence a modified recovery 

block is entered were a variant of the acceptance test that does not test for correctness but test whether any of the 
results falls within an acceptable region is used and if that happen the result is announced otherwise a system failure 

is announces as shown in Figure 10. 

 
 

Figure 10:  Consensus Recover Block 

 

CGIM SOR IRM GSIM JAM 

Validate outputs through majority voting and 

publish result if more than two modules 

produce similar results. 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 2 

 
 

 

||Issn 2250-3005(online)||                                               ||February|| 2013                              Page 134 

4.4 System Flowchart of the new System 

The figure 11 shows the System Flowchart of the new system highlighting the self-organization and self-healing 

mode. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 11:  System flowchart of new system. 

 

 

 

 

 

 

 

 
 

 

 

 

4.5 Algorithm for the Self-Organizing-Healing System 

In this section we present the algorithm of the Self-organizing-healing software system.  Step 1-5 falls under self-

organization while step 6-11 falls under self-healing.  In steps 6, 7, 8, 9 and 10 the system state is reconfigure and an 

appropriate scheme is loaded for execution. 

1. Load Input File. 

2. Search Input File for Required Parameter. 

3. Execute Module with corresponding Capacity 
4. Submit result for Acceptance Test 

5. If result satisfies the Acceptance Test, publish the result and Stop 

6. Perform Self Monitor. 

7. Perform Self Diagnosis. 

8. Perform Self Adaptation 

9. Perform Self Test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Self-healing 

      Self-organization  

 

Send result to  

Output file 

Deploy the target 

Module 

Investigate Input File 
For required parameter 

Acceptance 

Test 

Self Diagnosis 

(to identify fault) 

Self Monitor 

(for anomalous event) 

Self Adaptation (candidate 

fix generation) 

Load Input 
File 

Run Module with 

corresponding 

capacity 

Self Testing (find best 

Target state) 

st 

ok 

Not ok 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 2 

 
 

 

||Issn 2250-3005(online)||                                               ||February|| 2013                              Page 135 

 

10. Deploy Target Module. 

11. Goto Step 4. 

 

4.6  Design Specification 

The System is design to receive input from an Input file, the input include the matrix A, the vector b, the initial 

approximations and the required parameter as shown in Figure 12. Figure 13 shows the specification of the output file. 

 

 

 

 
 

 

 

 

(a) A is 3X3 Matrix    (b) A is 4X4 Matrix 

 

 

 

Figure 12:  Input File Format, where Aij are elements of Matrix A, bi are elements of scalar b, Ii are initial approximations 

and Ri are the required parameters 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 13:  Output File Format. 

5. Conclusion 
Our paper presents self-organization and self-healing as useful techniques in engineering a safety software 

system.  These ensure software reliability and availability of the resulting software product.  Natural Complex Systems 

have shown resilience in terms of reliability by employing self-organization and self-healing of itself and or its 

components; it is therefore recommendable for Software Engineers to embrace these techniques in their attempt at 

developing reliable and available software systems especially in safety critical application. 
 

References 
[1]   Bar-Yam, Y. and Minai, A. A. (2006), “Complex Engineered Systems: Science Meets Technology”, Springer. 

[2]   Beal, J. and Bachrach, J.(2006), Infrastructure for engineered emergence on sensor/actuator  networks, IEEE Intelligent 
System. 21 (2), pp. 10–19. 

[3]   Bloch, I. (1995); Information Combination Operators for Data Fusion: A Comparative Review with classification.  IEEE 
Transaction on Systems, Man and Cyber metrics. 

[4]   Buttazzo G. C. (2005); Hard Real Time Computing System: Predictable Scheduling Algorithms and Applications.  Kluwer 
Academic Publishers, Norwel, Ma, USA. 

[5]   Camazine S., Deneubourg J., and Bonabeau (2001); Self-organization in Biological Systems, Princeton University Press. 
[6]  Camazine, Deneubourg, Franks, Sneyd, Theraulaz, Bonabeau,(2003). “Self-Organization in Biological Systems”, Princeton 

University Press. ISBN 0-691-11624-5 --ISBN 0-691-01211-3. 
[7]   Christian P. (2005); Self-organization in Communication Networks: Principles and Design Paradigms, IEEE Communication 

Magazine. 
[8]   Denney, R. (2005), “Succeeding with Use Case: Working smart to deliver Quality. Addison- Wesley Professional Publishing.  
[9]   Dubey A. (2006); Towards a Verifiable Real-time, Autonomic, Fault Mitigation Framework For Large Scale Real-time 

System. Innovations in Systems and Software Engineering, N ashville, TN 37203, USA 

A11  A12  A13  b1 
A21  A22  A23  b2 
A31  A32  A33  b3 
I1  I2  I3 
R1  R2  R3  R4,  R5 

A11  A12  A13  A14  b1 
A21  A22  A23  A24  b2 
A31  A32  A33  A34  b3 
A41  A42  A43  A44  b4 
I1  I2  I3  I4 
R1  R2  R3  R4,  R5 

Mode of Operation:________________________ 

Scheme: _________________________________ 

Module Name: __________________________ 

Solution Vector:  _________________________ 

Number of Iteration: ______________________ 

Tolerance:  ______________________________ 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 2 

 
 

 

||Issn 2250-3005(online)||                                               ||February|| 2013                              Page 136 

[10]  Doursat, R.(2006), “The growing canvas of biological development: multiscale pattern  generation on an expanding lattice 
of gene regulatory networks”, InterJournal: Complex Systems 1809. 

 

[11]   Doursat, R. (2008), “Programmable architectures that are complex and self-organized: from  morphogenesis to engineering, 
in 11th Int‟l Conf. Simulat. Synth. Living Syst.(ALIFE XI), pp. 181–188, MIT Press. 

[12]   Doursat, R. and Ulieru, M. (2008), Emergent engineering for the management of complex situations, 2nd Int‟l Conf. 

Autonom. Comput. Commun. Syst. (Autonomics). 
[13]   Doursat, R. (2009), “Facilitating evolutionary innovation by developmental modularity and variability. Generative Dev. Syst. 

Workshop (GDS 2009), 18th Genet. Evol. Comput.  Conf. (GECCO). 
[14]   Doursat, R. (2010), “Morphogenetic Engineering weds Bio Self-organization into Human Designed Systems”, Complex 

Systems Institute, Paris Ile-de-France, CREA, Ecole  Polytechnique, Paris, France.  
[15]  Doursat, R., Sayama, H., and Michel,O. (2010), “Morphogenetic Engineering: Toward Programmable Complex Systems”, 

NECSI Studies on Complexity, Springer. 
[16]   Doursat, R. (2011), “The myriads of Alife: importing complex systems and self-  organization into engineering”, Proc. 3rd 

IEEE Symp. Artificial Life (IEEE-ALIFE), pp.xii–xix. 

[17]   Emmanuel Adam and Ren´e Mandiau.(2005). A hierarchical and by role multi-agent organization: Application to the 
information retrieval. In ISSADS, pages 291–300, 2005. 

[18]   Endy, D. (2005), “Foundations for engineering biology”, Nature 438, pp. 449–45. 
[19]   Eric Matson and Scott A. DeLoach.(2005). Autonomous organization-based adaptive information systems. In IEEE 

International Conference on Knowledge Intensive Multiagent Systems (KIMAS ‟05), Waltham, MA, April 2005. 
[20]   Eric Matson and Scott A. DeLoach.(2005).  Formal transition in agent organizations. In IEEE International Conference on 

Knowledge Intensive Multiagent Systems (KIMAS ‟05), Waltham, MA, April 2005. 
[21]   Falko D. (2007), “Self-organization in Sensor and Actor Network”, Wiley & Sons. 

[22]  Ghosh, D., Sharman, R., Rao, H.R., and Upadhyaya, S. (2007),  "Self-healing systems- Survey and synthesis", Decision 
Support Systems, 42(4):2164–2185,2007. 

[23]   Kennedy, J. and Eberhart,R. C. (1995), “Particle swarm optimization”, Proc. IEEE International Conference on Neural 
Networks, pp. 1942–1948. 

[24]   Mikhail P. (2008), “Advances in Applied Self-organizing Systems”, Springer. 
[25]  Modafferi, S., Mussi, E., and Pernici, Barbara (2006), “A Self-Healing plug-in for Ws-BPEL engines, Middleware for 

Service Oriented Computing (MW4SOC)”, Workshop of the 7th  International Middleware Conference Nov. 2006, 
Melbourne, Australia 

[26]  Musa, J. D. (2005).  Software reliability engineering:  more reliability software faster and cheaper, 2nd Edition, AuthorHouse.  
[27]  Myrna E. (2006), “Self-organizing Natural Intelligence: Issues of Knowing, Meaning, and 

Complexity, Springer-Verlag. 
[28]   Nabuco, O., Halima, R. Ben, Didra, K., Fugini, M. G., Modafferi, S., and Mussi, E.,(2008),“Model-based QoS-enabled self-

healing Web Services”, EN-FINES'08 DEXA Workshop, Turin. 
[29]  Okon S. C. (2006); A Fail-safe Strategy for Scientific/Engineering Project (A Tool for Sustainable Development).  Journal of 

Sciences and Technology Research Vol. 5 No. 2,pp. 6-9. 
[30]  Okon S. C. (2006); Microprocessor Devices (Computer) like Man; A Self-organizing System. Journal of Research in Physical 

Sciences Vol. 2 No. 4 pp. 1-7. 
[31]   Ricard V. and Jordi B. (2006), “Self-organization in Complex Ecosystems”, Princeton University Press. 
[32]   atnam A., Kai G. , and Alice A. (2007); A Framework for Intelligent Sensor Validation, Sensor Fusion, and Supervisory 

Control of Automated Vehicles in IVHS. Intelligent System Research Group, Department of Mechanical Engineering, UC 
Berkeley. 

[33]  Scott K. J. A.and Engstrom D. A. (2006), “The Complementary Nature”, MIT Press, Cambridge, MA. 
[34]   Sebastian Rodriguez, Vincent Hilaire, and Abder Koukam(2005). Fomal specification of Holonic multi-agent system 

framework. In Intelligent Agents in Computing Systems, International Conference on Computational Science (3), number 
3516 in LNCS, pages719–726, Atlanta, USA. 

[35]  Takahashi, M. and Kamayachi, Y.(1995), ``An Emprical study of a Model for Program Error Prediction,‟‟ Proc. Int. 
Conference on Software Engineering, Aug.  pp. 330-336. 

[36]  The WS-Diamond Team (2008), “Self-healing Web Services in the WS-DIAMOND project”. Proc. E-Challenges 
Conference, October 2008, The Hague. 

[37]   Ulieru, M. and Doursat, R. (2011), “Emergent engineering: a radical paradigm shift”,International Journal on Autonomous 
and Adaptive Communication System. (IJAACS) 4(1), pp. 39–60. 

[38]   Wasson, C. S. (2006), “System analysis, design and development”, John Wiley & Sons. 
ISBN 0471393339. 


