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Abstract 

To minimize line losses of power systems, it is crucially important to define the size and location of local 

generation to be placed. On account of some inherent features of distribution systems, such as radial structure, large 

number of nodes, a wide range of X/R rat ios; the conventional techniques developed for the transmission systems 

generally fail on the determination of optimum size and location of distributed generations. In this study, a loss sensitivity 

factor, based on the equivalent current injection, is formulated for the distribution systems. The formulated sensitivity 

factor is employed for the determination of the optimum size and location of distributed generation so as to minimize total 

power losses by an analytical method without use of admittance matrix, inverse of admittance matrix or Jacobian matrix. 

The proposed method is in close agreement with the classical grid search algorithm based on successive load flows.  
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1. Introduction: 
One of the most important motivation for the studies on the integration of distributed resources to the grid is the 

exploitation of the renewable resources such as; hydro, wind, solar, geothermal, biomass and ocean energy, which are 

naturally scattered around the country and also are smaller in size. Accordingly, these resources can only be tapped 

through integration to the distribution system by means of distributed generation. Although there is no consensus on the 

exact defin ition of d istributed generation (DG), there are some significant attempts, in the literature [1, 2], to define the  

concept. Meanwhile DG, which generally consists of various types of renewable resources, can best be defined as electric 

power generation within distribution networks or on the customer side of the system [1, 2], in general. This defin ition is 

preferred along this paper.DG affects the flow of power and voltage conditions on the system equipment. These impacts 

may manifest themselves either positively or negatively depending on the distribution system operating conditions and the 

DG characteristics. Positive impacts are generally called ‘system support benefits’, and include voltage support, loss 

reduction, transmission and distribution capacity release ,improved utility system reliab ility and power quality. On 

account of achieving above benefits, the DG must be reliable, dispatch able, of the proper size and at the  proper 

locations[3,4] Energy cost of renewable-based distributed generation when compared to the conventional generating 

plants is generally high because the factors of social and environmental benefits could not  be included in the cost account. 

Accordingly, most of the studies to determine the optimum location and size of DG could not consider the generation 

cost, directly. Although one of the most important benefits of DG is reduction on the line losses, it is crucially important 

to determine the size and the location of local generation to be placed. For the min imization of system losses, there have 

been number of studies to define the optimum location of DG. The various approaches on the optimum DG p lacement for 

minimum power losses can be listed as the classical approach: second-order algorithm method[5], the meta-heuristics 

approaches [6, 8] : genetic algorithm and Hereford Ranch algorithm [6], fuzzy -GA method [7], tabu search [8], and the 

analytical approaches [9,13]. In the analytical studies [9,11], optimal place of the DGs are determined exclusively for the 

various distributed load profiles such as; uniformly, increasingly, centrally in radial systems to minimize the total losses. 

Additionally, in [12], optimal size and place of DG is obtained and analyzed by considering the effects of static load 

models. These analytical studies are generally based on phasor current injection method which has unrealistic assumptions 

such as; uniformly, increasingly, centrally distributed load profiles. These assumpt ions may cause erroneous solution for 

the real systems. In [13] the optimal size and location of DG is calculated based on exact loss formula and compared with 

successive load flows and loss sensitivity methods. The method is computationally less demanding  for radial and 

networked systems, however, it requires the calculation of the bus impedance matrix, Zbus, the inverse of the bus 

admittance matrix, Ybus. It should be noted that due to the size, complexity and specific characteristics of distribution 

networks, the method could not be directly applied to distribution systems. It fails to meet the requirements in robustness 

aspects in the distribution system environments [14].It is already pointed out that although the heuristic methods are  
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 intuitive, easy to understand and simple to implement as compared to analytical and numerical programming methods, 

the results produced by heuristic algorithms are not guaranteed to be optimal [15].  

In this study, the optimum size and location of distributed generation wil l be defined so as to minimize total power losses 

by an analytical method based on the equivalent current injection technique and without the use of impedance or Jacobian 

matrices for radial systems. The optimum size of DG and placement for loss min imization are determined by the proposed 

method and validated  using  the 34 bus  radial distribution system these results  are close related to the classical grid 

search algorithm .The proposed method is easy to be implemented, faster and more accurate than the classical method, 

meta-heuristic methods and early analytical methods . It is more suitable for radial systems of considerable sizes than the 

analytical method proposed earlier of Nareshacharya’s paper. Since the proposed method is an analytical method and 

exploits the topological characteristics of a distribution system, there is no need for the Jacobian matrix, the bus 

admittance matrix, Ybus, or the bus impedance matrix, Zbus. Therefore the proposed method can achieve the advantages 

of computation time reduction and, accuracy improvement. The derived sensitivity factor (∂Ploss/∂P) can be also used for 

various purposes such as; network planning, network reconfiguration, optimal power flow and reactive power dispatch, 

etc. 

 

2. Optimum Size And Location Of DG: 
The proposed method is based on the equivalent current injection that uses the bus -injection to branch-current 

(BIBC ) and branch-current to bus-voltage (BCBV) matrices which were developed based on the topological structure of 

the distribution systems and is widely implemented for the load flow analysis of the distribution systems. The details of 

both matrices can be found in [16].The method proposed here requires only one base case load flow to  determine the 

optimum size and location of DG. 
 

2.1. Theoretical analysis 

In this section, the total power losses will be formulated as a function of the power injections based on the 

equivalent current injection. The formulation of total power losses will be used for d etermining the optimum size of DG 

and calculation of the system losses. 

At each bus k, the corresponding equivalent current inject ion is specified by                                                                                                           

*( ) 1,2,3,........k k
k

k

p jQ
I k n

V


                                                                 (1) 

where  Vk  is the node voltage, Pk + jQk  is the complex power at each bus k , n is the total number of buses, ‘*’ 

symbolizes the complex conjugate of operator 

 
                                  Fig.1. A Simple Distribution System 

 

The equivalent current injection of bus k can be separated into real and imaginary parts by (2): 

cos( ) sin( ) sin( ) cos( )
( ) , ( )

| | | |

k k k k k k k k
k k

k k

P Q P Q
re I im I

V V

    
                     (2) 

where θk is the angle of kth node voltage. The branch current B is calculated with the help of BIBC matrix. The BIBC 

matrix is the result of the relationship between the bus current injections and branch currents. The elements of BIBC 

matrix consist of ‘0’s or ‘1’s: 

     
1 ( 1) ( 1) 1

.
nbX nbX n n X

B BIBC I
 

                                                                               (3) 

Where nb is the number of the branch, [I] is the vector of the equivalent current inject ion for each bus except the reference 

bus. Branch currents of a simple distribution system g iven in Fig 1are obtained by BIBC matrix as in (4).While the rows  
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of BIBC matrix concern with the branches of the network, on the other hand, the columns of the matrix are related with 

the bus current injection except the reference bus. Detailed description of BIBC matrix’s building algorithm can be found 

in [16]. 
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3 4
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5 6

1 1 1 1 1

0 1 1 1 1

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

B I

B I
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    
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                                                                                         (4) 

                              The total power losses can be expressed as a function of the bus current injections: 

                             

2 2
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                                                                           (5) 

                               where Rk is the k th branch resistance and the branch resistance vector is given in (6):  

   1 2 3 4 5 6 7 8 91
..........

T

nbnbX
R R R R R R R R R R R                            (6) 

The total power losses can be written as a function of the real and imaginary parts of the bus current injection:  

    2 2| .[ ] | [ ] | [ ].[ ( )] [ ].[ ( )] |
T TPloss R BIBC I R BIBC re I j BIBC im I                    (7) 

  

                       where [re(I)] and [im(I)] are the vectors that consist of real and imaginary parts of the bus  current  

injection: 

      2 2(( . ( ) ) ([ ].[ ( )]) )
T

ploss R BIBC re I BIBC im I                                                (8) 

By substituting the equivalent bus injection expression(2) into (8), the total power losses can be rewritten  
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                               at lth branch the power loss can be obtained as 
2 2

2 2
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                            The total power losses are the sum of the each branch power  losses: 
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The voltage drop from each bus to the reference bus is obtained with BCBV and BIBC matrices as 

       
( 1) 1

. .
n X

V BCBV BIBC I


                                                                   (12) 

where BCBV matrix is responsible for the relations between branch currents and bus voltages. The elements of BCBV 

matrix consist of the branch impedances. Build ing algorithm of BCBV matrix can be found in [16]. In addition, building 

algorithm of BCBV matrix is provided as follows for convenience 

 

:• Step 1. Read BIBC matrix, Zb branch impedance vector 

.• Step 2. Convert Zb vector to a diagonal matrix Z by setting off diagonal elements to zero; (Z    diag(Zb)). 

• Step 3. Multiply t ranspose of BIBC matrix with Z matrix; (BCBV = BIBCT Z). 

 

The voltage drop of a simple distribution system given in Fig.1 is obtained as 

       . .V BCBV BCBV I   
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        
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              (13) 
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2.2. The loss sensitivity factor 

The derivation of the jth branch power loss per ith bus injected real power ∂Plossl/∂Pk can be obtained from (10)  as 
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Sum of the above expression leads to the derivation of the total power losses per k th bus injected real power, ∂Ploss/∂Pk : 

1 2 1 2

cos( ) sin( )
2 . ( , 1). ( ) . ( , 1). 2 . ( , 1). ( ) . ( , 1). (15)

| | | |

nb n nb n
l k k

l m l k

l m l mk k k

ploss
R BIBC l m re I XBIBC l k R BIBC j k im I XBIBC l k

P V V

 

   

    
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If the ith bus is not connected the jth branch then the elements of BIBC matrix is zero(BIBC(j,i−1) = 0) and the derivative 

of the corresponding element is equated to zero (∂Plossj/∂Pi = 0). Accordingly, the derivative of the total power losses per 

ith bus injected real power gives the     sensitivity factor and can be expressed as 

1 2

cos( ) sin( )
2 ( , 1). . ( ) . ( )

| | | |

nb n
k k

l k m m
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The sensitivity factor with the above relation can be shown in matrix form as  

cos( ) sin( )
2[ ] [ ].[ ( )] [ ].[ ( )]
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ploss
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where [dPBIBCi] matrix is constructed by a simple algorithm given step by step as follows: 
 

• Step 1. Read BIBC matrix, i bus number for DG. 

• Step 2. Set dBIBCi matrix, dBIBCi = BIBC. 

• Step 3. Find the row with zero elements for the ( i−1)th column of dBIBCi matrix;  (zerorow= find(dBIBCi(:, i−1) = 0)). 

• Step 4. Convert all non zero elements of these zero;(dBIBCi(zerorow,:)=zeros(length(zerorow), n−1)). 
 

To better explain [dPBIBCi]matrix building algorithm, [dPBIBC4] matrix which belongs to the sensitivity factor of the 

4th bus, ∂Ploss/∂P4, is given in (18)  for the distribution system in Fig 1.  

4

1 1 1 1 1

0 1 1 1 1

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

dBIBC

 
 
 
 
 
 
  

        (18) 

2.3. Determination of optimal size: 

              The goal is to determine the optimum size of DG at any location so as to min imize total power losses. To 

determine the optimum size of DG, the derivative of the total power losses per each bus injected real powers are equated 

to zero as 

0
k

Ploss

p





                                                                              (19) 

The expression of (16) can be shown in detail as  
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The optimal size of the added DG is extracted from(20)  by equating the right hand side to zero: 

2
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The real power injection at the bus k , Pi is extracted from as (21) 
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 The minus sign in (22) indicates that Pk should be injected to the system. To facilitate a practical                                                                                                            

computation, can be written in matrix format by omitt ing the minus sign as 

| | [ ] [ ](cos( )[ ] sin( )[ ])

[ ] (:, 1)

T

k k k k k k
k T

k

V R dPBIBC redI imdI
P

R dPBIBC k

 



        (23)                                          

where two new terms, [re dIk] and [im dIk], are constructed by equating ith elements the real and imaginary part of the 

bus current injection vector, [re(I)] and [im(I)] to zero. To illustrate the concept [re dI4] and [im dI4] vectors that belong 

to the 4th bus real power in jection of the simple distribution system in Fig.1, are provided in (24):  

 

 

4 2 3 5 6

4 2 3 5 6

[ ] ( ) ( ) 0 ( ) ( ) ,

[ ] ( ) ( ) 0 ( ) ( )

T

T

redI re I re I re I re I

imdI im I im I im I im I




                    (24)

 
The optimum size of added DG at bus i can be obtained by 

                                             kdg k kP P pload                                   (25) 

 

2.4. Determination of optimal size and placement for DG 

The objective is to minimize power losses,   Ploss,  in the system by injected power, Pdg. The main constraints 

are to restrain the [voltages along the radial system within 1±0.05 pu. The proposed method to determine the optimal size 

and placement of DG is give step by step as follows and also as a general flowchart in Fig.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                         Fig. 2. General flowchart of  the proposed method. 

 

• Step 1. Run the base case power flow. 

• Step 2. Find the optimum size o f added DG for each bus except the reference bus using (23)  and 

(25). 

• Step 3. Calculate total power losses from(5) for each bus by placing optimum size of power to the bus. 

• Step 4. Choose the bus which has the minimum power losses after adding DG as optimum location. 

• Step 5. Check whether the approximate bus voltages are within the acceptable range by (12).  

• Step 6. If the bus voltages are not within the acceptable range then omit DG from bus and return to Step  4. 

 

3. The Results Of Simulations And Analysis 
In order to evaluate the proposed algorithm described in  Sect ion2, 34 bus test system, taken from the literature, 

are used. Accordingly, optimum size and place of DG for the  34 bus distribution test system [17] are determined with the 

proposed method. The classical grid search algorithm is too costly because o f computation time, that takes hours even 

days depending upon size of the system and power steps. By using variable step size, successive load flows  as also known 

sequential load flows could be employed instead of grid search algorithm. In this case, computation time will reduce 

significantly. 
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                                                Fig 3:Variat ion of power loss with and without   DG 

 

 The above graph in Fig 3 represents the power loss without Distribution generation(DG) & with Distributed 

generation(DG),In without DG the real power loss is 229.76 and after inclusion of DG  real power loss is reduced to 

108.6, usage of BIBC & BCBV algorithm for load flow solution and for the location of Distribution generation T he loss 

sensitivity factor is employed &sizing is employed with the Analytical method  The below graph in Fig 4 represents the 

Voltage variat ion of  without Ditributed generation & with Distributed generation. Voltage profile is improved for with 

installation Distributed generation. 

                         

                          

Bus 

number 

Reakpower 

(Without DG) 

Realpower 

(With DG) 

%Loss 

reduction 

34 229.76 108.6 52.7 

 

Table 1: Result of 34 Bus Test System 

   

 
 

                                             Fig 4:Variation of Voltage with and without DG 

 

4. Conclusion  
 This study presents and evaluates an analytical method which can be used to determine the optimal p lacement 

and sizing of DG without use of admittance, impedance or Jacobian matrix with only one power flow for radial systems. 

The method is easy to be implemented and faster for g iven accuracy. The derived sensitivity factor is more suitable for 

distribution systems and could be utilized by means  of simple matrix algebra. The optimal size and location of the DG, 

which is determined by the method, is also evaluated against Acharya’s method and the classical grid search algorithm. It 

is found that the proposed method is in close agreement with Acharya’s method and the grid search algorithm. It is 

appeared that the proposed method is faster than other methods in the computation time and it is appropriate for the 

distribution systems. 
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