
                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 

Issn 2250-3005(online)                                                      November| 2012         Page 20 
 
       

Hdl Implementation of Amba-Ahb Compatible Memory Controller 
1,
S.Ramakrishna , 

2,
K.Venugopal, 

3,
B.Vijay Bhasker ,

4,
 R.Surya Prakash Rao 

1,2,3,4,
St Theresa college of Engineering  

 

 

 

Abstract 

Microprocessor performance has improved rapidly these years. In contrast, memory latencies and bandwidths have 

improved little. The result is that the memory access time has been a bottleneck which limits the system performance. Memory 

controller (MC) is designed and built to attacking this problem. The memory controller is the part of the system that, well, 

controls the memory. The memory controller is normally integrated into the system chipset. This paper shows how to build an 

Advanced Microcontroller Bus Architecture (AMBA) compliant MC as an Advanced High-performance Bus (AHB) slave. 

The MC is designed for system memory control with the main memory consisting of SRAM and ROM. Additionally, the 

problems met in the design process  are discussed and the solutions are given in the paper. 
 

Keywords  - ARM; AMBA; Memory Controller; AHB bus 

 

I. Introduction 
With the improvement of Microprocessor these years, the memory access time has been a bottleneck which limits the 

system performance. Memory controller (MC) is designed and built to attacking this problem. The memory  controller is the 

part of the system that, well, controls the memory. It generates the necessary signals to  control the reading and writing of 

informat ion from and to the memory, and interfaces the memory with the other major parts of the system. The memory 

controller is normally integrated into the system chipset. In this paper, an Advanced Microcontroller Bus Architecture 

(AMBA) compliant memory controller is designed for system 

memory control with the main memory consisting of SRAM and ROM. The memory controlle r is compatib le with Advanced 

High-performance Bus (AHB) which is a new generation of AMBA bus, so we call it “AHB-MC”. The AHB-MC has several  

 

features which are shown as flows   

1. Designed with synthesizable HDL for Application Specific Integrated Circu it  (ASIC)  synthesis 

2. 2.Supports multiple memory devices including static random access memory (SRAM), read -only  

3. memory (ROM)  

4. Complies with AMBA AHB protocol 

5. Supports one to four memory banks for SRAM and ROM 

 Programmable memory timing reg ister and configuration registers 

Shared data path between memory devices  to reduce pin count 

Asynchronous FIFO to support burst transaction up to 16-beats This paper describes how to build the AHB-MC. And 

combin ing the problem met in the process of designing, the corresponding solutions are presented. Finally, the simulation 

results are presented. 

 

II. Architecture of Ahb-Mc 
The AHB-MC mainly consists of three modules: AHB slave interface, configurat ion interface, and external memory interface 

[1]. Figure 1 shows the architecture of AHB-MC. 

 

 
A. AHB slave interface 

The AHB slave interface converts the incoming AHB transfers to the protocol used internally by the AHB-MC. The state 

 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 

Issn 2250-3005(online)                                                      November| 2012         Page 21 
 
       

 

 

 

 

 

 

 

 

mach ine is shown in Figure 2.  
 

B. External memory interface  

The external memory  issues commands to the memory from the command FIFO, and controls the cycle timings of 

these commands. The state machine is shown in Figure3. 

 
Figure 4 and Figure 5 show the timing of a read from memory and a write to memory with two wait states [2]. Figure 4. 

Memory read with two wait states  Figure 5. Memory write with two wait states   
 

Memory bank select 

Because system will change the memory map after system boot, AHB-MC is designed to support a remap signal 

which is used to provide a different memory map. AHB-MC has four memory banks, which are selected by XCSN signal. The 

XCSN signal is controlled by the address of a valid transfer, and the system memory map mode. So before the system memory 

is remapped, the boot ROM at 0x3000 0000 is also mapped to the base address of 0x0000 0000 as shown in Table 1 
  
TABLE1 

1. Memory write control 

To support for writ ing in word (32-bits), half-word (16-b its) and byte (8-bits), the XWEN signal is used in the AHB-

MC. Table 2 shows the relationship between XCSN and the inputs from AHB bus.   
 

C. Configuration interface  

The main function of the configuration interface is to  change the configuration registers (SETCYCLE and 

SETOPMODE register) according to the commands from AHB to APB bridge which converts AHB transfers from the 

configuration port to the APB transfers that the configuration interface require [3]. Each memory chip supported by AHB-MC 

has two registers (CYCLE reg ister and OPMODE reg ister), which contain all the timing parameters that are required for 

configuration registers: SETCYCLE and SETOPMODE as shown in fig 5 

Fig 6 

 
 

III. Burst Transfer Support 
With the increasing system frequency, it’s hard to accomplish the address decoding and memory access  operations in 

one clock cycle. Therefore, wait states are inserted into the data cycle to ensure there is enough time for address decoding and 

memory accessing. But the method that inserting wait state will cause system performance drop dramatically. Therefore, a  

sequential-access (burst) method is  presented to resolve this problem in this paper. In this  method, all AHB fixed length burst 

types are directly translated to fixed length bursts, and all undefined length INCR bursts are converted to INCR4 bursts. Burst 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 

Issn 2250-3005(online)                                                      November| 2012         Page 22 
 
       

operation has performance benefits because when the first  beat of a burst is accepted, it contains data about the remaining 

beats. For example, when AHB-MC got the first beat of a read burst, all the data required to complete the transfer can be read 

from memory and restored in the read data FIFO. SO this first transfer has some delay before data is returned. But subsequent 

beats of the burst can have less delay because the data they require might have already been prepared in the FIFO. To fu rther 

improve the system performance, a RETRY response is used that AHB-MC can release the bus when it is preparing the data 

[4]. Th is mechanism allows the transfer to finish on the bus and therefore allows a higher-priority master to get access to the             

 

 

 

 

 

 

 

 

 

 

 

  state machine is showed in Fig 7 

 

IV. Memory System 
In the arm arch itecture, instructions are all 32-bits, while instructions are 8-bits in the external ROM and SRAM. 

Therefore the lowest two addresses of ROM and SRAM are not connected to the external address bus. Additionally, to support 

byte writing, SRAM needs to be separated as four independent banks or has a byte-write enable signal. The basic memory  

 

 
Fig 8system architecture is shown in 

 

V. Asynchronous Clock 

The AHB-MC has two clock domains: AHB clock domain and external memory clock domain as shown in Figure 8. 

Asynchronous FIFO is used between two clock domains as a data buffer. 

 
Fig 9 

The main benefit of asynchronous clocking is that you can maximize the system performance, while running the 

memory interface at a  fixed system frequency. Additionally, in sleep-mode situations when the system is  not required to do 

much work, you can lower the frequency to reduce power consumption [5]. However, asynchronous clock will cause the flip-

flop going metastable state and not converging to a legal stable state by the time the output must be sampled again as shown in 

Figure 10. To resolve this problem, the most common way is  inserting a two-flip-flop synchronizer as shown in Figure  

 

VI. Verification and Simulation Results 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 7 

 

Issn 2250-3005(online)                                                      November| 2012         Page 23 
 
       

The verification method used in this paper, is to put the AHB-MC into a min imum system which consists of ARM 

core, AHB bus, APB bus and AHB-MC  The code used for testing is put in ROM, if the system can work correct ly, then we 

know the testcase past. The simulation waveforms of a simple test code are shown. Figure 13 shows read with zero wait states 

form theexternal ROM. The address is registered at rising edge of hclk (AHB bus clock), after which ex_oen (external 

memory read enable) signal goes high, then read data reach hrdata (AHB read data  bus) at falling edge of hclk. Fig 13 Write 

with zero states to the external RAM is shownin Figure 14. A write operation is init iated by hwrite going high. Then the 

address is send to external memory address bus and ex_wen (external memory write enalbe) signal goes low to enable the data 

from hwdata (AHB write data bus) stored in the RAM fig 14  

 

 

References 

[1]  “AMBA Specification (Rev2.0)”, ARM Inc.  

[2]  “PrimeCell AHB SRAM/NOR Memory Controller”, Technical Reference Manual, ARM Inc.  

[3]  “AHB Example AMBA System”, Technical Reference Manual, ARM Inc.  

[4]  Carter, J.; Hsieh,W., “Impulse: building a s marter memory controller”, High -Performance Computer Architecture, 

Dept. of Comput. Sci., Utah Univ., Salt Lake City, UT.  

[5]  Clifford E. Cummings, “Synthes is and scripting Techniques for Designing Multi-Asynchronous Clock Designs”, 

Sunburst Design, Inc  


