
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 169

 Reusability Framework for Cloud Computing

Sukhpal Singh
1
, Rishideep Singh

2

1
 M.E. (S.E.) Computer Science and Engineering Department, Thapar University, Patiala, India,

2
 Assistant Professor, Department of Information Technology, N.W.I.E.T. Dhudike, Moga, India.

Abstract:
Cloud based development is a challenging task for several software engineering projects, especially for those which needs

development with reusability. Present time of cloud computing is allowing new professional models for using the software

development. The expected upcoming trend of computing is assumed to be this cloud computing because of speed of

application deployment, shorter time to market, and lower cost of operation. Until Cloud Computing Reusability Model is

considered a fundamental capability, the speed of developing services is very slow. This paper spreads cloud computing with

component based development named Cloud Computing Reusability Model (CCR) and enable reusability in cloud computing.

In this paper Cloud Computing Reusability Model has been proposed. The model has been validated by Cloudsim and

experimental result shows that reusability based cloud computing approach is effective in minimizing cost and time to market.

Keywords: Cloud based software development, Component based development, Cloud Component, Cloud computing,

Reusability, Software engineering, Software reuse.

1. Introduction
Reusability means using a segment of source code that can be used again to add new functionalities with slight or no

modification. In most engineering disciplines, systems are designed by composing existing components that have been used in

other systems [26]. Software engineering has been more focused on original development but it is now recognized that to

achieve better software, more quickly and at lower cost, we need to adopt a design process that is based on systematic software

reuse [1]. Reverse engineering means evaluating something to understand how it works in order to duplicate or enhance it. It

allows the reuse of the know-how hidden inside already implemented programs [12] [14]. The object oriented software

developers now admit that thinking about object-oriented program understanding and comprehension to be relatively easier is

not that easy. Programs are even more complex and difficult to comprehend, unless rigorously documented. What if the

documentation is improper? To affect change management, even a simpler upgrade may become cumbersome then [3] [25].

This is the reason why eminent development houses now focusing on advanced documentation support [39]. Re-engineering

code environment hence largely affect the problem issues regarding program comprehension when the software size grows

enormously. Reverse Engineering is a methodology that greatly reduces the time, effort and complexity involved in solving

these issues providing efficient program understanding as an integral constituent of re-engineering paradigm [2] [26]. Cloud

computing is the use of computing resources (hardware and software) that are delivered as a service over a network (typically

the Internet) [33] [38]. The name comes from the use of a cloud-shaped symbol as an abstraction for the complex infrastructure

it contains in system diagrams. Cloud computing [11] [30] entrusts remote services with a user's data, software and computation

[13] shown in Figure 1. In Section 2 the related work has been described. The challenges of cloud computing platform for

software is analyzed in Section 3. In Section 4 the Cloud Computing Reusability Model (CCR) has been discussed. The

experimental results are explained in Section 5. The advantages of proposed model have been discussed in Section 6. The

Section 7 concludes the whole work and provides future work in Section 8.

2. Related work
Reverse engineering is a systematic form of program understanding that takes a program and constructs a high-level

representation useful for documentation, maintenance, or reuse. To accomplish this, reverse engineering technique begins by

analyzing a program’s structure [24]. The structure is determined by lexical, syntactic, and semantic rules for legal program

construction. Because we know how to proceed on these kinds of analysis, it is natural to try and apply them to understand

programs. Initially reverse engineering term was evolved in the context of legacy software support but now has ventured into

the important issue of code security such that it doesn’t remain confined to legacy systems. We will come to the discussion into

this effect after a while. Transformations are applied under the process of Re-engineering [25] after analyzing the software to

apply changes incorporating new features and provide support for latest environment. Object-oriented software development

methodology primarily has three phases of Analysis, Design and Implementation [36]. With the view of the traditional waterfall

model, reverse engineering this is looking back to design from implementation and to analysis from implementation. The

important thing is that it actually is a reverse forward engineering i.e. from implementation; analysis is not reached before

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 170

design. The software system or program under study is neither modified nor re-implemented because of not bringing it under

Re-engineering. [23] Software Re-engineering is the area which deals with modifying software to efficiently adapt new changes

that can be incorporated within as software aging is a well-known issue. Reverse engineering provided cost effective solutions

for modifying software or programs to adapt change management through Re-engineering application [25] [10]. Reusable

architectures [31] can be developed from reusable architectural patterns [11] as in FIM architecture [12] which operates at three

different levels of reuse: Federation, domain and application. Paulisch F. et. al. focuses on how non-functional property

reusability relates to the software architecture (SOA) of a system [4] [7]p. K.S. J. and Dr. Vasantha R. presented a software

process model for reuse based software development approach [5] [17] [18]. From the overall literature survey, it can be

concluded that: code, design, test cases etc can be reused. Reuse can be systematic (software development for reuse), or

opportunistic (software development with reuse) Reuse does not just happen; it needs to be planned and require proper

documentation and design. Reverse-engineering can be used for reusability or it can be said that reusability can be achieved

using reverse-engineering. Reverse engineering helps to understand the legacy system by creating its UML model and once the

model of the legacy system is created, that model can be used with little or no modification in the underdevelopment or in the

future project to promote reusability and to increase productivity of the organization [6] [12]. There are lots of UML tools

available to perform reverse-engineering process [9] [15]. Reverse-Engineering can be used to make the poorly designed and

poorly documented legacy software system developed with cloud development process; Re-usable by extracting the component

from the legacy system using UML models [8] [26].

Figure 1. Cloud Computing and its services [13]

Reuse based software engineering and cloud development is an open research area in rapid development. We had

conducted a survey on the number of approaches existing for Cloud Based Development [14, 9], and Reusability [11] [16]

individually, but the proposed model combines both Cloud computing and Reusability [19] into a single approach for achieving

efficient classification, storage and retrieval of software components and improve time to market and reduce cost. The cost

without reusability is increasing phase to phase as shown in Figure 2. Presently there is no such approach as presented in

proposed model which combines the Component based Development (Reusability) [24] [29] and Cloud computing [15].

3. Analysis
In the rapidly changing computing environment with cloud platform, software development is going to be very

challenging. The software development process will involve heterogeneous platforms, distributed web services, multiple

enterprises geographically dispersed all over the world. Figure 2 shows the cost of development is increasing from requirement

to maintenance without reusability for a small project, the development with reuse will cut an initial cost and reduce time to

market. The organizations need to incorporate reuse in their development [20] [32]; it will be a long term investment process.

Figure 3 summarizes incremental reuse levels (solid line) and related reuse approaches (dotted lines) [21]. The reuse of ad-hoc

reuse events with initial benefits is the only level of reuse which can be achieved without investing in software reuse; instead

the experience of previous projects is used to copy relevant pieces of code.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 171

Figure 2. Evolution of Software Engineering

This reuse level is defined as level 0. The first real reuse level presents a form of code-leverage, where pieces of code

are made available and can be reused by multiple parties. The pieces of code are made available through the use of a reuse

library, providing a central place where the components are stored [37].

Figure 3. Incremental stages of reuse [21]
The use of these leveraged components is not restricted and can be considered as white-box reuse; the code may be

adjusted and changed to the specific context in which the component is applied [27] [35]. This strategy works for a while up to

the point that multiple copies, each slightly different, have to be managed. The choice can be made to stop using components as

white-box and start using them as black-box components instead. Black-box components may no longer be internally adjusted;

rather its environment should be adjusted to support the component. Previous research has pointed out that with black-box reuse

higher reuse levels can be achieved than with white-box reuse [22] [36]. The reason for this is that there are reduced costs in

component maintenance and maintenance across products using these components. However, black-box reuse also has its

limitations.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 172

Figure 4. Assets and reuse operations [22].

The axis of the three dimensional model are explained by an underlying model, also presented in Tomer et al. [22].

The underlying model is presented in Figure 4. For simplicity Tomer et al. transferred the underlying model to a two

dimensional model, where development and maintenance are combined into one axis [34]. A key assumption made in this

model is that reuse activities cannot be freely transferred between specific products without first storing and cataloguing the

assets in a central repository [22]. Hence incorporating reuse in cloud computing will be beneficial if the general component

will be used multiple times for developing cloud projects and services.

4. Cloud Computing Reusability (CCR) Model

Innovative software engineering is required to leverage all the benefits of cloud computing and mitigate its challenges

strategically to push forward its advances. Here we propose an extended version of software development, reusability process

model for cloud computing platform and name it Cloud Computing Reusability (CCR) Model [Figure 5]. A model capable of

developing cloud based applications with reusability by retrieving the components from the cloud component repository by

using pattern matching algorithms and various retrieval methods. There are some different 6 retrieval methods available for the

classification of components in the software library. This model will help to make searching faster based on classification of

components and develop the cloud based application according to cloud customer requirements to improve time to market as

compared to traditional software development approach. The Cloud Component Architecture of proposed Cloud Computing

Reusability (CCR) Model is shown in Figure 6. In the Unified Modeling Language, a component diagram depicts how cloud

components are wired together to form larger component. They are used to illustrate the structure of arbitrarily complex cloud

systems.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 173

 No

 Yes

Figure 5. Cloud Computing Reusability (CCR) Model

Dirty Source Code

Cloud Based Developed

System/Service

 Reverse Engineering
Document

Restructuring

Code

Restructuring

Data

Restructuring

Clean

Documentation

Clean

Source Code

Clean

Data

Analysis

Identification Reusable Component Process

 Reusable Cloud Component
Cloud

Component

Repository

Component Validation and Testing

Cloud Component

Qualify?

White Box Reuse

Component

Adaptation

Black Box Reuse

Component

Integration

Cloud Based

Development Process

Component

Composition

Cloud Component Searching

IaaS PaaS SaaS

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 174

4.1 Cloud Based Developed System/Service

In cloud computing, three services are provided to the customer; Infrastructure as a Service, Platform as a Service and Software

as a Service. The organization reuses their developed projects by black box reuse and if the cloud service or project is

developed by another organization then it will be used by reverse engineering in cloud computing then if it will be further

updated by white box reuse.

4.2 Reverse Engineering

The dirty source code is obtained from cloud based development and service and then code, data and document restructuring

will be performed to find a clean document (UML), data (Meta Data) and Code (coding style). After that it will be analyzed for

future use, to check whether it is feasible or not, if feasible then identify reusable process. The reusable cloud component will

be obtained through this process and then validation and verification of cloud component will be performed and then sent to the

cloud component repository.

Figure 6. Cloud Component Architecture

4.3 Cloud Component Repository

The refined cloud developed components by reverse engineering with traditional development model will be stored in cloud

component repository and retrieved it at a later stage for other cloud application development. There is some different storage

and retrieval methods (Information retrieval methods, Operational semantics methods, Descriptive methods, Denotational

semantics methods, Topological methods and Structural methods) are available for the classification of components in the

software library. This model will help to make searching faster based on classification of cloud components and use these cloud

components in other projects by searching and send back to cloud component repository after updating.

4.3 Cloud Component Reuse Process

The searched cloud component will be send through the phase cloud component qualification to check whether the component

support required architecture, functionality and interfaces. If it qualifies then it will reused as a black box otherwise it will be

reused as a white box reuse through the modification then the component will be integrated with current cloud application and

send back to cloud component repository for future use.

5. Results and Discussion

The results of Cloud Computing Reusability (CCR) Model as compared to traditional cloud based development have

been described in the Table 1. The result with Cloud Computing Reusability (CCR) Model has been verified with the help of

Cloudsim.

SelectCloudComponent DisposeCloudComponent

Cloud Component

Based Development
ViewCloudComponentDetails

ModifyCloudComponent

UpdateCloudComponentDetails

ReuseCloudComponent

Provided

Interfaces

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 175

Table 1. Comparison of CCR method and traditional method

Criteria CCR Method Traditional Methods

Approach Adaptive Predictive

Success Measurement Business Value Confirmation To Plan

Project Size Small Large

Management Style Decentralized Autocratic

Perspective To Change Change Adaptability Change Sustainability

Culture Leadership Collaboration Command Control

Documentation Low Heavy

Emphasis People Oriented Process Oriented

Cycles Numerous Limited

Domain Unpredictable/Exploratory Predictable

Upfront Panning Minimal Comprehensive

Return On Investment Early In Project End Of Project

Team Size Small/Creative Large

Cost Less More

Time To Market Less More

Figure 7 shows the HR application developments in cloud computing as a development for reuse, and then it will be four times

used in four projects. The HR application which has been stored in cloud component repository, now used in cloud computing

projects: MRI Imagining, Clinical Trial, Viral Marketing and Molecule Research.

 HR App. HR App.

 HR App. HR App.

Figure 7. Reuse of HR App. Cloud component in other projects

The services provided by cloud provider will be easily reusable for new cloud projects. The evaluation of Cloud

Computing Reusability (CCR) Model has been summarized in Table 1. The cost and time to market reduces in Cloud

Computing Reusability (CCR) Model as compared to traditional software development, better services will be delivered to the

cloud user with large satisfaction level, and these results were verified by Cloudsim. The cost reduction and improvement in

time to market proved by Cloudsim shown in Figure 8.

Figure 8. The comparison of cost and time to market for Traditional and CCR Model

6. Advantage of Proposed Approach
This proposed Cloud Computing Reusability (CCR) will help to 1) developing application quickly 2) reduces cost 3)

improves reusability 4) reduce time to market and make searching faster based on classification of components and introducing

reusability in Software Development. It will be accepted widely if pattern based architecture designing, design patterns [27]

MRI Imaging Clinical Trial

Viral Marketing Molecule Research

Cloud

Component

Repository

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 176

[28], UML based analysis and designing is incorporated. The six important ways Cloud Computing Reusability (CCR)

enhances cloud based development.

 Enhance the productivity and improve the quality and reliability of the new software systems.

 Identify independent components having a low coupling and high cohesion.

 Accelerate cloud based development

 Improve time to market

 Reduce cost

 Increase generality

7. Conclusion
In this paper, we have presented a Cloud Computing Reusability (CCR) Model. The objective is to minimize the

complexity, cost, time to market and increase reusability, development speed and generality. Software Development with

reusability has encouraging future in the software industry and is capable of fulfilling the requirements of the cloud industry.

Thus, at times it compromises with quality and is incapable of providing reusability of its cloud based developed components.

Traditional Software Development offers particular solutions whereas Reuse and Cloud component based Development believe

in generalized solutions to satisfy the demands of cloud customer. Component based development is a standard shift over the

traditional way of developing and deploying of software. The amount of effort required for evolving software with reusability

will diminish but there will be added communication and coordination requirement with the developer which makes software

development project more difficult. The main objective of this paper is that the leading software process models should

incorporate this new dimension of interaction with the reusability. A new Cloud Computing Reusability (CCR) Model is

proposed in this paper which includes the expected communication requirement with the application developer and component

developer which will diminish all the challenges of software development on a cloud computing platform and make it more

beneficial to develop and deploy software on the cloud computing platform. The model is based on Reverse Engineering for

identifying and creating reusable software component and reused that component. A model based on pattern matching

technique is used to search the cloud component from the cloud component repository. This model encompasses the reverse

engineering methodology to extract components of the object oriented legacy cloud system development. It utilizes cloud

component repository to store and manage the tested components and restructures the new system that finally integrates the

new system with the reusable components. The reusability of the cloud component is the most popular way to enhance the

productivity and improve the quality and reliability of the new software systems by reducing the development costs. Due to

these reasons, it is very important to identify independent components having a low coupling and high cohesion. Also a

systematic approach to identify reusable component from the object oriented legacy system through cloud component

architecture has been proposed. The proposed approach has been validated by using a UML and also its components are tested

for reusability and illustrated that how these components can be reused in other cloud projects.

8. Future Work
The future scope of this work is to analyze and to incorporate risk factors in Component Based Development

systematically and find the critical success factors of the Cloud Computing Reusability (CCR) and also identify the various risk

factors using risk analysis of introducing reusability in component based development and offer a model that will help us to

achieve reusability in Cloud Development. Reusability can also be automated in cloud development using an automated tool.

Current results have been gathered through the simulation on Cloudsim but in future the same results would be verified actually

by cloud providers. In future, if this proposed methodology can be fully automated by an automatic tool then it could be more

effective and less time consuming. Component based software engineering and cloud computing is an open research area in

fast growth.

References
[1] Radha Guha. Toward The Intelligent Web Systems. In Proceedings of IEEE CS, First International Conference on Computational

Intelligence, Communication Systems and Network, Pages 459-463, July 2009.

[2] J. Handler, N. Shadbolt, W. Hall, T. Berners-Lee and D. Weitzner. Web Science: An Interdisciplinary Approach to Understanding

the Web. Communications of the ACM, Vol. 51, No. 7, July 2008.

[3] F. Chong and G. Carraro. Architecture Strategies for Catching the Long Tail. Microsoft Corporation, April 2006.

[4] J. Banerjee and S. Aziz. SOA: The missing link between Enterprise Architecture and Solution Architecture. SETLabs briefing, Vol.

5, No 2, Pages 69-80, March 2007.

[5] HADOOP. http://en.wikipedia.org/wiki/Hadoop, February 2010.

[6] D. Taft. IBM's M2 Project Taps Hadoop for Massive Mashups.www.eweek.com, February 2010.

[7] Sun Microsystem. Introduction to Cloud Computing architecture. White Paper, 1st Edition, June 2009

[8] Sun Microsystem. Open Source & Cloud Computing: On-Demand, Innovative IT On a Massive Scale.

[9] A. Singh, M. Korupolu, D. Mahapatra. Server-Storage Virtualization: Integration and Load Balancing in Data Centers. IEEE/ACM

Supercomputing (SC), 2008

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 6

Issn 2250-3005(online) October| 2012 Page 177

[10] VMWARE. Virtualization Overview. www.vmware.com.

[11] Reservoir Consortium. Resources and Services Virtualization without Barriers. Scientific Report. 2009.

[12] R. Pressman. Software Engineering: A Practitioner's Approach.7th Edition. McGraw-Hill Higher Education (2009).

[13] I. Sommerville. Software Engineering, 8th Edition, Pearson Education, 2006.

[14] M. Brambilla et al. A Software Engineering Approach to Design and Development of Semantic Web Service Applications

[15] Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds towards a cloud definition. ACM SIGCOMM

Comput. Commun. Rev. 39(1), 50–55 (2009)

[16] T. DeMarco and T. Lister. Waltzing with Bears: Managing Risk on Software Projects, Dorset House Publishing

 Company, Incorporated. March 2003.

[17] Paulisch F., Siemens AG,” Software Architecture and Reuse – an Inherent Conflict?” 3rd International Conference on

Software Reuse, Nov. 1994, pp. 214.

[18] www.win.tue.nl/~mchaudro/cbse2007/managing%20CBSE%20and %20reuse.pdf

[19] Garlen D., Allen R., and Ockerbloom J., “Architectural Mismatch: Why Reuse is So Hard”, IEEE Software,

November1995, vol. 12, no 6, pp 17-26.

[20] The Open Group: Building return on investment from cloud computing. A white paper, cloud business artifacts project. Cloud

Computing Work Group (2010)

[21] M. Griss. (1996, April). Systematic Software Reuse: Architecture, Process and Organization are Crucial. Available:

http://martin.griss.com/pubs/fusion1.htm

[22] A. Tomer, et al., "Evaluating software reuse alternatives: A model and its application to an industrial case study,"

IEEE Transactions on Software Engineering, vol. 30, pp. 601-612, 2004.

[23] Chikofsky E.J., Cross II J.H. (1990), Reverse Engineering and Design Recovery: a Taxonomy, p-p13-17, IEEE

Software, volume 7, January 1990.

[24] Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 .

http://www.comp.lancs.ac.uk/computing/resources/IanS/SE7/Presentations/PDF/ch18.pdf

[25] Asit Kumar Gahalaut ,2010,REVERSE ENGINEERING: AN ESSENCE FOR SOFTWARE RE-ENGINEERING

AND PROGRAM ANALYSIS. http://http://www.ijest.info/docs/IJEST10-02-06-131.pdf

[26] Basili, V., Rombach, D. Support for comprehensive reuse. Department of Computer Science, University of Maryland

at College Park, UMIACS-TR-91-23, CSTR- 2606, 1991..

[27] J.H. Chuang. Potential-Based Approach for Shape Matching and Recognition. Pattern Recognition, 29:463-

470, 1996.

[28] Gomma H. and Farrukh G.A., “Composition of Software Architectures from Reusable Architecture Patterns”,

Foundations of Software Engineering, Proceedings of 3rd International Workshop on Software Architecture, Orlando,

Florida, US, 1998, pp. 45-48.

[29] K.S. J., and Dr. Vasantha R., “A New Process Model for Reuse based Software Development Approach”, Proceedings

of the World Congress on Engineering, London U.K, July 2008, vol. 1.

[30] Monaco, Ania (7 June 2012 [last update]). "A View Inside the Cloud". The institute.ieee.org (IEEE). Retrieved August 21, 2012.

[31] Bhaskar Prasad Rimal et. al., Architectural Requirements for Cloud Computing Systems: An Enterprise Cloud

Approach, Springer Science Business Media B.V. 2010, J Grid Computing (2011) 9:3–26

[32] Radha Guha et.al., Impact of Web 2.0 and Cloud Computing Platform on Software Engineering, 2010 International

Symposium on Electronic System Design, 213-218.

[33] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A.,

Stoica, I., Zaharia, M.: Above the clouds: a Berkeley view of cloud computing. Technical Report No. UCB/EECS-

2009-28, Electrical Engineering and Computer Sciences, University of California at Berkeley (2009)

[34] Bonvin, N., Papaioannou, T.G., Aberer, K.: Dynamic cost-efficient replication in data clouds. In: Proceedings of the

1st Workshop on Automated Control for Datacenters and Clouds (2009)

[35] Dash, D., Kantere, V., Ailamaki, A.: An economic model for self-tuned cloud caching. In: Proceedings of the IEEE

International Conference on Data Engineering (2009)

[36] Fingar, P.: Extreme Competition: Cloud Oriented Business Architecture. Business Process Trends (2009)

[37] Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing cloud computing and Grid computing 360 degree compared. In: Grid

Computing Environments Workshop (2008)

[38] Gellman, R.: Privacy in the clouds: risks to privacy and confidentiality from cloud computing. In: World Privacy Forum (2009) 35.

Golden, B.: Virtualization

[39] Mell, P., Grance, T.: Perspectives on Cloud Computing and Standards. National Institute of Standards and Technology (NIST),

Information Technology Laboratory (2009)

