

Adjusment of a Braced Quadrilatral by Rigorous Method in Tabular Form

Dr A. M. Chandra

(Department of Civil Engineering, Sharda University, India)

Abstract

Adjusting a braced quadrilateral by rigorous method is a tedious and laborious job. This paper presents the step-by-step computations of adjustment in a simplified manner by making use of a table designed by the author for the purpose.

1. Introduction

A braced quadrilateral being the strongest triangulation figure is preferred in any triangulation scheme unless field conditions prohibit. When the work requires accuracy in results, the adjustment of the quadrilateral has to be done by rigorous method. By manual computations in rigorous method of adjustment being tedious and laborious, one is liable to make mistakes in computations and, therefore, the rigorous method is avoided unless the conditions demand. This paper presents a tabular form of step-by step computations involved in the adjustment of a braced quadrilateral. The advantage of computations using a table is that computations proceed mechanically without feeling any difficulty in remembering the steps of computations. Some new notations have been used to make the method look simpler.

2. Rigorous method of adjustment

A braced quadrilateral has eight observed angles as shown in Fig. 1. There are four conditions which must be satisfied to adjust the angles, excluding the one imposed by the least squares theory.

Fig. 1 Braced quadrilateral

Condition-1	$360^{\circ} - (\theta_1 + \theta_2 + \ldots + \theta_8) = C_1$
Condition-2	$(\theta_5 + \theta_6) - (\theta_1 + \theta_2) = C_2$
Condition-3	$(\theta_7 + \theta_8) - (\theta_3 + \theta_4) = C_3$
Condition-4	$[\log \sin (\text{Left angles}) - \log \sin (\text{Right angles})] \times 10^7 = C_4$

where C_1 , C_2 , C_3 , and C_4 are the total corrections given by each condition equation. If $c_1, c_2, ..., c_8$ are the individual corrections to the observed angles $\theta_1, \theta_2, ..., \theta_8$, respectively, then we have

$c_1 + c_2 + \ldots + c_8 = C_1$	(1)
$(c_1 + c_2) - (c_5 + c_6) = C_2$	(2)
$(c_3 + c_4) - (c_7 + c_8) = C_3$	(3)
$c_1 f_1 + c_2 f_2 + \ldots + c_8 f_8 = C_4$	(4)

T		(1	·>
15SN 22	50-3005	on	iine)

October | 2012

where f_1, f_2, \dots, f_8 are log sin differences for 1" in the values of the respective angles multiplied by 10⁷.

The additional condition from the theory of least squares to be satisfied is

$$\phi = c_1^2 + c_2^2 + \dots + c_8^2 = a$$
 minimum. ...(5)

Since we have four condition equations (1) to (4) excluding equation (5), there will be four correlates $-\lambda_1$, $-\lambda_2$, $-\lambda_3$, and $-\lambda_4$ which are multiplied to the differentiated form of equations (1) to (4), respectively, and the results are added to the differentiated form of equation (5). The resulting equation is

$$(c_1 - \lambda_1 - \lambda_2 - f_1\lambda_4) \partial c_1 + (c_2 - \lambda_1 - \lambda_2 + f_2\lambda_4) \partial c_2 + (c_3 - \lambda_1 - \lambda_3 - f_3\lambda_4) \partial c_3$$

+ $(c_4 - \lambda_1 - \lambda_3 + f_4\lambda_4) \partial c_4 + (c_5 - \lambda_1 + \lambda_2 - f_5\lambda_4) \partial c_5 + (c_6 - \lambda_1 + \lambda_2 + f_6\lambda_4) \partial c_6$
+ $(c_7 - \lambda_1 + \lambda_3 - f_7\lambda_4) \partial c_7 + (c_8 - \lambda_1 + \lambda_3 + f_8\lambda_4) \partial c_8 = 0$

Now equating the coefficients of ∂c_1 , ∂c_2 , etc., to zero, we get

$$c_{1} = \lambda_{1} + \lambda_{2} + f_{1}\lambda_{4}$$

$$c_{2} = \lambda_{1} + \lambda_{2} - f_{2}\lambda_{4}$$

$$c_{3} = \lambda_{1} + \lambda_{3} + f_{3}\lambda_{4}$$

$$c_{4} = \lambda_{1} + \lambda_{3} - f_{4}\lambda_{4}$$

$$c_{5} = \lambda_{1} - \lambda_{2} + f_{5}\lambda_{4}$$

$$c_{6} = \lambda_{1} - \lambda_{2} - f_{6}\lambda_{4}$$

$$c_{7} = \lambda_{1} - \lambda_{3} + f_{7}\lambda_{4}$$

$$c_{8} = \lambda_{1} - \lambda_{3} - f_{8}\lambda_{4}$$
(6)

Substituting the values of the above corrections in equations (1) to (4), we have

$$\begin{split} & 8\lambda_1 + F\lambda_4 - C_1 = 0 \\ & 4\lambda_2 + (F_{12} - F_{56})\lambda_4 - C_2 = 0 \\ & 4\lambda_3 + (F_{34} - F_{78})\lambda_4 - C_3 = 0 \\ & (F_{12} + F_{34} + F_{56} + F_{78})\lambda_1 + (F_{12} - F_{56})\lambda_2 + (F_{34} - F_{78})\lambda_3 + F^2\lambda_4 - C_4 = 0 \end{split}$$

where $F = f_1 + f_2 + ... + f_8$ $F_{12} = f_1 - f_2$

$$F_{12} = f_1 - f_2$$

$$F_{34} = f_3 - f_4$$

$$F_{56} = f_5 - f_6$$

$$F_{78} = f_7 - f_8$$

$$F^2 = f_1^2 + f_2^2 + \dots + f_8^2.$$

Now taking

$$\begin{split} F_{12} - F_{56} &= B \\ F_{34} - F_{78} &= C \\ F_{12} + F_{34} + F_{56} + F_{78} &= A \end{split}$$

Issn 2250-3005(online)

October | 2012

we have

$$8\lambda_1 + F \lambda_4 - C_1 = 0$$

$$4\lambda_2 + B\lambda_4 - C_2 = 0$$

$$4\lambda_3 + C\lambda_4 - C_3 = 0$$

$$A\lambda_1 + B\lambda_2 + C\lambda_3 + F^2\lambda_4 - C_4 = 0.$$

The solution of the above four equations yields the values of the correlates λ_1 , λ_2 , λ_3 , and λ_4 . The corrections c_1 , c_2 , ..., c_8 to the angles are calculated from equations (6) by substituting the values of the correlates.

By adopting some new notations above and putting the entire calculations in tabular form as in Table-1, the author has tried to make the above steps of calculations simpler and straight forward. It also gives various checks to have a check on the computations.

To explain the use of Table-1, a braced quadrilateral shown in Fig. 1 having the following observed angles, has been adjusted in Table-2.

 $\begin{array}{ll} \theta_1 = 40^\circ 08' 17.9'', & \theta_2 = 44^\circ 49' 14.7'' \\ \theta_3 = 53^\circ 11' 23.7'', & \theta_4 = 41^\circ 51' 09.9'' \\ \theta_5 = 61^\circ 29' 34.3'', & \theta_6 = 23^\circ 27' 51.2'' \\ \theta_7 = 23^\circ 06' 37.3'', & \theta_8 = 71^\circ 55' 49.0'' \end{array}$

Reference

Chandra A. M.: 'Higher Surveying', A text book published by New Age International Pvt. Ltd., Publishers, New Delhi, (2002).

Table-1: Chandra's table for adjustment of a braced quadrilateral by rigorous method

A	ngle	Correct-	•	F'r	Coefficients	Fauntings in 2		Corrections	Corrected angle
Left	Right	ion	2	1.5	coefficients	Equations in A	n	conscions	corrected angle
= 01		Ci	$=$ f_i	<i>F</i>		$8\lambda_1 + F\lambda_4 = C_1$	= λ_1	$c_1 = \lambda_1 + \lambda_2 + f_1 \lambda_4$ $=$	$\theta_1 + c_1$
	= 02		= f ₂	Fin	F=			$c_2 = \lambda_1 + \lambda_2 - f_2 \lambda_4$	$\theta_2 + c_2$
= ⁰ 3	©) (C)	C	=f_3		F F - P	$4\lambda_2 + B\lambda_4 = C_2$	= 1/2	$= c_3 = \lambda_1 + \lambda_3 + f_3 \lambda_4$	= $\theta_3 + c_3$
	= 04	=	= f4	= F_{34}				$= c_4 = \lambda_1 + \lambda_3 - f_4 \lambda_4$	= $\theta_4 + c_4$
					$F_{34} - F_{73} = C$				=
<i>θ</i> ₅		C_3	=	=	- (F ₁₂ +F ₃₄	$4\lambda_3 + C\lambda_4 = C_3$	= 1	$c_5 = \lambda_1 - \lambda_2 + f_5 \lambda_4$	$\theta_s + c_s$
	= 06		= 56	F78	$+F_{56}+F_{75}=4$			$c_6 = \lambda_1 - \lambda_2 - f_6 \lambda_4$	$\theta_6 + c_6$
= ⁰ 7	6) 6	= C4	= f7		$F^2 =$	$\begin{array}{c} A\lambda_2 + B\lambda_2 + C\lambda_3 \\ + F^2\lambda_4 = C_4 \end{array}$	= 24	$= c_1 = \lambda_1 - \lambda_3 + f_7 \lambda_4$	0,+c,
	= ⁰		=	=	=				$= \frac{-1}{c_3 = \lambda_1 - \lambda_3 - f_3 \lambda_4}$
$C_1 = 360^\circ$ $f_A = [\log\{s$	$-\sum_{i=1}^{3} \theta_i ; C_2 = \sin(\theta_i + 1'') \} -$	(θ ₅ +θ ₆)-(6 log{sin(θ ₄)	$\{+\theta_2\}; C_3 =$ }]×10 ⁷ , $i =$	=(&;+&})-(=1 to 8; F=	$\theta_{3} + \theta_{4}; C_{4} = [\Sigma \log t_{4}]$ $= \sum_{i=1}^{4} f_{i}; F_{12} = f_{1}$	$\{sin(Left angles)\}\$ $-f_2; F_{34} = f_3 - f_4; F_3$	$-\Sigma \log\{\sin(t_{56}) = f_5 - f_6; I$	Right angles)}]×10 ⁷ $F_{73} = f_7 - f_5; F^2 = \sum_{i=1}^{3} f_i^2$	
Checks	$(1)\sum_{i=1}^{4}c_{i};=0$	C _i							
*	$(2)(c_1+c_2) - (3)(c_3+c_4) - (3)(c_4+c_4) - (3)(c_5+c_4) - (3)(c_5+c_5) - (3)(c_5+c_5) - (3)(c_5+c_5) - (3)(c_5+c_5) - (3)(c_5+c_5) - (3)($	$(c_5 + c_6) = (c_7 + c_8) =$	C_2 C_1						

Issn 2250-2005(on	line)
13811 2230-30030	UIII	une)

A: Left	ngle Right	c	1	F's	Coefficients	Equations in λ	ړ	Corrections	Corrected angle
6, 40:09:17.0*	Rugar	С,	f. =25			$8\lambda_1 + F\lambda_4 = C_1$	À,	$c_1 = \lambda_1 + \lambda_2 + f_1 \lambda_1$	θ,+ε,
40 0311.3		- 20		2		81+001=0	=0.25	= -2.671"	= 40°08'15.23"
	<i>B</i> ₁	= 2"	J= = 21	F		5A170.0A4-2	-015	$C_2 = \lambda_1 + \lambda_2 - J_2 \lambda_4$	02+02
	= 44°49'14.7"		0.5000	= 0.0				=+0.963*	= 44°49'15.66"
-	22	8			12000	$4\lambda_a + B\lambda_4 = C_a$	λ_{2}	$c_3 = \lambda_1 + \lambda_2 + f_3 \lambda_4$	<i>B</i> ₃ + <i>C</i> ₃
53°11'23.7"		C _z	= 16	= 4	F= 0.0		- 0.046	=-3.827*	= 53°11'19.87"
		=-7.1*		- 10 C	$F_{12} - F_{20} = B$	4 <i>λ</i> ₂ +42 <i>λ</i> ₄ =−7.1		$c_i = \lambda_i + \lambda_a - f_i \lambda_i$	Oc+Cc
	= 41°51'09.9"		= 24	$F_{34} = -8$	= 42			=-0.667"	=41°51′09.23″
120	2	Q			$F_{34} - F_{73} = C$ = -50	$4\lambda_1 + C\lambda_4 = C_1$	Àa	$c_2 = \lambda_1 - \lambda_2 + f_2 \lambda_1$	B=+C=
61°29'34.3″		C.	J. = 11	F = - 38	(F12+F24			=+0.327"	= 61°29'34.63"
	20 2000	=-7.3"		10 10	$+F_{20}+F_{20}=4$ = 0	4 <i>λ</i> ₄−50 <i>λ</i> ₄=−7.3	=-2.815	$C_0 = \lambda_1 - \lambda_2 - f_0 \lambda_0$	80+C0
	<i>8</i> ₀ = 23°27'51.2″		<i>f</i> ° = 49	$= \frac{F_{72}}{42}$	F"= 6870			=+5.067*	= 23°27'56.27"
	3	Q		100	3	$A\lambda_2 + B\lambda_2 + C\lambda_3$	à,	$c_1 = \lambda_1 - \lambda_2 + f_1 \lambda_2$	8,+c,
= 23°06'37.3"		C.	= 49	= 6870		+F 24-C4	- 0.070	=-0.808*	= 23°06'36.49*
	3	=-437.984	-			01+421-501	0.079	$c_1 = \lambda_1 - \lambda_2 - f_1 \lambda_1$	Collectore Collectore
	θ _x = 71°55′49.0″		f . = 7			+ 68702. = - 437.984		=+3.616~	$\theta_s + c_s = 71^{\circ}55'52.62^{\circ}$
C;= 360° 2°	θ_{4} = 71°55'49.0" θ_{i} : $C_{2}=(\theta_{i}+\theta_{0}) \rightarrow$ + 1")) - log(sim(θ_{i})	(@+@); C, = (@+ }]×10°, į = 1 to 8	$f_{*} = 7$ $f_{*} = 7$ $f_{*} = 7$ $F = \sum_{i=1}^{3}$	= 0 s / 0 $= 0 s / 0$	g(sin(Left an gles)) $f_1 - f_2; F_{34} = f_3 - f_4;$	$0\lambda_{1}+42\lambda_{2}-50\lambda_{3}$ + 6870\lambda_{4} = -437.984 - \Sigma log(sin(Right ang F_{22}=f_{2}-f_{5}; F_{12}=f_{1}-	$= -0.079$ $[les)] \times 10^{\circ}$ $f_{i}, F = \sum_{i=1}^{3} f_{i}^{\circ}$	5.555 c_==,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,	8,+c, = 71°55'524
(1) Checks: (2)	$\sum_{i=1}^{n} C_i := -2.67$ $(c_i + c_2) - (c_2 + c_4)$	1"+0.963"-3.8 = (-2.671"+0.9	27° -0.6 263°) - (67" +0.327" 0.327" - 5.00	+ 5.06?* – 0.808* 57*) = –7.1*	+ 3.616* = 2*			
(3)	$(3)(c + c) = (c + c) = (-3.97)^{n} = 0.667^{n}) = (-0.908^{n} + 3.616^{n}) = -7.3^{n}$								
1.27	the strend strend								

Table-2: Chandra's table for adjustment of a braced quadrilateral by rigorous method