Bilinear and Bilateral Generating Functions of Hypergeometric Functions by means of Fractional Derivatives

Manoj Singh1, Sunanda Kakroo2, Sarita Pundhir3, Nayabuddin4

1Department of Mathematics, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia.
2Department of Physics, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia.
3Department of Mathematics, IIMT Engineering College, Greater Noida, India.
4Department of Epidemiology, Faculty of Public Health and Tropical Medicine, Jazan University, KSA.

E mail: msingh@jazanu.edu.sa, skakroo@jazanu.edu.sa, sarita.pundhir1@gmail.com, nhanif@jazanu.edu.sa

ABSTRACT

The object of the present paper is to obtain bilinear and bilateral generating functions for several classes of hypergeometric functions by employing the technique of fractional derivatives on some well-known identities.

Mathematics Subject Classification (2010): Primary 42C05, Secondary 33C45.

Keywords: Fractional derivative, Generating functions, Appell function, Generalized Appell function, Lauricella function, Horn type hypergeometric function, Triple hypergeometric series, etc.

I. INTRODUCTION

The name generating functions was introduced by Laplace in 1812. Since then the theory of generating functions has been developed in various directions and play a vital role in the investigation of various useful properties in different branches of science and technology. In the present investigation we find different types of bilinear and bilateral generating functions of different parameters by using the technique of fractional derivatives on some well-known infinite series identities.

In literature the use of fractional derivatives in the theory of hypergeometric functions have wide application in the field of modeling, physics and engineering, stochastic process, probability theory, in solving ordinary and partial differential equations and integral equations (see [4], [5], [7], [12]), etc.

In 1731, Euler’s extended the derivative formula ([12] pp.285), to the general form as

\[D_x^\mu [z^n] = \frac{\Gamma(\lambda + 1)}{\Gamma(\lambda - n + 1)} z^{\lambda - n} \]

where \(\mu \) is an ordinary complex number.

Here we use the theorem which is mentioned below, is the application of Euler’s derivative formula to some special functions.

Theorem 1: If a function \(f(z) \) is analytic in the disc \(|z| < \rho\), has the power series expansion,

\[f(z) = \sum_{n=0}^{\infty} (a)_n z^n, \quad |z| < \rho \]

then,

\[D_x^\mu [z^{\lambda-1} f(z)] = \sum_{n=0}^{\infty} (a)_n D_x^\mu [z^{\lambda+n-1}] = \frac{\Gamma(\lambda)}{\Gamma(\lambda - \mu)} z^{\lambda - \mu - 1} \sum_{n=0}^{\infty} (a)_{n}(\lambda)_{n} z^n \]

provided that \(Re(\lambda) > 0, Re(\mu) < 0, \) and \(|z| < \rho\).

Some of the definition and notations used in the given manuscript are stated below:

Appell function of two variables defined by [1] are given as

\[F_1[a, b, b'; c; x, y] = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n}(b)_{m}(b')_{n}}{(c)_{m+n} m! n!} x^m y^n \]

\[F_2[a, b, b'; c, c'; x, y] = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n}(b)_{m}(b')_{n}}{(c)_{m} (c')_{n} m! n!} x^m y^n \]

Generalization of Appell function of two variables by Khan M.A. and Abukhammash G.S. [2] are defined as
Lauricella [3], generalized the Appell double hypergeometric functions F_3, \ldots, F_4 to functions of n variables, but we use only two $F_A^{(n)}$ and $F_B^{(n)}$ are defined by

$$F_A^{(n)}[a, b_1, \ldots, b_n; c_1, \ldots, c_n; x_1, \ldots, x_n] = \sum_{m_1, \ldots, m_n=0}^{\infty} \frac{(a)_{m_1+\cdots+m_n}(b_1)_{m_1} \cdots (b_n)_{m_n}}{(c_1)_{m_1} \cdots (c_n)_{m_n}} \frac{x_1^{m_1}}{m_1!} \cdots \frac{x_n^{m_n}}{m_n!}$$ \hspace{1cm} (11.10)

$$F_B^{(n)}[a_1, a_2, \ldots, a_n; b_1, \ldots, b_n; c; x_1, \ldots, x_n] = \sum_{m_1, \ldots, m_n=0}^{\infty} \frac{(a_1)_{m_1} \cdots (a_n)_{m_n}}{(c)_{m_1+\cdots+m_n}} \frac{x_1^{m_1}}{m_1!} \cdots \frac{x_n^{m_n}}{m_n!}$$ \hspace{1cm} (11.11)

Saran [8] initiated a systematic study of these ten hypergeometric functions of Lauricella's set. We give below the definitions of two of these functions using Saran's notations F_M and F_K and also indicating Lauricella's notations:

$$F_M[a_1, a_2, a_2, \beta_1, \beta_2, \beta_1; \gamma_1, \gamma_2; x, y, z] = \sum_{m, n, p=0}^{\infty} \frac{(a_1)_{m}(a_2)_{n+p}(b_1)_{m+p}(b_2)_{n}}{(\gamma_1)_m(\gamma_2)_{n+p}} x^m y^n z^p$$ \hspace{1cm} (11.13)

$$F_K[a_1, a_2, a_2, \beta_1, \beta_2, \beta_1; \gamma_1, \gamma_2; x, y, z] = \sum_{m, n, p=0}^{\infty} \frac{(a_1)_{m}(a_2)_{n+p}(b_1)_{m+p}(b_2)_{n}}{(\gamma_1)_m(\gamma_2)_{n+p}} x^m y^n z^p$$ \hspace{1cm} (11.14)

A general triple hypergeometric series $F^{(3)}[x, y, z]$ defined as (see [12, pp. 69]) is defined as

$$F^{(3)}[x, y, z] = F^{(3)}\left[\begin{array}{c} (a) \mapsto (b); (b'); (b''); (b''); (c); (c'); (c''); \end{array} \right]$$

$$= \sum_{m, n, p=0}^{\infty} \Lambda(m, n, p) \frac{x^m y^n z^p}{m! n! p!}$$ \hspace{1cm} (11.15)

where, for convenience,

$$\Lambda(m, n, p) = \prod_{j=1}^{p} (a_j)_{m+n+p} \prod_{j=1}^{p} (a_j)_{m+n+p} \prod_{j=1}^{p} (b_j)_{m+n+p} \prod_{j=1}^{p} (b''_j)_{p+m} \prod_{j=1}^{p} (c_j)_{m+n+p} \prod_{j=1}^{p} (c''_j)_{p+m} \prod_{j=1}^{p} (h_j)_{m+n+p} \prod_{j=1}^{p} (h''_j)_{p+m}$$

$$\times \prod_{j=1}^{p} (a_j)_{m+n+p} \prod_{j=1}^{p} (b_j)_{m+n+p} \prod_{j=1}^{p} (b''_j)_{p+m} \prod_{j=1}^{p} (c_j)_{m+n+p} \prod_{j=1}^{p} (c''_j)_{p+m} \prod_{j=1}^{p} (h_j)_{m+n+p} \prod_{j=1}^{p} (h''_j)_{p+m}$$ \hspace{1cm} (11.16)

where (a) abbreviates the array of A parameters a_1, \ldots, a_A, with similar interpretations for $(b), (b'), (b''), etcetera.$

In this manuscript we use the following fractional derivative formulas [9] and linear generating formulas [10] to obtain the several class of bilinear and bilateral generating functions.

$$D_x^{a-p} \left\{x^\alpha (1-x)^{-\beta} \left(1-\frac{\omega x}{1-x}\right)^{-\gamma} \right\} = F^{(3)}[x, y, z]$$

$$= \Gamma(1+a) x^\alpha (1-x)^{-\alpha-1} \int_0^1 \left[1 + a, \gamma, 1 + \mu - \beta, 1 + \mu; \frac{\omega x}{1-x}, 1 - x \right]$$

$$\text{where, } Re(\alpha) \geq 0, |x| < 1, \text{ and } |\frac{\omega x}{1-x}| < 1.$$
\[D_{x}^{\alpha-\mu} \left\{ x^{a}(1-x)^{-\beta} \left(1 - \frac{\omega_{1}x}{1-x} \right)^{-\gamma} \left(1 - \frac{\omega_{2}x}{1-x} \right)^{-\delta} \right\} = \frac{\Gamma(1+\alpha)}{\Gamma(1+\mu)} x^{\mu} \left(1-x \right)^{-\alpha-1} F_{D}^{(3)} \left[1+\alpha, \gamma, \delta; 1+\mu-\beta; 1+\mu; \frac{\omega_{1}x}{1-x}, \frac{\omega_{2}x}{1-x} \right] \]

where, \(Re(\alpha) \geq 0, |x| < 1, \left| \frac{\omega_{1}x}{1-x} \right| < 1. \)

\[D_{x}^{\alpha-\mu} \left\{ x^{a}(1-x)^{-\beta}(1-\omega_{1}x)^{-\gamma} \left(1 - \frac{\omega_{2}x}{1-x} \right)^{-\delta} \right\} = \frac{\Gamma(1+\alpha)}{\Gamma(1+\mu)} x^{\mu} F_{\text{M}}[\delta, 1+\alpha, 1+\alpha, \alpha, \beta, \gamma, \beta; \beta; 1+\mu, 1+\mu; \omega_{2}, \omega_{1}x, x] \]

where, \(Re(\alpha) \geq 0, |x| < 1, |\omega_{1}x| < 1. \)

\[D_{x}^{\alpha-\mu} \left\{ x^{a}(1-x)^{-\beta}(1-\omega_{1}x)^{-\gamma} \left(1 - \frac{\omega_{2}x}{1-x} \right)^{-\delta} \right\} = \frac{\Gamma(1+\alpha)}{\Gamma(1+\mu)} x^{\mu} \left(1-x \right)^{-\alpha-1} F_{D}^{(3)} \left[1+\alpha, \gamma, \delta; 1+\mu-\beta; 1+\mu; \frac{\omega_{1}x}{1-x}, \frac{\omega_{2}x}{1-x} \right] \]

where, \(Re(\alpha) \geq 0, |x| < 1, |\omega_{1}x| < 1. \)

\[D_{x}^{\alpha-\mu} \left\{ x^{a}(1-x)^{-\beta}(1-\omega_{1}x)^{-\gamma} \left(1 - \frac{\omega_{2}x}{1-x} \right)^{-\delta} \right\} = \frac{\Gamma(1+\alpha)}{\Gamma(1+\mu)} x^{\mu} \left(1-x \right)^{-\alpha} F_{F_{1}}[\mu, \beta, \gamma; \alpha; \frac{\omega_{1}x}{1-x}, \frac{\omega_{2}x}{1-x}] \]

where, \(|\omega_{1}x| < 1, \left| \frac{\omega_{2}x}{1-x} \right| < 1. \)

\[D_{x}^{\alpha-\mu} \left\{ x^{a}(1-x)^{-\beta}(1-\omega_{1}x)^{-\gamma} \left(1 - \frac{\omega_{2}x}{1-x} \right)^{-\delta} \right\} = \frac{\Gamma(1+\alpha)}{\Gamma(1+\mu)} x^{\mu} \left(1-x \right)^{-\alpha-1} F_{D}^{(3)} \left[1+\alpha, \gamma, \delta; 1+\mu-\beta; 1+\mu; \frac{\omega_{1}x}{1-x}, \frac{\omega_{2}x}{1-x} \right] \]

where, \(Re(\alpha) \geq 0, |\omega_{1}x| < 1, \left| \omega_{2}x \right| < 1. \)

\[D_{x}^{\alpha-\mu} \left\{ x^{a}(1-x)^{-\beta}(1-\omega_{1}x)^{-\gamma} \left(1 - \frac{\omega_{2}x}{1-x} \right)^{-\delta} \right\} = \frac{\Gamma(1+\alpha)}{\Gamma(1+\mu)} x^{\mu} \left(1-x \right)^{-\alpha} F_{F_{1}}[\mu, \beta, \gamma; \alpha; \frac{\omega_{1}x}{1-x}, \frac{\omega_{2}x}{1-x}] \]

where, \(|\omega_{1}x| < 1, \left| \frac{\omega_{2}x}{1-x} \right| < 1. \)

\[D_{x}^{\alpha-\mu} \left\{ x^{a}(1-x)^{-\beta}(1-\omega_{1}x)^{-\gamma} \left(1 - \frac{\omega_{2}x}{1-x} \right)^{-\delta} \right\} = \frac{\Gamma(1+\alpha)}{\Gamma(1+\mu)} x^{\mu} \left(1-x \right)^{-\alpha} F_{F_{1}}[\mu, \beta, \gamma; \alpha; \frac{\omega_{1}x}{1-x}, \frac{\omega_{2}x}{1-x}] \]

where, \(|\omega_{1}x| < 1, \left| \frac{\omega_{2}x}{1-x} \right| < 1. \)

\[\sum_{n=0}^{\infty} \frac{\lambda_{n}}{n!} F_{2} \left[\lambda+n, \mu, \mu; \alpha, \alpha; \frac{\omega_{1}x}{1-x}, \frac{\omega_{2}x}{1-x} \right] t^{n} = (1-t)^{-\lambda} F_{2} \left[\lambda, \mu, \mu; \alpha, \alpha; \frac{\omega_{1}x}{1-x}, \frac{\omega_{2}x}{1-x} \right] \]

\[= (1-t)^{-\lambda} M_{3} \left[\lambda+n, \mu, \mu, \mu; \alpha, \alpha, \alpha; \frac{\omega_{1}x}{1-x}, \frac{\omega_{2}x}{1-x} \right] \]

\[\sum_{n=0}^{\infty} \frac{\lambda_{n}}{n!} M_{3} \left[\lambda+n, \mu, \mu, \mu; \alpha, \alpha, \alpha; \frac{\omega_{1}x}{1-x}, \frac{\omega_{2}x}{1-x} \right] t^{n} \]

\[= (1-t)^{-\lambda} M_{3} \left[\lambda+n, \mu, \mu, \mu; \alpha, \alpha, \alpha; \frac{\omega_{1}x}{1-x}, \frac{\omega_{2}x}{1-x} \right] \]

\[\sum_{n=0}^{\infty} \frac{\lambda_{n}}{n!} H_{A}[\beta, \lambda+n, 1+\alpha; 1+\mu; \omega_{2}, \omega_{1}x, x] t^{n} \]
Consider the elementarity identity (cf. [12], p. 297),

\[
[(1-x)(1-y) - t]^{-\lambda} = (1-t)^{-\lambda} \left[1 - \frac{x}{1-t} \right] \left(1 - \frac{y}{1-t} \right) \frac{xyt}{(1-t)^2}
\]

(2.1)

where, \(\left| \frac{t}{(1-x)(1-y)} \right| < 1 \) and \(\left| \frac{xyt}{(1-x)(1-y)-t} \right| < 1 \), can be written as

\[
\sum_{n=0}^{\infty} \frac{(\lambda)_n}{n!} (1-x)^{-\lambda+n}(1-y)^{-\lambda+n} t^n
\]

(2.2)

In relation (2.2), replace \(x, y \) by \(x^{\mu}y^{\nu} \) respectively, then multiply both sides by \(x^{\mu}(1-x)^{-\beta}y^{\eta}(1-y)^{-\delta} \). After that operate the fractional derivative operator \(D_x^{\alpha}D_y^{\gamma} \) on both sides, and by using (1.17), we arrive to the bilinear generating function

\[
\sum_{n=0}^{\infty} \frac{(\lambda)_n}{n!} F_1 \left[1 + \alpha, \lambda + n, 1 + \mu - \beta; 1 + \mu; \frac{\omega x}{1-x} \right] t^n
\]

(2.3)
In relation (2.2), replace x, y, t, λ by $\frac{\omega_1 x}{1-x}$, $\frac{\omega_2 y}{1-y}$, t_1, λ_1 respectively. Again, replace x, y, t, λ by $\frac{\omega_1 x}{1-x}$, $\frac{\omega_2 y}{1-y}$, t_2, λ_2 respectively, then multiply these two equation each other and also multiply with $x^\alpha (1-x)^{-\beta} y^\gamma (1-y)^{-\delta}$. Now on operating the fractional derivative operator $D_x^{-\mu} D_y^{-\eta}$ on both sides and with the aid of relation (1.18), we arrive to the bilinear generating function

$$\sum_{n=0}^{\infty} \frac{(\lambda_1) m(\lambda_2)_n}{m! n!} F_3^{(3)} \left[1 + \alpha, \lambda_1 + m, \lambda_2 + n, 1 + \mu - \beta; 1 + \mu; \frac{\omega_1 x}{1-x}, \frac{\omega_2 x}{1-y}; \frac{x}{1-x}, \frac{y}{1-y} \right]$$

$$\times F_3^{(3)} \left[1 + \alpha + m + n, \lambda_1 + m, \lambda_2 + n, 1 + \eta - \delta; 1 + \eta; \frac{u_1 y}{1-y}, \frac{u_2 y}{1-y}; \frac{y}{1-y} \right] (t_1)^m(t_2)^n$$

$$= (1 - t_1)^{-\lambda_1} (1 - t_2)^{-\lambda_2} \sum_{m,n=0}^{\infty} \frac{(\lambda_1) m(\lambda_2)_n}{(1 + \mu) m+n(1 + \eta)_m+n!} \frac{\omega_1 x}{(1-x)(1-t_1)} \frac{\omega_2 x}{(1-y)(1-t_2)} \frac{x}{1-x}$$

$$\times \frac{xy u_1 t_1}{(1-x)(1-y)(1-t_2)^2} \frac{xy u_2 t_2}{(1-x)(1-y)(1-t_2)^2} \frac{n}{n!} \quad (2.4)$$

Now, we adopt the analysis employed to obtain (2.4) and use the result (1.19) and (1.20) respectively, we then obtain the double generating functions as given below:

$$\sum_{m,n=0}^{\infty} \frac{(\lambda_1) m(\lambda_2)_n}{m! n!} F_3^{(3)} \left[1 + \alpha, 1 + \alpha, 1 + \alpha, \lambda_1 + m, \lambda_2 + n, 1 + \mu - \beta; 1 + \mu; \omega_2, \omega_1 x, x \right]$$

$$\times F_3^{(3)} \left[1 + \alpha + m + n, 1 + \gamma, 1 + \gamma, \lambda_1 + m, \lambda_2 + n; \lambda_1 + m, \lambda_2 + n, 1 + \eta - \delta; 1 + \eta; \omega_1 y, \omega_2 y, y \right] (t_1)^m(t_2)^n$$

$$= (1 - t_1)^{-\lambda_1} (1 - t_2)^{-\lambda_2} \sum_{m,n=0}^{\infty} \frac{(\lambda_1) m(\lambda_2)_n}{(1 + \mu) m+n(1 + \eta)_m+n!} \frac{\omega_1 x}{(1-x)(1-t_1)} \frac{\omega_2 x}{(1-y)(1-t_2)} \frac{x}{1-x}$$

$$\times \frac{xy u_1 t_1}{(1-x)(1-y)(1-t_2)^2} \frac{xy u_2 t_2}{(1-x)(1-y)(1-t_2)^2} \frac{n}{n!} \quad (2.5)$$

$$\sum_{m,n=0}^{\infty} \frac{(\lambda_1) m(\lambda_2)_n}{m! n!} F_3^{(3)} \left[1 + \alpha, \lambda_1 + m, \lambda_2 + n; \omega_1 x, \omega_2 x, x \right]$$

$$\times F_3^{(3)} \left[1 + \alpha + m + n, 1 + \gamma, 1 + \gamma, \lambda_1 + m, \lambda_2 + n; \lambda_1 + m, \lambda_2 + n, 1 + \eta - \delta; 1 + \eta; \omega_1 y, \omega_2 y, y \right] (t_1)^m(t_2)^n$$

$$= (1 - t_1)^{-\lambda_1} (1 - t_2)^{-\lambda_2} \sum_{m,n=0}^{\infty} \frac{(\lambda_1) m(\lambda_2)_n}{(1 + \mu) m+n(1 + \eta)_m+n!} \frac{\omega_1 x}{(1-x)(1-t_1)} \frac{\omega_2 x}{(1-y)(1-t_2)} \frac{x}{1-x}$$

$$\times \frac{xy u_1 t_1}{(1-x)(1-y)(1-t_2)^2} \frac{xy u_2 t_2}{(1-x)(1-y)(1-t_2)^2} \frac{n}{n!} \quad (2.5)$$
\[\times F^{(3)} \left[\begin{array}{c} 1 + y + m + n; \vdots ; \delta + n; \vdots ; \lambda_1 + m; \lambda_2 + n; \vdots ; u_1 y; u_2 y \\ 1 + \eta + m + n; \vdots ; \delta + n; \vdots ; (1 - t_1) \left(1 - t_2\right); y \end{array} \right] \]
\[\times \left(\frac{\omega_1 \omega_2 y_t \omega_2}{(1 - t_1)^2} \right)^{m} \]
(2.6)

In relation (2.2), replace \(x, y, t, \lambda \) by \(\omega_1 x, \omega_2 y, t_1, \lambda_1 \) respectively. Again, replace \(x, y, t, \lambda \) by \(\omega_2 x, \omega_1 y, t_2, \lambda_2 \) respectively, then multiply these two equation each other and also multiply both side by \(x^{-a_1} y^{-a_2} y^{-a_3} y^{-a_4} y^{-a_5} \). Now on operating the fractional derivative operator \(D_{x_1}^{a_1} D_{x_2}^{a_2} D_{y_1}^{a_3} D_{y_2}^{a_4} D_{y_3}^{a_5} \) on both sides and by using the relation (1.21), we obtain the bilinear generating function.

\[\sum_{m,n=0}^{\infty} \frac{(\lambda_1)_m (\lambda_2)_n}{m!n!} M_4 \left[\mu_1, \lambda_1 + m, \lambda_2 + n; \alpha_1, \alpha_2, \alpha_3; \mu_2, \omega_1, \omega_2, t_1, t_2; \right] \]
\[\times \left(\frac{u_1 u_2 y_t \omega_1}{(1 - t_1)^2} \right)^{m} \]
(2.7)

In relation (2.2), replace \(x, y, t, \lambda \) by \(\omega_1 x, \omega_2 y, t_1, \lambda_1 \) respectively. Again, replace \(x, y, t, \lambda \) by \(\omega_2 x, \omega_1 y, t_2, \lambda_2 \) respectively, then multiply these two equation each other and also multiply both side by \(x^{-a_1} y^{-a_2} y^{-a_3} y^{-a_4} y^{-a_5} \). Now on operating the fractional derivative operator \(D_{x_1}^{a_1} D_{x_2}^{a_2} D_{y_1}^{a_3} D_{y_2}^{a_4} D_{y_3}^{a_5} \) on both sides and by using the relation (2.22), we obtain the bilinear generating function.

\[\sum_{m,n=0}^{\infty} \frac{(\lambda_1)_m (\lambda_2)_n}{m!n!} M_6 \left[1 + \alpha_1, 1 + \alpha_2, \lambda_1 + m, \lambda_2 + n; 1 + \mu_1, 1 + \mu_2; \omega_1 x, \omega_2 x \right] \]
\[\times \left(\frac{u_1 u_2 y_t \omega_1}{(1 - t_1)^2} \right)^{m} \]
(2.8)
In this section we establish various types of bilateral generating functions by using the linear generating functions discussed in the section (1), as mentioned below:

\[\sum_{l,m,n=0}^{\infty} \frac{(\lambda_1)(\lambda_2)m(\lambda_3)n}{l! m! n!} G_b \left[1 + \alpha, \lambda_3 + n, \lambda_1 + l, \lambda_2 + m; 1 + \mu; \frac{\omega_3}{x}, \omega_1 x, \omega_2 x \right] \]

\[\times F_1 \left[\frac{\mu + m + n, \lambda_1 + m, \lambda_2 + m; \alpha + m + n}{\frac{\omega_1}{x} (1 - t_1) \omega_2 (1 - t_2)} \right] \]

\[\times F_1 \left[\eta + m + n, \lambda_1 + m, \lambda_2 + m; \gamma + m + n; \frac{u_1}{y (1 - t_1)}, \frac{u_2}{y (1 - t_2)} \right] \left(\frac{\omega_1 u_1 t_1}{x y (1 - t_1)^2}, \frac{\omega_2 u_2 t_2}{x y (1 - t_2)^2} \right)^n \quad (2.9) \]

In relation (2.2), replace \(x, y, t, \lambda \) by \(\omega_1 x, u_1 y, t_1, \lambda_1 \) respectively. Again, replace \(x, y, t, \lambda \) by \(\omega_2 x, u_2 y, t_2, \lambda_2 \) respectively. Further, again replace \(x, y, t, \lambda \) by \(\omega_3 x, \omega_1 x, \omega_2 x \), then multiply these three equation each other and also multiply both side by \(x^{-\alpha} y^{-\gamma} \). Now on operating the fractional derivative operator \(D_x^{\alpha-\mu} D_y^{\gamma-\eta} \) on both sides and by using the relation (1.24), one obtain the bilinear generating function.

\[\times \frac{\omega_1 x}{x (1 - t_1)}, \frac{\omega_2 x}{(1 - t_1)}, \frac{\omega_3}{x (1 - t_2)} \]

\[\times \frac{u_1 y}{y (1 - t_1)}, \frac{u_2 y}{(1 - t_1)}, \frac{u_3}{y (1 - t_2)} \]

\[\times \left(\frac{xy \omega_1 u_1 t_1}{(1 - t_1)^2} \right)^m \left(\frac{xy \omega_2 u_2 t_2}{(1 - t_2)^2} \right)^n \left(\frac{xy \omega_3 t_3}{x y (1 - t_3)^2} \right)^n \quad (2.10) \]

where Horn's type hypergeometric functions of three variables is defined by Pandey [6] as

\[G_b[\alpha, \beta_1, \beta_2, \beta_3; \gamma; x, y, z] = \sum_{m,n,p=0}^{\infty} \frac{(\alpha)_{n+p-m}(\beta_1)_{p}(\beta_2)_{n}(\beta_3)_{p} x^m y^n z^p}{(\gamma)_{n+p-m} m! n! p!} \quad (2.11) \]

In relation (2.2), replace \(x, y, t, \lambda \) by \(\omega_1 x, u_1 y, t_1, \lambda_1 \) respectively. Again, replace \(x, y, t, \lambda \) by \(\omega_2 x, u_2 y, t_2, \lambda_2 \) respectively. Further, again replace \(x, y, t, \lambda \) by \(\omega_3 x, \omega_1 x, \omega_2 x \), then multiply these three equation each other and also multiply both side by \(x^{-\alpha} y^{-\gamma} \). Now on operating the fractional derivative operator \(D_x^{\alpha-\mu} D_y^{\gamma-\eta} \) on both sides and by using the relation (1.25), one obtain the bilinear generating function.

\[\times F_0^{(3)} \left[\frac{1 + \gamma, \lambda_1 + l, \lambda_2 + m, \lambda_3 + n; 1 + \eta; u_1 y, u_2 y, u_3 y}{(1 - t_1)^2} \right] \left(t_1 \right)^l \left(t_2 \right)^m \left(t_3 \right)^n \]

\[= (1 - t_1)^{-\lambda_1} (1 - t_2)^{-\lambda_2} (1 - t_3)^{-\lambda_3} \sum_{l,m,n=0}^{\infty} \frac{(\lambda_1)(\lambda_2)m(\lambda_3)n(1 + \alpha)_{l+m+n}(1 + \gamma)_{l+m+n}}{(1 + \mu)_{l+m+n}(1 + \eta)_{l+m+n} \prod_{l,m,n=0}^{\infty} \frac{\omega_1 x}{x (1 - t_1)}, \frac{\omega_2 x}{(1 - t_1)}, \frac{\omega_3}{x (1 - t_2)} \times \frac{u_1 y}{y (1 - t_1)}, \frac{u_2 y}{(1 - t_1)}, \frac{u_3}{y (1 - t_2)} \times \left(\frac{xy \omega_1 u_1 t_1}{(1 - t_1)^2} \right)^l \left(\frac{xy \omega_2 u_2 t_2}{(1 - t_2)^2} \right)^m \left(\frac{xy \omega_3 t_3}{x y (1 - t_3)^2} \right)^n \quad (2.12) \]

II. BILATERAL GENERATING FUNCTIONS
By replacing \(t \) in (1.26) by \(t(1 - y) \), then multiplying both sides by \(y^\gamma \) and then operating the fractional derivative operator \(D_y^{\gamma - \delta} \), one obtains
\[
D_y^{\gamma - \delta} \left\{ \sum_{n=0}^{\infty} \frac{(\lambda)_n}{n!} F_2 \left[\begin{array}{c} \alpha, \beta; \alpha', \alpha'; \\ \frac{\omega_1}{x_1}, \frac{\omega_2}{x_2} \end{array} \right] t^n y^\gamma (1 - y)^n \right\} = D_y^{\gamma - \delta} \left\{ F_2 \left[\begin{array}{c} \alpha, \beta; \alpha', \alpha'; \\ \frac{\omega_1}{x_1}, \frac{\omega_2}{x_2} \end{array} \right] \frac{y^\gamma [1 - t(1 - y)]}{x_1[1 - t(1 - y)]} \right\}
\]

Now, with some usual calculation (3.1), yields
\[
\sum_{n=0}^{\infty} \frac{(\lambda)_n}{n!} F_2 \left[\begin{array}{c} \alpha, \beta; \alpha', \alpha'; \\ \frac{\omega_1}{x_1}, \frac{\omega_2}{x_2} \end{array} \right] t^n \left[\begin{array}{c} n-1, 1 + \gamma; \\ 1 + \delta : \end{array} \right] y^\gamma [1 - t(1 - y)]^{-\lambda}
\]

Further, we again use the same analysis, which is used to obtain (3.2), for the generating functions (1.27), (1.28), (1.29), (1.30) to obtain four another bilateral generating functions as follows:

\[
\sum_{n=0}^{\infty} \frac{(\lambda)_n}{n!} M_3 \left[\begin{array}{c} \alpha, \beta; \alpha', \alpha'; \\ \frac{\omega_1}{x_1}, \frac{\omega_2}{x_2}, \frac{\omega_3}{x_3} \end{array} \right] \left[\begin{array}{c} n+1, 1 + \gamma; \\ 1 + \delta : \end{array} \right] y^\gamma [1 - t(1 - y)]^{-\lambda}
\]

Now, by replacing \(t_1 \) and \(t_2 \) in (1.31) by \(t_1(1 - \sigma_1 y) \) and \(t_2(1 - \sigma_2 y) \) respectively, such that \(|\sigma| < 1, i = 1, 2 \). Further, multiply both sides of it by \(y^\gamma \) and then on operating the fractional derivative operator \(D_y^{\gamma - \delta} \), one obtain
\[
\sum_{n=0}^{\infty} \frac{(\lambda)_n}{n!} F_1 \left[\begin{array}{c} \alpha, \beta; \alpha', \alpha'; \\ \omega_1 x, \omega_2 \end{array} \right] \left[\begin{array}{c} n-1, 1 + \gamma; \\ 1 + \delta : \end{array} \right] y^\gamma [1 - t(1 - y)]^{-\lambda}
\]
\[(1 - t_1)^{-\lambda_1}(1 - t_2)^{-\lambda_2} \sum_{m,n=0}^{\infty} \frac{(1 + \alpha)(\lambda_1)(\lambda_2)s}{(1 + \mu)(\lambda_1)\lambda_2 r! s!} \left(\frac{\omega_1 x}{1 - x} \right)^r \left(\frac{\omega_2 x}{1 - x} \right)^s \times \begin{array}{c} F_1 \left[1 + \alpha + r + s, 1 + \mu - \beta; \frac{x}{x - 1} \right] F_1 \left[1 + \gamma, \lambda_1 + r, \lambda_2 + s; 1 + \delta; \frac{\sigma_1 y_1}{t_1 - t_1}, \frac{\sigma_2 y_1}{t_2 - t_2} \right] \end{array} \] (3.9)

The analysis used to obtain (3.9), is used again for the generating functions (1.32), (1.33), (1.34), (1.30) to obtain several other general generating functions as follows:

\[\sum_{m,n=0}^{\infty} \frac{(\lambda_1)(\lambda_2)n}{m! n!} F_M[\lambda_2 + n, 1 + \alpha, 1 + \alpha, \beta, \lambda_1 + m; \beta; 1 + \mu, 1 + \mu; \omega_2, \omega_1 x, x] \times F_E[1 + \gamma, -m, -n; 1 + \delta; \sigma_1 y, \sigma_2 y](t_1)^m(t_2)^n \]

\[= (1 - t_1)^{-\lambda_1}(1 - t_2)^{-\lambda_2} \sum_{r,n=0}^{\infty} \frac{(1 + \alpha)(\lambda_1)(\lambda_2)s(1 + \gamma)s}{(1 + \mu)(\lambda_1)\lambda_2 r! s!} \left(\frac{\omega_1 x}{1 - t_1} \right)^r \left(\frac{\omega_2 x}{1 - t_2} \right)^s \times \begin{array}{c} F_K \left[1 + \alpha + r, \lambda_1, \lambda_2, \beta, 1 + \gamma + s, \beta; 1 + \mu + r, \beta, 1 + \delta + s; x, \frac{\omega_2}{(1 - t_2)}, \frac{\sigma_2 y t_2}{(t_2 - 1)} \right] \end{array} \] (3.10)

Next, on replacing \(t_1, t_2\) and \(t_3\) in (1.35) by \(t_1(1 - \sigma_1 y), t_2(1 - \sigma_2 y)\) and \(t_3(1 - \sigma_3 y)\) respectively, such that \(|\sigma_1| < 1, \lambda_1 = 1.2, 3\). Further, multiplying both sides of it by \(y^r\) and then on operating the fractional derivative operator \(D_y^{-\delta}\), one obtains

\[D_y^{-\delta} \left(\sum_{m,n,p=0}^{\infty} \frac{(\lambda_1)(\lambda_2)n(\lambda_2)p}{m! n! p!} F_0^3[1 + \alpha, \lambda_1 + m, \lambda_2 + n, \lambda_3 + p; 1 + \mu; \omega_1 x, \omega_2 x, \omega_3 x] \times (t_1)^m(t_2)^n(t_3)^p y^r(1 - \sigma_1 y)^m(1 - \sigma_2 y)^n(1 - \sigma_3 y)^p \right) \]

\[= D_y^{-\delta} \left(\sum_{r,p=0}^{\infty} \frac{(\alpha)(\mu)r(\lambda_1)r(\lambda_2)r(\lambda_3)}{(1 + \mu)r(\lambda_1)r(\lambda_2)r(\lambda_3)} \omega_1 x \omega_2 x \omega_3 x y^r(1 - t_1) \frac{\sigma_1 y t_1}{(t_1 - t_1)}, \frac{\sigma_2 y t_2}{(t_2 - t_2)} \frac{\sigma_3 y t_3}{(t_3 - t_3)} \right) \times y^r(1 - t_1(1 - \sigma_1 y))^{-\lambda_1}(1 - t_2(1 - \sigma_2 y))^{-\lambda_2}(1 - t_3(1 - \sigma_3 y))^{-\lambda_3} \] (3.13)

Now, with some usual calculation (3.13), yields

\[\sum_{m,n,p=0}^{\infty} \frac{(\lambda_1)(\lambda_2)n(\lambda_2)p}{m! n! p!} F_0^3[1 + \alpha, \lambda_1 + m, \lambda_2 + n, \lambda_3 + p; 1 + \mu; \omega_1 x, \omega_2 x, \omega_3 x] \times F_D^3[1 + \gamma, -m, -n, -p; 1 + \delta; \sigma_1 y, \sigma_2 y, \sigma_3 y](t_1)^m(t_2)^n(t_3)^p \]

\[= (1 - t_1)^{-\lambda_1}(1 - t_2)^{-\lambda_2}(1 - t_3)^{-\lambda_3} \sum_{r,k=0}^{\infty} \frac{(1 + \alpha)(\lambda_1)(\lambda_2)s(\lambda_3)k}{(1 + \mu)(\lambda_1)\lambda_2 r! k!} \left(\frac{\omega_1 x}{1 - t_1}, \frac{\omega_2 x}{1 - t_2}, \frac{\omega_3 x}{1 - t_3} \right)^{\lambda_3} \] (3.14)
REFERENCES

Address for Correspondence
Manoj Singh
Department of Mathematics, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia.
E-mail: manojsingh221181@gmail.com, msingh@jazanu.edu.sa

Manoj Singh” Bilinear and Bilateral Generating Functions of Hypergeometric Functions by means of Fractional Derivatives” International Journal of Computational Engineering Research (IJCER), vol. 09, no. 4, 2019, pp 13-22