
ISSN (e): 2250 – 3005 || Volume, 09 || Issue, 3 || March– 2019 || 

International Journal of Computational Engineering Research (IJCER) 

www.ijceronline.com                                                  Open Access Journal                                                 Page 5 

Restrained Triple Connected Two Domination Number of Central, Total, 

and Line Graphs of Path and Cycle 
 

A.Punitha Tharani
1
, A.Robina Tony

2
 

1 Associate Professor, Department of Mathematics, St.Mary’s College (Autonomous), Thoothukudi – 628 001, Tamil Nadu, 

India,Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India. 
2 Research Scholar (Register Number: 12519), Department of Mathematics, St.Mary’s College(Autonomous), Thoothukudi – 

628 001, Tamil Nadu, India,Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli – 627 012, Tamil 

Nadu, India 

Corresponding Author:Dr.A.Punitha Tharani. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 25-02-2019                                                                             Date of acceptance:18-03-2019 

----------------------------------------------------------------------------------------------------------------------------- ---------- 
 

I. INTRODUCTION 
We begin with finite, connected and undirected graph G (V, E) without loops and parallel edges, where V denotes its vertex 

set and E denotes its edge set. The vertices and edges are commonly addressed as graph elements. A subset S of V of a 

nontrivial graph G is called a dominating set of G if every vertex in V − S is adjacent to at least one vertex in S. The 

domination number γ(G) of G is the minimum cardinality taken over all dominating sets in G. A subset S of V of a nontrivial 

graph G is called a restrained dominating set of G if every vertex in V − S is adjacent to at least one vertex in S as well as 

another vertex in V - S. The restrained domination number γr(G) of G is the minimum cardinality taken over all restrained 

dominating sets in G. A subset S of V is said to be a restrained 2-dominating set of G if every vertex of V - S is adjacent to at 

least two vertices in S and every vertex of V - S is adjacent to a vertex in V - S. The minimum cardinality taken over all 

restrained two dominating sets is called the restrained two domination number and is denoted by γr2(G). 

A graph G is said to be triple connected if any three vertices lie on a path in G. The central graph C(G) of a graph G is a 

graph obtained by subdividing each edge of G exactly once and joining all the non adjacent vertices of G. The total graph T 

(G) of a graph G is the graph whose vertex set is V(G) ∪ E(G) and two vertices are adjacent whenever they are either 

adjacent or incident in G. With every non empty ordinary graph there is associated a graph L(G), called the line graph of G 

whose points are in one-to-one correspondence with the lines of G and such that two points are adjacent in L(G) if and only 

if the corresponding lines of G are adjacent. 

 

II. MAIN RESULTS 
Theorem 2.1: The Restrained Triple Connected Two Domination Number of the Central graph of a path of order p is 2p – 3. 

Proof: Let the path Pp have vertex set {vi: 1≤ i ≤ p} and edge set {vi vi + 1: 1≤ i ≤ p – 1}. By the definition of central graph 

add new vertices subdividing each edge exactly once. Let the new set of vertices be {u i: 1≤ i ≤ p – 1}. The vertex set and 

edge set of C (Pp) is given by,  V(C(Pp)) = {vi: 1≤ i ≤ p} ∪ {ui: 1≤ i ≤ p – 1} and E(C(Pp)) = {viui: 1≤ i ≤ p – 1} ∪ {uivi+1: 1≤ 

i ≤ p – 1} ∪ {vivj: 1≤ i ≤ p – 2, i+2≤ j ≤ p}.In C(Pp) we see that vertex vi is adjacent with all vertices except vi+1 and vi-1 for 

viui 1≤ i ≤ p – 1. Now the new set of vertices {ui: 1≤ i ≤ p – 1} are adjacent to vi and vi+1. Hence the degree of each vertex in 

this set is two and by the definition of γ2rtc – set all the vertices in the set {ui: 1≤ i ≤ p – 1} must be included in the γ2rtc – set. 

Therefore, S = {v1, u1, v2 u2,…………,vp up}- { v1,vp} forms a γ2rtc – set. Hence γ2rtc (C(Pp)) = 2p – 1 – 2 = 2p – 3. 

ABSTRACT  
Let G = (V,E) be a simple graph. A restrained two dominating set S is said to be a restrained triple 

connected two dominating set, if <S> is triple connected. The minimum cardinality taken over all 

restrained triple connected two dominating sets is called the restrained triple connected two 

domination number of G and is denoted by γ2rtc(G). In this paper, we study the restrained triple 

connected two domination number for central graph, total graph and line graph of path and cycle. 

KEYWORDS: restrained triple connected two domination number, central graph, total graph, line 

graph. 

AMS Subject Classification: 05C69. 

 



Restrained Triple Connected Two Domination Number of Central, Total, and Line … 

www.ijceronline.com                                                  Open Access Journal                                                 Page 6 

 
Figure 1: Central graph of path P4 

 

Theorem 2.2: The Restrained Triple Connected Two Domination Number of the Central graph of a cycle of order p is 2p. 

Proof: Let the cycle Cp have vertex set {vi: 1≤ i ≤ p} and edge set {vi vi + 1: 1≤ i ≤ p – 1} ∪ {v1vp}. By the definition of 

central graph add new vertices subdividing each edge exactly once. Let the new set of vertices be {u i: 1≤ i ≤ p }. The vertex 

set and edge set of C(Cp) is given by, V(C(Cp)) = {vi: 1≤ i ≤ p} ∪ {ui: 1≤ i ≤ p} and E(C(Pp)) = {viui: 1≤ i ≤ p} ∪ {uivi+1: 1≤ i 

≤ p – 1}∪{un,v1}∪{vivj: i = 1, 3 ≤ j ≤ p – 1}∪{vivj: 2 ≤ i ≤ p - 2, i+ 2 ≤ j ≤ p}. In C(Cp)) we see that vertex vi is adjacent with 

all vertices except vi+1 and vi-1 for viui 1≤ i ≤ p. Now the new set of vertices {ui: 1≤ i ≤ p – 1} are adjacent to vi and vi+1. 

Hence the degree of each vertex in this set is two and by the definition of γ2rtc – set all the vertices in the set {ui: 1≤ i ≤ p – 1} 

must be included in the γ2rtc – set. Therefore, S = {v1, u1, v2 u2,…………,vp up} forms a γ2rtc – set. Hence γ2rtc (C(Cp)) = 2p . 

 

 
  Figure 2: Central graph of cycle C4 

 

Theorem 2.3: The Restrained Triple Connected Two Domination Number of the Total graph of a path of order p is p. 

Proof: Let the path Pp have vertex set {vi: 1≤ i ≤ p} and edge set {vi vi + 1: 1≤ i ≤ p – 1}. By the definition of total graph each 

edge { ei = vi vi + 1: 1≤ i ≤ p – 1} in Pp is subdivided by the vertices {ui: 1≤ i ≤ p – 1}in T(Pp) . The vertex set and edge set of 

T (Pp) is given by, V(T(Pp)) = {vi: 1≤ i ≤ p} ∪ {ui: 1≤ i ≤ p – 1} where {ui: 1≤ i ≤ p – 1} are the vertices of T(Pp) 

corresponding to the edge {vivi + 1: 1≤ i ≤ p – 1}of Pp and E(T(Pp)) = {viui: 1≤ i ≤ p – 1} ∪ {uivi+1: 1≤ i ≤ p – 1} ∪ {uiui+1: 1≤ 

i ≤ p – 1} ∪{vivi+1:  1≤ i ≤ p – 1}. Therefore, S = {vi: 1≤ i ≤ p} forms a minimum restrained 2 – dominating set and the 

induced subgraph <S> is triple connected. Hence γ2rtc (T(Pp)) = p. 

                                 
Figure 3: Total graph of path P5 

 

Theorem 2.4: The Restrained Triple Connected Two Domination Number of the Total graph of a cycle of order p is p – 1. 

Proof: Let the cycle Cp have vertex set {vi: 1≤ i ≤ p} and edge set {vi vi + 1: 1≤ i ≤ p – 1} ∪ {v1,vp}. By the definition of total 

graph each edge {ei = vi vi + 1: 1≤ i ≤ p – 1} ∪ {v1,vp} in Cp is subdivided by the vertices {ui: 1≤ i ≤ p }in T(Cp). The vertex 

set and edge set of T(Cp) is given by, V(T(Cp)) = {vi: 1≤ i ≤ p} ∪ {ui: 1≤ i ≤ p} and E(T(Pp)) = {viui: 1≤ i ≤ p} ∪ {uivi+1: 1≤ i 

≤ p – 1} ∪ {up,v1} ∪ {vivi+1: 1≤ i ≤ p – 1}∪{v1,vp} ∪ {uiui+1: 1≤ i ≤ p – 1}∪{u1,up}.Therefore, S =  {vi: 1≤ i ≤ p – 1} forms a 

minimum restrained 2 – dominating set and the induced subgraph <S> is triple connected.. Hence γ2rtc (T(Pp)) = p – 1. 
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Figure 4: Total graph of cycle C4 

 

Theorem 2.5: The Restrained Triple Connected Two Domination Number of the Line graph of a path of order p is p – 1. 

Proof: Let the path Pp have vertex set {vi: 1≤ i ≤ p} and edge set {vi vi + 1: 1≤ i ≤ p – 1}. By the definition of line graph the 

edges {vi vi + 1: 1≤ i ≤ p – 1}in Pp are considered as the vertices {ui: 1≤ i ≤ p – 1} in L(Pp) and two vertices of L(G) are joined 

by an edge if and only if the corresponding edges of G are adjacent in G. Hence L(Pp) is a path with p – 1 vertices and p – 2 

edges. The vertex set and edge set of L (Pp) is given by,           V(L(Pp)) = {ui: 1≤ i ≤ p – 1} and  E(L(Pp)) = {ei
’: 1≤ i ≤ p – 

2}.Therefore, S = {ui: 1≤ i ≤ p – 1} forms a minimum restrained 2 – dominating set and the induced subgraph <S> is triple 

connected. Hence γ2rtc (L(Pp)) = p - 1. 

                                                      
Figure 5: Line graph of path P4 

Theorem 2.6: The Restrained Triple Connected Two Domination Number of the Line graph of a cycle of order p is p. 

Proof: Let the path Cp have vertex set {vi: 1≤ i ≤ p} and edge set {vi vi + 1: 1≤ i ≤ p – 1} ∪ {v1vp}. By the definition of line 

graph the edges {vi vi + 1: 1≤ i ≤ p – 1} ∪ {v1,vp} in Cp are considered as the vertices {ui: 1≤ i ≤ p } in L(Cp) and two vertices 

of L(G) are joined by an edge if and only if the corresponding edges of G are adjacent in G. Hence L(Cp) is a cycle with p  

vertices and p edges. The vertex set and edge set of L(CPp) is given by, V(L(Cp)) = {ui: 1≤ i ≤ p} and  E(L(Cp)) = {ei
’: 1≤ i ≤ 

p}.Therefore, S = {ui: 1≤ i ≤ p} forms a minimum restrained 2 – dominating set and the induced subgraph <S> is triple 

connected. Hence γ2rtc (L(Pp)) = p . 

                                        
Figure 6: Line graph of cycle C4 
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