

The Upper Total Edge Monophonic Number Of A Graph

P.Arul Paul Sudhahar¹ And V.K.Kalai Vani².

¹Assistant Professor, Department of Mathematics, Rani Anna Govt. College (W), Tirunelveli –627008, Tamilnadu,India. ² Research Scholar(Reg.No:12445), Rani Anna Govt. College (W), Tirunelveli –627008, Tamilnadu,India. ManonmaniamSundaranar University, Tirunelveli-627012, Tamilnadu,India. Corresponding Author: P.Arul Paul Sudhahar

ABSTRACT

A set *M* of vertices of a connected graph *G* is a monophonic set if every vertex of *G* lies on an *x*-y monophonic path for some elements *x* and *y* in *M*. The minimum cardinality of a monophonic set of *G* is the monophonic number of *G*, and is denoted by m(G). A monophonic set of cardinality m(G) is called a *m*-set of *G*. Any monophonic set of order m(G) is a minimum monophonic set of *G*. An edge monophonic set *M* in a connected graph *G* is called a minimal edge monophonic set if no proper subset of *M* is a edge monophonic set of *G*. The total edge monophonic set *M* of a graph *G* is a edge monophonic set *M* such that the subgraph induced by *M* has no isolated vertices, and is denoted by $em_t(G)$. The upper total edge monophonic set of a graph *G* is a minimal total edge monophonic number is the maximum cardinality of a minimal total edge monophonic set *M* such that the subgraph induced by *M* has no isolated vertices. The upper total edge monophonic number is the maximum cardinality of a minimal total edge monophonic set *M* such that for any integers, *a*, *b* and *c* such that $2\leq a\leq b < c$, there exist a connected graph *G* with $em(G)=a, em^+(G)=b$ and $em_t^+(G)=c$.

KEYWORDS: Monophonic set, monophonic number, edge monophonic set, edge monophonic number, total edge monophonic number, upper total monophonic number, upper total edgemonophonic number.

AMS Subject Classification: 05C12.

Date of Submission: 31-07-2018

Date of acceptance: 15-08-2018

I. INTRODUCTION

By a graph G = (V, E) we mean a simple graph of order at least two. The order and size of *G* are denoted by *p* and *q*, respectively. For basic graph theoretic terminology, we refer to Harary [2]. The neighborhood of a vertex *v* is the set N(v) consisting of all vertices *u* which are adjacent with *v*. The closed neighborhood of a vertex *v* is the set N[v] = N(v) U{*v*}. A vertex *v* is an extreme vertex if the sub graph induced by its neighbors is complete. A vertex *v* is a semi-extreme vertex of *G* if the sub graph induced by its neighbors has a full degree vertex in N(v). In particular, every extreme vertex is a semi - extreme vertex and a semi - extreme vertex need not be an extreme vertex.

For any two vertices x and y in a connected graph G, the distance d(x, y) is the length of a shortest x-y path in G. of length d(x,called An x - ypath y) is an *x*-*y* geodesic. A vertex v is said to lie on an x-y geodesic P if v is a vertex of P including the vertices x and y. The geodetic number of a graph was introduced in [4]. The eccentricity e(v) of a vertex v in G is the maximum distance from v and a vertex of G. The minimum eccentricity among the vertices of G is the radius, rad (G) or r(G) and the maximum eccentricity is its diameter, diamG of G.

A chord of a path $u_1, u_2, ..., u_k$ in *G* is an edge $u_i u_j$ with $j \ge i + 2$. An*u*-*v* path *P* is called a monophonic path if it is a chordless path. A set *M* of vertices is a monophonic set if every vertex of *G* lies on a monophonic path joining some pair of vertices in *M*, and the minimum cardinality of a monophonic set of *G* is the monophonic number of *G*, and is denoted by m(G). The monophonic number of a graph *G* was studied in [9]. A monophonic set *M* in a connected graph *G* is called a minimal monophonic set if no proper subset of *M* is a monophonic set

of *G*. The upper monophonic number $m^+(G)$ of *G* is the maximum cardinality of a minimal monophonic set of *G*. The upper monophonic number of a graph *G* was studied in [8]. A set *M* of vertices of a graph *G* is an edge monophonic set if every edge of *G* lies on ax - y monophonic path for some elements *x* and *y* in *M*. The minimum cardinality of an edge monophonic set of *G* is the edge monophonic number of *G*, denoted by *em*(*G*). The edge monophonic number of a graph was introduced and studied in [6]. A total edge monophonic set of a graph *G* is a edge monophonic set *M* such that the subgraph induced by *M* has no isolated vertices. The minimum cardinality of a total edge monophonic set of *G* is the total edge monophonic number, denoted by *em*₁(*G*). The total edge monophonic number of a graph *G* was studied in [1]. An edge monophonic set *M* in a connected graph *G* is called a minimal edge monophonic set if no proper subset of *M* is an edge monophonic set of *G*. The upper edge monophonic number $em^+(G)$ of *G* is the maximum cardinality of a minimal edge monophonic number of a graph *G* was studied in [7]. The upper total edge monophonic set of *G* is a minimal total edge monophonic set *M* such that the subgraph induced by *M* has no isolated vertices. The upper total edge monophonic set of *G* a graph *G* is a minimal total edge monophonic set *M* such that the subgraph induced by *M* has no isolated vertices. The upper total edge monophonic set of a graph *G* is a minimal total edge monophonic set *M* such that the subgraph induced by *M* has no isolated vertices. The upper total edge monophonic set of a graph *G* is a minimal total edge monophonic set *M* such that the subgraph induced by *M* has no isolated vertices. The upper total edge monophonic number is the maximum cardinality of a minimal total edge monophonic set *M* such that the subgraph induced by *M* has no isolated vertices.

The following Theorems will be used in the sequel.

Theorem 1.1[6]: Each simplical vertex of G belongs to every edge monophonic set of G.

Theorem 1.2[7]: No cut vertex of G belongs to any minimal edge monophonic set of G.

Theorem1.3[9]: Each extreme vertex of a connected graph G belongs to every monophonic set of G.

Theorem 1.4[9]: Let G be a connected graph with diameter d. Then $m(G) \le p - d + 1$.

Theorem 1.5[8] :Let G be a connected graph with cut vertices and M be a minimal monophonic set of G. If v is a cut vertex of G, then every component of G-v contains an element of M.

Theorem 1.6 [1]: Let G be a connected graph with cut vertices and M be total edge monophonic set of G. If v is a cut vertex of G, then every component of G-v contains an element of M.

Throughout this paper G denotes a connected graph with atleast two vertices.

The Upper Total Edge Monophonic Number of a Graph

Definition 2.1:

The total edge monophonic set M in a connected graph G is called a minimal total edge monophonic set if no proper subset of M is a total edge monophonic set of G. The upper total edge monophonic number $\operatorname{em}_t^+(G)$ is the maximum cardinality of a minimal total edge monophonic set of G.

Example 2.2: For the graph *G* given in figure 2.1, $M_I = \{v_1, v_3\}$ is the only minimum edge monophonic set of *G*, so that m(G) = 2. $M_2 = \{v_1, v_3, v_4\}$ is the minimum total edge monophonic set of *G*, so that $em_t(G) = 3$. The set $M_3 = \{v_2, v_4, v_5\}$ is the only minimal edge monophonic set of *G*, so that $em^+(G) = 3$. $M_4 = \{v_2, v_3, v_4, v_5\}$ is the total edge monophonic set of *G* and it is clear that no proper subset of M_4 is an total edge monophonic set of *G*, and so M_4 is a minimal total edge monophonic set of *G* so that $em_t^+(G) \ge 4$. It is easily verified that no five elements set of *G* is the total edge monophonic set of *G*. Hence it follows that $em_t^+(G) = 4$

Figure: 2.1

Remark 2.3: Every minimum total edge monophonic set of G is a minimal total edge monophonic set of G and the converse is not true. For the graph G given in Figure 2.1, $M_{4}=\{v_{2}, v_{3}, v_{4}, v_{5}\}$ is a minimal total edge monophonic set but not a minimum total edge monophonic set of G.

Theorem 2.4: For any connected graph $G_{2} \leq em_{t}(G) \leq em_{t}^{+}(G) \leq p$

Proof : Any total edge monophonic set needs atleast 2 vertices and so $em_t(G) \ge 2$. Since every minimal total edge monophonic set is the total edge monophonic set , $em_t(G) \le em_t^+(G)$. Also since V(G) is the total edge monophonic set of G, it is clear that $em_t^+(G) \le p$. Thus $2 \le em_t(G) \le em_t^+(G) \le p$.

Theorem 2.5: For any connected graph G, $em_t(G) = p$ if and only if $em^+_t(G) = p$

Proof: If $em_t(G) = p$, then M = V(G) is the unique minimal total edge monophonic set of G. Since no proper subset of M is the total edge monophonic set, it is clear that M is the unique minimal total edge monophonic set of G and so $em_t^+(G) = p$. The converse part follows from Theorem 2.4.

Theorem 2.6 :For the complete graph $K_P(p \ge 2)$, $em_t^+(K_p) = em^+(K_p) = p$.

Proof: Since every vertex of the complete graph Kp $(p \ge 2)$ is an extreme vertex, the vertex set of Kp is the unique monophonic set and the minimal total edge monophonic set contains all the vertices. Thuse $m^+(Kp) = em_t^+(Kp) = p$.

Theorem 2.7: Let *G* be a connected graph of order p with $em_t(G) = p-1$. Then $em_t^+(G) = p-1$.

Proof: Since $em_t(G) = p - 1$, it follows from Theorem 2.4, $em_t^+(G) = p$ or p - 1. If $em_t^+(G) = p$, then by Theorem 2.5, $em_t(G) = p$, which is a contradiction. Hence $em_t^+(G) = p - 1$.

Theorem 2.8 : For a connected graph G of order p, the following are equivalent:

i. $em_t^+(G) = p$

ii. em(G) = p

iii. $G = K_p$

Proof: (i)=>(ii). Let $em_t^+(G) = p$. Then M = V(G) is the unique minimal total edge monophonic set of G. Since no proper subset of M is a edge monophonic set, it is clear that M is the unique minimum total edge monophic set of G and so em(G) = p.

(ii)=>(iii). Let em(G) = p. If $G \neq K_p$, then by theorem 1.2, $m(G) \leq p-1$, which is a condradiction. Therfore $G = K_p$. (iii) \Rightarrow (i). Let $G = K_p$. Then by Theorem 2.5, $em_t^+(G) = p$.

Theorem 2.9 : Let G be a connected graph with cut vertices and M be a minimal monophonic set of G. If v is a cut vertex of G, Then every component of G-v contains some vertices of M.

Proof: Since every minimal total edge monophonic set is also a total edge monophonic set, the result follows from Theorem 1.5 and Theorem 1.6.

Theorem 2.10: For any connected graph G, no cut vertex of G belongs to any minimal total edge monophonic set of G.

Proof : Let *M* be a minimal total edge monophonic set of *G* and $v \in M$ be any vertex. We claim that *v* is not a cut vertex of *G*. Suppose that *v* is a cut vertex of *G*. Let $G_1, G_2, ..., G_r(r \ge 2)$ be the components of *G*-*v*. By theorem 2.9, each component *Gi*, $(1 \le i \le r)$ contains an element of *M*. Let $M_1 = M - \{v\}$. Let *uw* be an edge of *G* which lies on a monophonic path P joining a pair of vertices *u* and *v* of *M*. Assume without loss of generality that $u \in G_1$. Since *v* is adjacent to atleast one vertex of each $G_i(1 \le i \le r)$, assume that *v* is adjacent to *z* in G_k , $k \ne 1$. Since *M* is an edge monophonic set, *vz* lies on a monophonic path *Q* joining *v* and a vertex *w* of *M* such that *w* must necessarily belongs to G_k . Thus $w \ne v$. Now, since *v* is a cut vertex of $G, P \cup Q$ is a path joining *u* and *w* in *M* and thus the edgeuv lies on this monophonic path joining two vertices of M_1 . Hence it follows that every edge of *G* lies on a monophonic path gioning two vertices of M_1 , which shows that M_1 is a edge monophonic set of *G*. Since $M_1 \subsetneq M_1$, this contradicts the fact that *M* is a minimal total edge monophonic set of *G*. Hence $v \notin M$, so that no cut vertex of *G* belongs to any minimal total edge monophonic set of *G*.

Theorem 2.11: For any Tree *T* with *k* vertices, $em_t^+(T) = k$.

Proof: By Theorem 1.3, any monophonic set contains all the end vertices of *T*. Hence it follows that, the set of all end vertices of *T* is the unique minimal edge monophonic set of *T*, so that $em_{t}^{+}(T) = k$.

Theorem 2.12: For a cycle $G = C_p(p \ge 4), m^+(G) = 3.$

Proof : First suppose that $G = C_3$. It is a complete graph, by Theorem 2.5, we have $em_{l}^+(G) = 3$. For any cycle ,suppose that $em_{l}^+(G) > 3$, then there exist a minimal total edge monophonic set M_1 such that $|M_1| \ge 3$. Now it is clear that edge monophonic set $M \subsetneq M_1$, which is a contradiction to M_1 is a minimal total edge monophonic set of G. Therfore $em_{l}^+(G) = 3$.

Theorem 2.13: For the complete bipartite graph $G = K_{m,n}$.

(i) $em_t^+(G) = 2$ if m = n = 1

(ii) $em_{t}^{+}(G) = n+1$ if $m = 1, n \ge 2$

(iii) $em_t^+(G) = max\{m,n\}+1, \text{ if } m,n \ge 2.$

Proof: (i) and (ii) follows from Theorem 2.10. (iii) Let $m, n \ge 2$. Assume without loss of generality that $m \le n$. First assume that m < n. Let $X = \{x_1, x_2, ..., x_m\}$ and $Y = \{y_1, y_2, ..., y_n\}$ be a bipartion of G. Let M = Y. We prove that M is a minimal total edge monophonic set of G. Any edgey_i $x_j(1 \le i \le n, 1 \le j \le m)$ lies on a monophonic path y_{i,x_j,y_k} for $k \ne i$ so that M is a edge monophonic set of G. Let $M' \subsetneq M'$. Then there exists a vertex $y_j \in M$ such that $y_j \notin M$. Then the edgey_j x_i $(1 \le j \le m, 1 \le i \le n)$ does not lie on a monophonic path joining a pair of vertices of M'. Thus M' isnot aedgemonophonic set of G. This shows that M is a minimal edge monophonic set of G. Hence $em_t^+(G) \ge n$. Let M_1 be a minimal edge monophonic set of G such that $|M_1| \ge n+1$. Since the vertex $x_i y_j (1 \le i \le m)$ and $1 \le j \le n$) lies on a monophonic path $x_i x_k y_j$ for any $k \ne i$, it follows that X is an edge monophonic set of G. Hence $M_1 \subseteq a$ cannot contain X. Similarly ,since Y is a minimal edge monophonic set of G, M_1 cannot contain Y also. Hence $M_1 \subseteq X' \cup Y'$, where $X' \subseteq X$ and $Y' \subseteq Y$. Hence there exist a vertex $x_i \in X(1 \le i \le m)$ and a vertex $y_j \in Y$

 $(1 \le i \le n)$ such that $x_i y_j \notin M_i$. Hence the edge $x_i y_j$ does not lie on a monophonic path joining a pair of vertices of M_i . It follows that M_i is not aedge monophonic set of G, which is a contradiction. Thus M is a minimal total edgemonophonic set of G. Hence $em_i^+(G) = \max\{m, n\} + 1$.

Realization Results:

Theorem 3.1:

For every positive integers *a*,*b* and *c* where $2 \le a \le b < c$, there exists a connected graph *G* with em(G) = a, em(G) = b and $em_{l}^{+}(G) = c$.

Proof:

Let $V(K_2) = \{u, x\}$ and $V[K_{b \cdot a+1}] = \{v_1, v_2, \dots, v_{b \cdot a+1}\}$. Let $H = K_{b \cdot a+1} + K_2$. Let *G* be the graph in figure 3.1 obtained from *H* by adding *a*-1 new vertices x_1, x_2, \dots, x_{a-1} and joining each vertex $x_i(1 \le i \le a-1)$ with *x*. Subdivide the edge xx_i , where $1 \le i \le c \cdot b \cdot 1$, calling the new vertices $y_1, y_2, \dots, y_{c \cdot b \cdot 1}$, where x_i adjacent to y_i and y_i is adjacent to *x* for all $i \in \{1, 2, \dots, c \cdot b \cdot 1\}$. The graph *G* is shown in figure 3.1.

Figure 3.1

Let $M = \{x_1, x_2, \dots, x_{a-1}\}$ be the set of all end vertices of *G*. Clearly *M* is a subset of every edge monophonic set of *G*. Let $M_1 = M \cup \{u\}$. Then M_1 is an edge monophonic set of *G*, so that em(G) = a. Now $T = M \cup \{v_1, v_2, \dots, v_{b-a+1}\}$ is an edge monophonic set of *G*. We show that *T* is a minimal edge monophonic set of *G*. Clearly, no proper subset of *T* is an edge monophonic set of *G*. Hence *T* is a minimal edge monophonic set of *G*, so that $em^+(G) = a \cdot I + b \cdot a + 1 = b$. Also $M_2 = T \cup \{y_1, y_2, \dots, y_{c-b-1}, x\}$ is a minimal total edge monophonic set of *G*, $em_t^+(G) = c$.

Theorem 3.2: For positive integers $r_m d_m$ and $l \ge 5$ with $r_m < d_m \le 2r_m$, there exists a connected graph *G* with $rad_m(G) = r_m$, diam_m(*G*) = *dm* and $em_t^+(G) = l$.

Let $r_m = 1$. Let $r_m \ge 2$. Let $C_{r_{m+2}}:v_1, v_2, \ldots, v_{r_{m+2}}$ be a cycle of length r_{m+2} and let $P_{d_m-r_m}: u_0, u_1, u_2, \ldots, u_{d_m}-r_m$ be a path of length d_m - r_m+1 . Let H be a graph obtained from C_{r_m+2} and by identifying v_1 in C_{r_m+2} and u_0 in $P_{d_m-r_m+1}$. Now add l-5 new vertices $w_1, w_2, \ldots, w_{l-5}$ to H and join each $w_i(1 \le i \le l-5)$ to the vertex $u_{d_m-r_m-1}$ and obtain the graph G of Figure 3.2.

Then $\operatorname{rad}_m(G) = r_m$, $\operatorname{diam}_m(G) = d$. Let $M = \{w_1, w_2, \ldots, w_{l-5}, u_{d_m} - r_m\}$ be the set of all end vertices of G. It is clear that M is not an edge monophonic set of G and so $\operatorname{em}(G) \ge l$. The set $M \cup \{x\}$, where $x \in \{v_3, v_4, \ldots, v_{r_m+1}\}$ is an edge monophonic set of G. We show that $\operatorname{em}^+_l(G) = l$. Now $M_l = M \cup \{v_2, v_{r_m+2}\}$ is a minimal edge monophonic set of G and so $\operatorname{em}^+(G) \ge l$. Suppose that $\operatorname{em}^+(G) \ge l+1$. Then there exists a minimal edge monophonic set T such that $|T| \ge l+2$. Hence there exists $y \in T$ such that $y \notin M_l$. By Theorem 1.1, $M \subset T$. If $y \in \{v_3, v_4, \ldots, v_{r_m+1}\}$, then $M \cup \{y\}$ is an edge monophonic set of G. If $y \notin \{v_3, v_4, \ldots, v_{r_m+1}\}$, then by corollary 1.1, $y \notin M$. Therfore $y = u_i(0 \le i \le d_m - r_m - 1)$. By Theorem 1.2, $y \notin T$, which is a contradiction. Thus M_l is a minimal edge monophonic set of G. Now $M_2 = M_l \cup \{u_{d_m} - r_m - 1, v_l\}$ is a minimal total edge monophonic set of G. It is clear that no proper subset of M_2 is a total edgemonophonic set of G, so that $\operatorname{em}_l^+(G) = l$.

REFERENCES

- P.Arul Paul Sudhahar, V.K.KalaiVani, The Total Edge Monophonic Number of a Graph, International Journal of Applied Mathematics. ISSN 1819-4966 Volume 11, Number 2 (2016) pp.159-166.
- [2]. F.Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley, Redwood City, CA, (1990).
- [3]. F. Buckley, F. Harary, and L. V. Quintas, Extremal Results on the Geodetic Number of a Graph, Scientia A2 (1988) 17-26.
- [4]. G. Chartrand, F. Harary, and P. Zhang, On the Geodetic Number of a Graph, Networks. 39 (2002) 1-6.
- [5]. F. Harary, Graph Theory, Addison- Wesley, 1969.
- [6]. J. John, P. Arul Paul Sudhahar, On the edge monophonic number of a graph, Filomat 26:6 (2012), 1081 1089.
- [7]. J.Jhon, P.Arul Paul Sudhahar, The Upper Edge Monophonic Number of a graph, IJMCAR, ISSN 2249-6955, vol 3,(2013) 291-296.
- [8]. J. John, S. Panchali, The Upper Monophonic Number of a Graph, International J. Math, Combin. Vol. 4 (2010), 46-52.
- [9]. A.P. Santhakumaran, P. Titus, K. Ganesamoorthy, On the Monophonic Number of a Graph, J. Appl. Math. & Informatics Vol. 32 (2014), No. 1 2, pp. 255 266.

- [2]. F. Harary, Graph Theory, Addison- Wesley, 1969.
- [3]. J. John, P. Arul Paul Sudhahar, On the edge monophonic number of a graph, Filomat 26:6 (2012), 1081 1089. J.Jhon, P.Arul Paul Sudhahar,
- [4]. The Upper Edge Monophonic Number of a graph, IJMCAR, ISSN 2249-6955, vol 3,(2013) 291-296.
- [5]. J. John, S. Panchali, The Upper Monophonic Number of a Graph, International J. Math, Combin. Vol. 4 (2010), 46-52.
- [6]. A.P. Santhakumaran, P. Titus, K. Ganesamoorthy, On the Monophonic Number of a Graph, J. Appl. Math. & Informatics Vol. 32 (2014), No. 1 – 2, pp. 255 – 266.

^{[1].} P.Arul Paul Sudhahar, V.K.Kalai Vani, International Journal of Computational and Applied Mathematics. ISSN 1819-4966 Volume 11, Number 2 (2016) pp.159-166.

Let $r_m \ge 2$. Let C_{m+2} : $v_1, v_2, \ldots, v_{m+2}$ be a cycle of length r_{m+2} and let $P_{dm:rm+1}$: $u_0, u_1, u_2, \ldots, u_{dm:rm}$ be a path of length $d_m:r_m+1$. Let H be a graph obtained from C_{rm+2} and $P_{dm:rm+1}$ by v_1 in C_{rm+2} and u_0 in $P_{dm:rm+1}$. Now add l-5 new vertices $w_1, w_2, \ldots, w_{l:5}$ to H and join each $w_i(1 \le i \le l \le 5)$ to the vertex $u_{dm:rm-1}$ and obtain the graph G of Figure 3.2.

Then $\operatorname{rad}_m(G) = r_m$, $\operatorname{diam}_m(G) = dw_1, w_2, \ldots, w_{l-5}, u_{dm}, r_m$ } be the set of all end vertices of G. It is clear that M is not an edge monophonic set of G and so $em(G) \ge l$. The set $M \cup \{x\}$, where $x \in \{v_3, v_4, \ldots, v_{rm+1}\}$ is an edge monophonic set of G. We show that $em^+_i(G) = l$. Now $M_1 = M \cup \{v_2, v_{rm+2}\}$ is a minimal edge monophonic set of G and so $em^+(G) \ge l$. Suppose that $em^+(G) \ge l+1$. Then there exists a minimal edge monophonic set T such that $|T| \ge l+2$. Hence there exists $y \in T$ such that $y \notin M_1$. By Theorem 1.1, $M \subset T$. If $y \in \{v_3, v_4, \ldots, v_{rm+1}\}$, then $M \cup \{y\}$ is an edge monophonic set of G, which is a contradiction to T is a minimal edge monophonic set of G. If $y \notin \{v_3, v_4, \ldots, v_{rm+1}\}$, then $M \cup \{y\}$ is an edge monophonic set of G. Therefore, $y = u_i(0 \le i \le d_m \cdot r_m \cdot 1)$. By Theorem 1.2, $y \notin T$, which is a contradiction. Thus M_1 is a minimal edge monophonic set of G, so

REFERENCES

- P.Arul Paul Sudhahar, V.K.KalaiVani, International Journal of Computational and Applied Mathematics. ISSN 1819-4966 Volume 11, Number 2 (2016) pp.159-166.
- [2]. F. Harary, Graph Theory, Addison- Wesley, 1969.
- [3]. J. John, P. Arul Paul Sudhahar, On the edge monophonic number of a graph, Filomat 26:6 (2012), 1081 1089. J.Jhon, P.Arul Paul Sudhahar,
- [4]. The Upper Edge Monophonic Number of a graph, IJMCAR, ISSN 2249-6955, vol 3,(2013) 291-296.
- [5]. J. John, S. Panchali, The Upper Monophonic Number of a Graph, International J. Math, Combin. Vol. 4 (2010), 46-52.
- [6]. A.P. Santhakumaran, P. Titus, K. Ganesamoorthy, On the Monophonic Number of a Graph, J. Appl. Math. & Informatics Vol. 32 (2014), No. 1 – 2, pp. 255 – 266.

P.Arul Paul Sudhahar"The Upper Total Edge Monophonic Number Of A Graph" International Journal of Computational Engineering Research (IJCER), vol. 08, no. 08, 2018, pp. 40-45.