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I. INTRODUCTION 
Calderon formula [5] involving convolution related to the Fourier transform is useful in obtaining reconstruction 

formula for wavelet transform besides many other applications in decomposition of certain function spaces. It is 

expressed as follows: 
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where : ( ) ( / ), 0.n n

tC and x t x t t    R For conditions of validity of identity (1.1), we may refer 

to [5]. 

We follow the notation and terminology used in [2]. 
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An inner product on X is given by  
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As usual we denote the Legendre polynomial of degree n N0   by Pn(x), i.e.  
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For these polynomials one has  
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The Legendre transform of a function f X  is defined by  
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The operator L associates to each Xf  , a sequence of real (complex) numbers 
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Fourier Legendre coefficients.  

The inverse Legendre transform is given by  
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II. PRELIMINARIES 

Lemma 2.1.Assume f, g X , k N0 and c R, then  

(i) f (k) ]f[L  X; 
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(iii)  k  allfor  0  (k) ]f[L N0 iff f(x) = 0 a.e ;  
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 Let us now define the basic function K(x,y,z) which plays role in our investigation  
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where z1 = xy – [(1-x
2
) (1-y
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  and z2 = xy + [(1-x

2
) (1-y
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1/2
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Then the function K(x,y,z) possesses the following properties;  

(i) K(x,y,z) is symmetric in all the three variables  

(ii) 
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Also it has been shown in [2] that 
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Applying (1.9) to (2.2), we have  
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The Legendre translation  y for ]1,1[y   of a function Xf   is defined by  
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Using Hölder’s inequality it can be shown that 
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and the map fy
y
 is a positive linear operator from X into itself.  

As in [2], for functions f,g defined on [-1,1] the Legendre convolution is given  by  
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Lemma 2.2  If ),1,1(L g , 1  Xf  then the convolution (f*g) (x) exists (a.e.) and belongs to X. 

Moreover,  
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For any )1,1(Lf 2   the following Parseval identity holds for Legendre transform,
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III. MAIN RESULTS 
Calderon’s formula 

In this section, we obtain Calderon’s reproducing identity using the properties of Legendre transform and 

Legendre convolution. 

Theorem 3.1 Let   and  1L (-1, 1)be such that following admissibility condition holds: 
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for all )1,1( . Then the following Calderon’s reproducing identity holds: 
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Hence the result follows. 

Theorem 3.2 Suppose  1L (-1, 1) is real valued and satisfies 
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By [5], we have 
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Hence by Parseval formula, we get 
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 , therefore by the dominated convergence theorem, the result 

follows. 

The reproducing identity (3.2) holds in the point wise sense under different set of nice conditions. 

Theorem 3.3 Suppose 
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Therefore, 
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