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I. INTRODUCTION 

In statistical analysis, the accuracy of approximation is a function of several parameters. One such parameter is 

the metric used to measure the approximation error.  Each metric has its own merits. We do assume that data is 

accurate, else we get inaccurate approximation. For linear least square approximation regression (OLA), we 

discuss its merits, and shortcomings of the metric to improve on it. For OLA, there are several issues. First it is 

least square approximation, it is in fact approximation in y direction, not min distance perpendicular to the 

approximation line [1],[2],[3]. In order to correct this, we devise a true line at min-distance from the input data, 

normal distance least square fit line. We refer to it normal linear least square approximation (NLA) similar to 

ordinary linear least square approximation (OLA). NLA may become complicated for multiple dimensions, we 

also show that linear algebra SVD can be leveraged to achieve OLA more easily.  Finally we see that OLA is 

not sensitive to data spread, NLA will also correct this deficiency of OLA.  We also define a new metric, 

propensity scoring metric (PSM) for OLA, NLA and hybrid algorithms. Propensity score has been used in other 

area for estimating the effect of a treatment, policy or other causal effects. We will show the effect of new 

metric as compared to OLA and NLA metrics. We show that hybrid algorithm is better in terms of both error 

metrics. Thus there are several approaches to approximate data linearly: ordinary linear least square regression 

(OLA), (new) normal linear least square regression (NLA), singular value decomposition linear least square 

regression (SVD), (new) hybrid linear least square regression (HLA).  To measure the accuracy of 

approximation, there are several metrics: quantitative and qualitative. Knowing what technique and metric to 

use makes all the difference in analysis and makes most out of data.  That way one spends less time on 

justifying the conclusions. This is also the intent of this paper. 

The paper is organized as Section2 describe OLA and an efficient computation by mean-centering data 

formulation, Section 3 derives new NLA, Section 4 describes SVD and it connection to NLA, Section 5 gives 

ABSTRACT 

In statistical analysis, the accuracy of approximation is a function of (1) data representation, (2) 

approximation technique and (3) the metric used for error measurement. For ordinary linear least 

square approximation (OLA), the existing formulation of error measurement is not satisfactory for 

many applications. Conventionally, ordinary linear least square approximation (OLA) technique 

has been considered as the best fit regression line for linear trend data.  Based on domain 

knowledge, several versions of OLA have been developed such as polynomial regression for 

engineering, exponential regression for radioactive decays, bilinear regression for saturated 

growth, logistic regression for medical prognosis etc. They are all reformulations of OLA using 

prior domain knowledge, for supervised learning. Singular Value Decomposition (SVD) is also 

used for ranking, prediction and recommendation systems.  The robustness of SVD approximation 

is attributed to (1) the SVD line is sensitive to temporal variation in time variables whereas OLA 

is not, it makes OLA less suitable for time sensitive data, and (2) SVD has smaller approximation 

error than OLA regression line. But SVD has inherent weaknesses. Herein we present a hybrid 

algorithm that supersedes the approximation accuracy and performance of both OLA and SVD. 

Visualization is a preferred way to ascertain the quality of a new algorithm, we use Matlab 

R2017b and linear regression in simple two dimensional space with one independent variable and 

one dependent variables to demonstrate the hybrid algorithm.  
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new hybrid approximation algorithm and its implementation, error analysis of OLA,NLA, SVD, and Hybrid 

algorithms is provided with respect to both metrics , Section 6 is conclusion. 

 

 

 

II. BACKGROUND 

Data is represented as a matrix of real or discrete values. It is easier to work with data if it is regularized. Simple 

example of regularization is mean-centered the data, it may be standardized to unit standard deviation. 

Ordinarily the reference point of data is the origin, mean-centering implies that the centroid of data is translated 

to the origin to make it the reference point. We will soon see how mean-centering simplifies the computations as 

well. 

Let the data be represented by an m×n matrix A. To mean-center the matrix, if x is column of A, it is translated 

to x - 𝑥  and if y is row of A, it is replaced with y - 𝑦 , where the mean of x and y is defined as   𝑥 =
 𝑥𝑖𝑖

𝑚
 , and  

𝑦 =
 𝑦𝑖𝑖

𝑛
.  For matrix operations most of the linear transformations are performed by means of matrix 

multiplication, centralization is a linear transformation [4].  There is a clean transformation Cm to mean-center 

the columns of A as follows. Let Im be m𝑥m identity matrix, em be a column vector of m ones, and Cm = Im-

emem
T
/m.  This Cm is called the column centralizer. Let us see how CmA centralizes the columns of A. For 

example, if x is a column vector then  

Cmx =Imx -emem
T
x/m 

= x -emem•x/m  

= x -𝑥 em 

or in short x -𝑥  where 𝑥   is the mean of x.  This Cm applied on the left of A, it centralizes columns of the matrix.  

Similarly, it can be shown that if Cn is multiplied on the right of A,  the ACn mean-centers the rows of A. For 

example for row vector y:  

yCn = ( y In -yenen
T
/n) 

= y - y •enen
T
 /n  

= y -𝑦 en
T
,  

mean-centers the row vector y.After performing analysis on mean-centered data, reference point can be 

translated back. This is a standard technique used for visualization [5],[6]. 

 

2.1. Ordinary Linear Regression 

2.1.1 Conventional formulation  

For input data n×2 matrix, columns are x, y coordinates of data points, we find a linear least square 

approximation line. Before doing any approximation, it is assumed that data is accurate, else prediction will also 

be inaccurate.  First for line y = a + b x, we need to calculatetwo parameters a and b for minimizing of   

f(a,b)= (𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)
2

𝑖=1,𝑛 .   

That leads to two equations 
𝜕𝑓 (𝑎 ,𝑏)

𝜕𝑎
 =   (𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)𝑖=1,𝑛 = 0 (1) 

and  

 
𝜕𝑓 (𝑎 ,𝑏)

𝜕𝑏
=    (𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)𝑥𝑖𝑖=1,𝑛 = 0 (2)  

Let 𝑥 =
 𝑥𝑖𝑖

𝑛
,  𝑦 =

 𝑦𝑖𝑖

𝑛
,  𝑥𝑦   =

 𝑥𝑖𝑦𝑖𝑖

𝑛
,   𝑥2   =

 𝑥𝑖
2

𝑖

𝑛
,  the first equation (1) becomes 𝑦 = 𝑎 + 𝑏𝑥  which implies that 

the regression line passes through the centroid (𝑥 ,𝑦 ). The second equation (2) implies that  𝑥𝑦   = 𝑎𝑥 + 𝑏𝑥2   .   
These two equations  

  𝑦 = 𝑎 + 𝑏𝑥  and  𝑥𝑦   = 𝑎𝑥 + 𝑏𝑥2    
can be solve for a and b to yield 

b = 
𝑥𝑦    −𝑥 𝑦 

𝑥2    −𝑥 2
    and   a = 

𝑥2    𝑦 −𝑥 𝑥𝑦    

𝑥2    −𝑥 2
 

However since 𝑦 = 𝑎 + 𝑏𝑥  , once b is known, the offset/bias term a can be efficiently computed from a = 

𝑦 − 𝑏𝑥 .  
It may be noted that for mean-centered data, 𝑥  = 0, 𝑦  = 0, it results in a=0.    

 

2.2 For Mean-Centered formulation 

Mean-centering allows us to consider regression line through the origin because centroid is translated to the 

origin. The bias term a becomes zero automatically and the data becomes unbiased.  To take advantage of 

regularization, the OLA can be reformulated for mean-centered data, we need to compute only one parameter b 

for  
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minimizing f(b)=1/n∑i=1,n(yi-bxi)
2
 

or  

f(b) =1/n∑i=1,n(yi-bxi)
2 

 

 ≡1/n∑i=1,n (yi
2 
-2byixi+ b

2
 xi

2
) 

≡ 𝑦2   − 2𝑏𝑥𝑦   + 𝑏2𝑥2    
 

That is  

f(b) = 𝑦2   − 2𝑥𝑦   𝑏 + 𝑥2   𝑏2 

 

Minimization criteria requires that f‟(b) = 0. This leads to−2𝑥𝑦   +  𝑥2    2𝑏 = 0 or  

b =  
𝑥𝑦    

𝑥2     

So for mean-centered data, OLA line is  

y =bx, with b =  
𝑥𝑦    

𝑥2     

which simpler expression than the raw data computations. 

However, if we want to go to the original frame, original reference point, we translate the origin to the centroid  

then line becomes  

y - 𝑦  = b(x-𝑥 ) or y = 𝑦  - b𝑥  + b x  

that is  

 y = a+ b x where a =𝑦  - b𝑥  
In this case only b is computed, a is automatic. 

This gives a line through (0,a) and along the direction 
(1,𝑏)

  (1+𝑏2)
 

 

In essence,this is a common sense three step approach. The three steps are, (1) mean-center the data, translate 

the centroid (𝑥 ,𝑦 ) to the origin (0,0), (2) find the direction of least square error approximating line through the 

origin, (3) translate back to centroid (𝑥 ,𝑦  ) for original frame of reference.   Figure 1 shows that raw data 

regression line is identical to mean-centered data line after it is translated by the centroid.  In Figure 1. Green 

line is least square regression line on raw data of 20 points, the blue line represents OLA regression line on 

mean-centered data. Except for computer arithmetic, the two lines are identical. The computations using mean-

centered data are simpler. 

This regression line is noise sensitive. If one of data points is an outlier, it can create a large adverse effect on 

the outcome. See the following example Figure 2. Later we will see how to improve on this shortcoming. 

Example: Noisy data, vertical distances no not realistic. In the Figure 2, we can see that if fifth point is noisy, it 

has affected the entire approximation line. In particular for the neighboring points, there is glaring offset.  

Experiments show that one noise point can adversely affect the approximation line in the immediate 

neighborhood of noisy point. 

 

 
Figure1.  Data points and regression line 
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Figure2. Regression line after noise perturbed point5 

 

III. NORMAL LINEAR LEAST SQUARE APPROXIMATION (NLA) 

The OLA line is not as close to the data points because distances are measured along the y-axis.  If distances are 

measured along the normal (perpendicular) to the approximation line, then line is more representative of data.  

The normal ( perpendicular, orthogonal) distance problem is formulated below. For the reasons stated above, we 

assume that the data is mean-centered, else centralizer transformation can be used to mean-center it.  The 

problem becomes that of finding the value of only b that minimizes f(b) where 

f(b) = 1/n  (
𝑦𝑖−𝑏𝑥𝑖

 1+𝑏2
)2

𝑖=1,𝑛    or  

 f(b) =  1/n  
(𝑦𝑖

2+𝑏2𝑥𝑖
2
−2𝑏𝑥𝑖𝑦𝑖)

1+𝑏2𝑖=1,𝑛 =
𝑦2    +𝑏2𝑥2    −2𝑏𝑥𝑦    

1+𝑏2  

Thus, for local minima of  f(b) = 
𝑦2    +𝑏2𝑥2    −2𝑏𝑥𝑦    

1+𝑏2  (1) 

 

setting the first derivative of f(b) w.r.t b to zero, f‟(b)=0,  we get 

𝑥𝑦   𝑏2 +  𝑥2   − 𝑦2    𝑏 − 𝑥𝑦   = 0  (2) 

Since it is a quadratic, it has two local solutions, b1, b2 

 

b = 
− (𝑥2    −𝑦2    ) ± (𝑥2    −𝑦2    )2+4 𝑥𝑦    2

2 𝑥𝑦    
   (3) 

 

If f”(b1)>0, the b1 is a local minima. In case f”(b1)>0 and f”(b2)>0 , we have two local minima, compare f(b1) an 

f(b2) whichever is smaller that is the value of b we use for minima. Once b is computed, we have a line through 

the origin (0,0) along the direction 
(1,𝑏)

  (1+𝑏2)
 

The ordinary least square line and normal least square line are shown in Figure 3.  

 

 
Figure 3. Cyan dots are the data points, red line is OLA line and blue line is NLA line.Red dots and blue 

dots are the predictions by the respective methods (OLA,NLA). 
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Further, the approximation error in both cases (OLA and NLA) is minimum depending on how the error is 

measured. Visual inspection shows that majority of the cyan dots are closer to blue line dots than the cyan dots 

to red line dots, see Figure 3.  This visualization justifies, to some extent, to prefer NLA over OLA. We will 

give formal justification later. Since NLA is based on calculus, it is complex due to derivatives, we explore an 

easier implementation of this idea by means of linear algebra,  singular value decomposition (SVD). 

 

IV. SINGULAR VALUE DECOMPOSITION (SVD) 

This normal least square approximation (NLA) line can also be obtained directly by using singular value 

decomposition (SVD).  Today, singular value decomposition is used in many branches of science, in particular 

computer science and engineering, psychology and sociology, atmospheric science and astronomy, health and 

medicine etc. [7],[8],[9],[10],[11],[12],[13]. It is also extremely useful in machine learning and in both 

descriptive and predictive statistics. For the sake of completeness, we give brief description of SVD. 

Singular Value Decomposition (SVD) is a matrix factorization technique generalizing eigen-decomposition. 

Every positive semi-definite real matrix can be decomposed into three matrix factors: left singular vectors 

matrix, right singular vectors matrix and a diagonal matrix of singular values on main diagonal. The goal is not 

to recreate the matrix, but to create the best linear least square approximation [14], [15]. There are various 

advantages of SVD.   First, Principal Component Analysis (PCA) is a generalization of eigen-decomposition to 

symmetric matrices with orthogonal eigenvectors such that A = VDV
-1  

= VDV
T
.   In our case, A is data matrix, 

it not a square. But A
T
A is a symmetric square positive semi-definite matrix,  then A

T
A = VDV

T
, [16],[17],[18]. 

Besides other benefits of this factorization, we are interested in direction vector only.  The columns of V are 

eigenvectors of A
T
A corresponding to eigenvalues arranged in descending order. Since we are interested in 

direction of approximation line, it is first proved that direction vector of NLA corresponds to first eigenvector of 

SVD [19], [20],[21].    

We derive the direction v so that sum of squares of distances of points from v is least. Since data is mean-

centered the line passes through the origin.  As a standard, vectors P are column vectors, thus rows of A are row 

vectors, P
T
. The vector P can be written as the sum of a vector along unit vector v and a unit vector w 

orthogonal to v, that is, using vector notation P = P•v v+ (P-P•v v) = xv+yw.  This means that minimizing the 

distance y amounts to maximizing the component x. We are to maximize over all data points Pi. The problem 

becomes that of maximizing  

∑i |Pi•v|
2    

for some vector v, that is of interest to us. Now  

∑i |Pi•v|
2
 = ∑iPi•vPi•v= ∑iv•PiPi•v 

= ∑iv
T
PiPi

T
v= v

T
 (∑iPiPi

T
)v

 

= v
T
 (A

T
A)v.   

This means that ∑i |Pi•v|
2
 is maximum if v is an eigenvector of A

T
A and corresponds to largest eigenvalue of 

A
T
A. Similarly all the other eigenvectors can be obtained incrementally  one at a time, constraining each vector 

orthogonal to the previous eigenvectors. Thus SVD is computed iteratively in descending order of eigenvalues 

and corresponding eigenvectors orthogonal to the previously computed eigenvectors. It may be noted that 

largest eigenvalue refers to the largest spread of data along the eigenvector.  Along the direction v1 the spread of 

projections of data on v1 is larger than that for v2, see Figure 4(d).  

For example, P‟s are data points in 2D, v1, v2 are eigenvectors corresponding to largest eigenvalues. The NLA 

requires only v1, the direction with largest eigenvalue, and with largest data spread.   

 

 

(a) data points, 
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(b) eigenvectors 
 

 

(c) data, axes, eignevectors 
 

 

(d) everything with 

 

projections on eigenvectors.
 

Figure 4. (a) Four data points {P1, P2, P3, P4} with standard axes, (b) Four data points {P1, P2, P3, P4} with 

eigenvectors,  axes of data trend, (3) data points, standard xy-axes, eigenvectors frame, (4) both xy and v1v2, 

frames with data points and projections on v1 and v2.  

Uniqueness of Eigenvectors.  As a side remark, for the matrix, any non-zero multiple of an eigenvector is again 

an eigenvector. To make the eigenvectors unique, they are normalized to unit vectors.  But if u is unit 

eigenvector, then –u is also a unit vector, see Figure 5(a) for Matlabsvd computed eigenvectors [19],[20]. In the 

literature. It is an accepted convention to make the first non-zero component positive in the eigenvector, see 

Figure 5(b).  Since eigenvectors are ordered, we use ordering to make the k-th element of k-th vector to be 

positive, see Figure 5(c) that makes the vectors look more natural like a right handed system. In case, the kth 

elements is zero, then the first non-zero element is made positive. This is the approach we prefer to use [21]. 

Incidentally, recall that the direction vectors in OLA and NLA had first component as positive. 
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(a) 

 
(b) 

 
(c) 

Figure 5.  (a) Eigenvectors as computed by Matlabsvd, (b) each vector has first no element positive, 

(c) first eigenvector has first component positive, second eigenvector has second component positive,  

so the eigenvectors form a right handed system. 

 

V. HYBRID ALGORITHM DESIGN 

We design a hybrid algorithm taking the best of OLA and NLA/SVD approximation lines. For each observed 

point, (x0,y0),  we have seen in Figure 6  that there is a corresponding estimated point (xR, yR) on regression line 

and  an estimated point (xS, yS) on SVD line.  For hybrid algorithm, define the approximation point (xH, yH) to 

be that point which is both ways closer to the observed point (x0,y0).If (x0,y0) is an observed value, (xH,yH) = (xR, 

yR)  is estimated value corresponding to the OLA line y=a+bx. The vertical distance is along y direction, xH= x0. 

The distance between (x0,y0) and  (xH,yH) is the y-distance, the OLA regression distance  dR= |y0-yR|.  For 

normal distance from NLA or SVD approximation line, it is along perpendicular to the line, it turns out that 

(xH,yH)= (xS, yS)  implying xH≠ x0, the distance between (x0,y0) and  (xH,yH) is Euclidian normal distance dS = √( 

(x0-xS)
2
 + (y0-yS)

2 
).It is clear from Figure 6 that for some points in observed data, dR<dS while for some points 

dS<dR. However, green dot are closer to cyan dots than corresponding dots on red line or blue line.  In each 

method, the total error E is sum of squares of distances (errors) for all data points, question arises which one (ER 

for OLA and ES for SVD) is better. There is no denying the fact if vertical distances are used for both lines, then 

ER<ES and if normal distances are used for both lines, then ES < ER.  Then how does the user determine which 

one preferable to use:  OLA or NLA? For each input we will determine approximate line that represents the 

input data no matter how the error is computed,see Figure 6 for green color dots, these are closer to cyan dots 

than red line dots or blue line dots. Instead of measuring the quantitative distance we define aqualitative metric 

that is more useful in visualization. 
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5.1. Hybrid algorithm 

Input: array of x and y mean-centered data values 

Output: hybrid approximation line points (xH,yH),where(xRyR) is on OLA, (xSyS) is on SVD line 

Algorithm: 

1. Calculate a and b for OLA regression for observed values x,y 

Calculate predicted values by linear regression yR = a+bx 

Calculate  approximation error ER 

2. Calculate A=[x ,y], x, y are columns of matrix A. 

Calculate SVD  [U S V] = svd(A) 

Use first column of V to get b.  a is automatic 

Calculate xS,yS of projected points [xS,yS] on columns of V that is AVV‟     

Calculate approximation error ES 

Compare error ER and ES 

3. Calculate hybrid xH, yHusing variation of relaxation method  

for all points(xR, yR),(xS, yS) 

if d( (xS, yS), (x0, y0))<= d( (xR, yR), (x0, y0)) 

  (xH, yH) = (xS, yS); 

else  

(xH, yH) = (xR, yR); 

end 

end  

Calculate error EH 

Compare error ES, ER, EH 

Double approximation, using estimated data point find an SVD line (xH, yH) 

Calculate and Compare by propensity values  

4. xH, yH are arrays of predicted coordinates on hybrid line.  

 

 
Figure 6. Cyan dots is data points, Red line is OLA line , Blue line is NLA/SVD line, Green dots are 

hybrid approximation dots 

 

Note over the entire data set, red dots have smallest error from cyan dots when distances are measured along y, 

while blue dots have smallest error from cyan dots when distances are measured along the normal to the line.  

Each green dot is at a smaller of the two distances from cyan dot, interestingly, it does not mean that green dots 

have overall smaller error than the two, in fact it will be bigger than each. The green dots can be connected by a 

polygonal line see Figure 7 or a SVD straight line approximation. We have seen that NLA is better than OLA. 

We may use SVD to approximate data (xH,yH) to a line, see Figure 8. 
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Figure 7. Hybrid points connected by a polygonal line. 

 

 

 
Figure 8. Hybrid points approximated by SVD line. 

 

 

5.1. Precision and Propensity 

The linear least square approximation error is quantitative measure.  The precision and propensity is a 

qualitative measure of accuracy[22],[23],[24].  Quantitative error is a function of the location of data points, 

propensity depends on count of data points for pointwise binary outcome from comparing error due to a pair of 

methods.  This is similar to precision metric used in Data mining community. Percentage of data truly more 

close to OLA, SVD, Hybrid lines pairwise.  Figure 8, it is clear that green construction is preferable, but the 

quantitative error comparison is inconclusive.  However, we use propensity metric to determine the level of 

accuracy hybrid line has as compared to OLA and SVD. When errors are measured in the respective methods, 

we can calculate the propensity value for one line relative to the other line to conclude the preference 

irrespective of which method is used to calculate errors. It is determined that overall SVD/NLA approximation 

is better approximation than OLA, see Figure 9.  Similarly propensity metric shows, that hybrid line is 

preferable to OLA and SVD lines.  

 

 
Figure 9. The data points, OLA,SVD, and Hybrid approximation lines 
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5.3.  Temporal Sensitivity 

If the time interval for a treatment is changed, we expect to see the temporal change in response. Using OLA, 

we see that there is no change, that is error computation remains unchanged, see Figures 10-13. Figure 14 is the 

visual summary of quantitative and qualitative error in the methods. Using the same data set, on scaling the time  

 

interval, the NLA/SVD and Hybrid algorithms respond positively to the changes. This suggests that OLA is not 

suitable for such applications. In the example we also notice that as the slope of the hybrid line increase, the 

error decreases. Experiments confirm that slop of 45 degrees if brake even point with maximum error. Slope 

below or above accounts for reduction in error. For comparison of the three algorithms, see Table 1. It shows the 

computed direction vectors of the approximation lines, approximation error in the Euclidean distance metric, 

and propensity how close is data to one formulation vs the other formulation. 

 

 
Figure 10  Relative errors one time interval [0.01,1.56] 

 

 

 
Figure 11  Relative errors one time interval [0.01,1.25] 

 

 

 
Figure 12  Relative errors one time interval [0.01,0.93] 
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Figure 13  Relative errors one time interval [0.01,0.62] 

 

 
Figure 14. Green line shows percentage of Hybrid points closer to data points as compared to OLA.  

 

Purple lineshows percentage of SVD  points closer to data points as compared to OLA. Blue line shows 

percentage of error in OLA. Yellow and red (on top of each other) percentage of error in SVD and Hybrid 

algorithms. 

 
 

VI. CONCLUSION 
For approximation, the ordinary linear least square approximation (OLA) regression is suitable for continuous 

real data, classification is used for discrete data, normal linear least square approximation (NLA),  SVD may be 

used for discrete and continuous data best approximation, and for compression. Here we used OLA and NLA 

first to compare and remove noise by virtually using OLA and NLA. The hybrid data is then approximated by 

using NLA. It is determined that hybrid algorithm outperforms the two algorithms when applied individually. 

The statistician in this area will benefit from the hybrid linear least square approximation algorithm. 

OLA was found to be insensitive to data spread, whereas SVD was implicitly modifying the independent 

(temporal) variable of the original input in pursuit of lower error. We designed a hybrid algorithm that 

overcomes the shortcomings and supersedes the accuracy of existing algorithms.   From the experiments, it 

follows that error is least for lines that are almost horizontal or vertical, the breakeven point occurs as the slope 

of the line becomes closer to 45 degrees.  NO matter what the slope is, the new hybrid regression line error is 

always bounded above by the error of OLS regression line. It is interesting to note that OLA remains unchanged 

while new regression line approximation error responds to the slope variation. We also showed how to improve 

Matlabsvd with correct directions of eigenvectors, a natural technique.  We designed and implemented a hybrid 

algorithm that supersedes both accuracy and efficacy. The algorithm was implement on MAC OS Seirra v 

10.13.4, IntelCire i5, 8GB 1600MHZ using Matlab R1700b. 
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