

The Effect of Annealing Temperature on the Physical Properties of **Electron Beam Evaporated Cuprous Oxide Thin Films**

V. Sravanthi¹, T. Srikanth¹, R. Subba Reddy¹, A. Sivasankar Reddy¹*, P. Sreedhara Reddy², B. Radha Krishna³, Ch. Seshendra Reddy⁴

¹Department of Physics, Vikrama Simhapuri University P.G. Centre, Kavali -524201, A.P., India ²Department of Physics, Sri Venkateswara University, Tirupati- 517502, A.P., India ³Department of Physics, NBKR Institute of Science and Technology, Vidyanagar-524413, India ⁴Department of Materials Science and Engineering, Harbin Institute of Technology, University Town, Shenzhen, 518055, China

Corresponding author: A. Sivasankar Reddy

ABSTRACT

Cuprous oxide (Cu₂O) thin films were prepared on glass substrates using electron beam evaporation and studied the effect of annealing temperature on the compositional, structural, microstructural, electrical and optical properties. From the XRD results, (111) is preferred orientation and polycrystalline nature increases with annealing temperature. The obtained lattice parameter values are lower than the bulk value. By increasing the annealing temperature the grains grew much bigger and islands also appeared. The electrical resistivity and optical band gap of the films decreases with increasing of annealing temperature.

KEYWORDS: Cuprous Oxide, Thin Films, Electron beam evaporation, Temperature

I. **INTRODUCTION**

Cuprous oxide(Cu₂O) is p-type semiconductor with direct band gap of 2.1 eV, non-toxicity, low production cost and high absorption coefficient, used in solar cells, sensor arrays, batteries, transparent displays, energy converting devices [1-7]. In the literature, various thin film deposition methods such as electrochemical deposition [8], chemical vapour deposition [9], spray pyrolysis [10], magnetron sputtering [11], and electron beam evaporation [12] have been attempted for the deposition of Cu₂O films. In the literature, very few reports on the electron beam evaporated Cu₂O films. Electron beam evaporation (EBE) is an efficient technique for the thin film growth because of material loss is minimal, uniformity of the films over the substrate, useful for depositing alloy and compound materials, films having the stoichiometry close to the bulk. In the present investigation, the Cu₂O films were prepared on the glass substrates and studied the effect of annealing temperature on the physical properties of the films.

II. **EXPERIMENTAL**

The Cu₂O thin films were deposited on the glass substrates by electron beam evaporation using Cu₂O pellets. The vacuum system is capable of creating an ultimate vacuum of $4x10^{-4}$ Pa. the vacuum chamber was pumped with the combination of diffusion pump and rotary pump. The pressure was measured using a Pirani-Penning gauge combination. The pellet was prepared using high purity (99.99%) Cu₂O powder. The pellets were kept in a watercooled copper crucible. The thickness of the films was monitored by quartz crystal thickness monitor and the thickness of the films was around ~190 nm. The films deposited on unheated substrate (~303K) and subsequently post-annealed at different temperatures (373, 573K and 673K) in air. The deposition parameters maintained during the preparation of Cu₂O films are given in Table 1.

The chemical composition of the films was analyzed by Energy Dispersive Spectroscopy (EDS) attached with SEM of model Oxford instruments Inca Penta FET X3. The crystallographic structure of the films was analyzed by Seifert 3003TT X-ray diffractometer (XRD), using Cu K α radiation (k = 0.1546nm). The microstructure and surface morphology of the films was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. The optical transmittance of the films was recorded using a UV-Vis-NIR double beam spectrophotometry. The electrical properties of the films were measured by using standard four-probe method.

Deposition method	: electron beam evaporation
Power source	: e-beam power supply (3kW)
Pellet	: $Cu_2O(10 \text{ mm dia and 3 mm thick})$
Substrates	: Glass
Target to substrate distance	: 60 mm
Ultimate pressure (P _U)	$: 4x10^{-4} Pa$
Evaporation pressure (P_W)	$: 3x10^{-2}$ Pa
Substrate temperature (T_s)	: 303K
Accelerating voltage	: 4 kV
Filament current	: 30 mA
Deposition time	: 8 to 12 min
*	

Table.1. Deposition parameters of Cu₂O films during deposition

III. RESULTS AND DISCUSSION

Fig.1. shows the EDS spectra of electron beam evaporated Cu₂O films at different annealing temperatures. From the EDS results, no reflections of impurity were detected and obtained composition results were listed in Table 2. The as deposited films show high oxygen content and it decreased after elevating the annealing temperature.

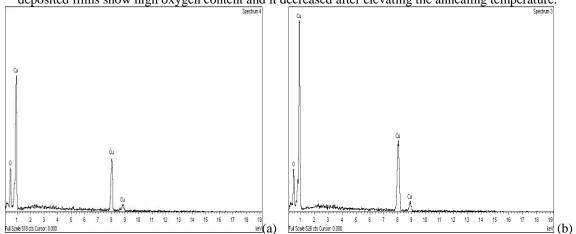


Fig. 1. EDS spectra of Cu₂O films (a) as deposited(373 K) and (b) annealed films(673K)

Table 2: The compositional results of Cu₂O films by Energy Dispersive Spectroscopy (EDS)

Sample history	Element	Atomic percentage
As deposited (303K)	O K	37.12
Annealing temperature of	Cu K	62.88
673K		
	O K	34.83
	Cu K	65.17

3.1 Structural properties

The crystallinity of the films was highly influenced by annealing temperatures. Fig.2. shows the XRD patterns of Cu_2O films at different annealing temperatures. The as deposited films (303K) exhibited broad peak and corresponding to (111) orientation of Cu_2O . The peak width decreased after annealed the films at 373K. On further increasing the annealing temperature, cyrstallinity and peak intensity of the films was increased greatly and an additional peak of (200) was appeared along with (111) orientation. At low temperature the vapour species have low surface mobility and it prevent the full crystallization of the films[13] hence, the films exhibited poor crystallinity.

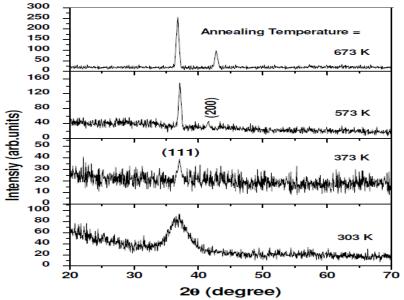


Fig. 2. XRD patterns of Cu₂O films at different annealing temperatures

The crystallite size of films was increases more rapidly at higher annealing temperatures. The average crystallite size of films was calculated by using Scherrer's equation [14], and listed in Table 3. Sravanan et al. [15] observed the crystallite size increased with annealing temperature due to the coalescence of smaller grains by the improving in the thermal agitation of the lattice.

The dislocation density (δ) of the films is defined as the length of dislocation lines per unit volume and was calculated by the following equation [16],

 $\delta = 1/D^2$

The dislocation density (δ) of the films decreased with increasing of annealing temperature (Table 3), indicating the reduction of lattice defects and grain boundaries.

----- (1)

The lattice parameter (a) of the films was calculated using the following relation

 $d = a / (h^2 + k^2 + l^2)^{1/2}$ ------(2)

where h, k and l are the Miller indices. The interplaner spacing (d) was calculated from the X-ray diffraction data using the Bragg's relation. The lattice parameter of the films increased with increasing of the annealing temperature (Table 3) and the obtained lattice parameter values are lower than the standard value (ICDD = 4.269Å). Wang et al. [17] observed that the decreasing of the lattice parameter with increasing the annealing temperature in rf magnetron sputtered Cu₂O films.

Table 3: Crystallite size, dislocation density, lattice parameters and RMS roughness values of Cu ₂ O films at				
different annealing temperatures.				

uniterent annearing temperatures.						
Annealing	Crystallite	Dislocation	Lattice	RMS		
temperature	Size	density	parameter	roughness		
	(nm)	(lines/nm ²)	(Å)	(nm)		
303K	5	4.0×10^{-2}	4.147	5.6		
373K	12	6.9×10^{-3}	4.205	4.9		
573K	20	2.5×10^{-3}	4.233	4.1		
673K	26	1.5×10^{-3}	4.241	3.6		

3.2. Microstructure and surface morphology

The SEM images of Cu_2O films at different annealing temperatures are shown in Fig.3. The as deposited films exhibited small grains and islands due to large number of structural defects and lattice disorder. After annealed the films the microstructural defects are reduced and consequently grain size becomes bigger and uniform.

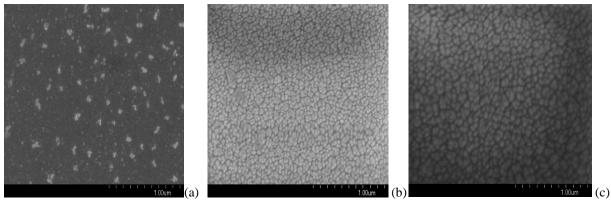


Fig.3. SEM images of Cu₂O films at different annealing temperatures: (a) 303K, (b) 573K and (c) 673K

The surface morphology of films was strongly influenced by the annealing temperature. Fig.4. shows the threedimensional AFM images of Cu_2O films at different annealing temperatures. From the images, the films deposited at room temperature exhibited smaller grains with irregular shapes and grain islands. By increasing the annealing temperature the grains grew much bigger and islands also appeared. The root mean square (RMS) surface roughness of films was measured and listed in Table 3. The roughness of the films decreases gradually with increasing the annealing temperature. This was due to improvement of the crystallinity and reduction of the grain boundaries.

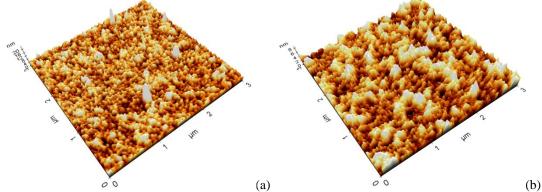


Fig.4. AFM images of Cu₂O films (a) as deposited (303K), (b) annealing temperature of 673K

3.3. Electrical and Optical properties

The electrical properties of the films are very sensitive to the structural defects and surface roughness. The electrical properties of Cu_2O films at different annealing temperatures are listed in Table 4. The electrical resistivity and carrier concentration of the films decreases whereas, mobility increases with increasing of the annealing temperature. Li et al. [18] observed that the Hall mobility of Cu_2O films increases with increasing of annealing due to diffusion of oxygen atoms or grains or defect passivation during annealing process.

It is known that the optical properties of the films are highly influenced by the density of defects, crystallinity and surface roughness of the films. Fig.5. shows the optical transmittance spectra of Cu_2O films at different annealing temperatures. The optical transmittance of the films increases with increasing annealing temperature from 303K to 573K and decreases at higher temperature of 673K. This was may be due to increasing of the oxygen vacancies at higher temperatures. The absorption edge of the films shifted higher wavelength side with the increase of annealing temperature.

The optical band gap (E_g) of the films was evaluated from the extrapolation of the linear portion of the plots of $(\alpha h\nu)^2$ versus $(h\nu)$ (α is the absorption coefficient, h ν is the photon energy). The obtained optical band gap values of Cu₂O films at different annealing temperatures are listed in Table 4. The band gap decreases from 2.37 to 2.27eV with increasing of annealing temperature. The decreasing of band gap values with increases of annealing temperature was due to reduction of structural defects and enhancement of crystallinity of the films.

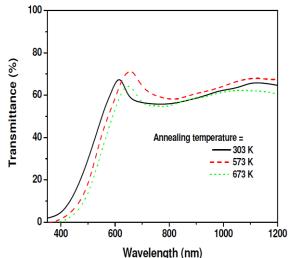


Fig.5. Optical transmittance spectra of Cu₂O films

Sample	Resistivity	Hall mobility	Carrier	Transmittance	Band gap
History	(Ωcm)	$(cm^2/V.sec)$	concentration (cm ⁻³)	(%)at λ=650 nm	(eV)
T _a =					
303K	82	1.8	4.2×10^{16}	61	2.37
573K	49	5.4	2.4×10^{16}	70	2.31
673K	38	11	$1.5 \mathrm{x} 10^{16}$	65	2.27

IV. CONCLUSIONS

 Cu_2O thin films have been deposited on glass substrates using electron beam evaporation. The films exhibited only Cu_2O phase, no impurities such as Cu, CuO was observed. The microstructure and surface morphology of the films improved with annealing temperature. At the annealing temperature of 573K the films exhibited highest transmittance of 70% with electrical resistivity of 49 Ω cm. The optical band gap of the films decreased from 2.37 to 2.27eV with increasing of annealing temperature.

REFERENCES

- [1]. H.Y. Xu, J.K. Dong, C. Chen, Materials Chemistry and Physics 143:713, 2014.
- [2]. J. Gan, S. Gorantla, H. N. Riise, Ø. S. Fjellva, S. Diplas, O. M. Løvvik, B. G. Svensson, E. V. Monakhov, E. Gunnæs, Applied Physics Letters 108:152110, 2016.
- [3]. J. Xue, Q. Shen, W. Liang, X. Liu, L. Bian, B. Xu, Surf. Coat. Techno. 216:166, 2013.
- [4]. D. Barreca, E. Comini, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieri, E. Tondello,
- [5]. Sensors Actuators B Chem. 141:270, 2009. C.L. Hsu, J.Y. Tsai, T.J. Hsueh, Sens. Actuators B 224:95, 2016.
- [6]. F. Hu, K.C. Chan, T.M. Yue, C. Surya, Thin Solid Films 550:17, (2014).
- [7]. H.A. Al-Jawhari, Mater. Sci. Semicond. Process. 40:241, 2015.
- [8]. A. Ashida, S. Sato, T. Yoshimura, N. Fujimura, J. Crystal Growth, 468:245, 2017.
- [9]. S. Eisermann, A. Kronenberger, A. Laufer, J. Bieber, G. Haas, S. Lautenschlager, G. Homm, P.J. Klar, B.K. Meyer, Phys. Status Solidi A 209:531, 2012.
- [10]. R.D. Prabu, S. Valanarasu, I. Kulandaisamy, V. Ganesh, Mohd Shkir, A. Kathalingam, J Mater Sci: Mater Electron 28:6754, 2017.
- [11]. H. Sun, S-C. Chen, C-K. Wen, T-H.Chuang, M.A.P. Yazdi, F. Sanchette, A. Billard, Ceramics International 43:6214, 2017.
- [12]. R. Oommen1, U. Rajalakshmi, Sanjeeviraja, Int. J. Electrochem. Sci., 7:8288, 2012.
- [13]. ZW Chen, JKL. Lai, CH. Shek, J Non-Cryst Solids 355:2647, 2009.
- [14]. B.D. Cullity, Elements of X-ray Diffraction, second ed., Addison Wesley, London
- [15]. V. Saravanan, P.Shankar, G.K. Mani, J.B.B.Rayappan Journal of Analytical and Applied Pyrolysis 111:272, 2015.
- [16]. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, NewYork, 1974.
- [17]. Y. Wang, P. Miska, D. Pilloud, D. Horwat, F. M€ucklich, J. F. Pierson, J. Appl. Phys. 115:073505, 2014.
- [18]. F.M. Li, R. Waddingham, W.I. Milne, A.J. Flewitt, S. Speakman, J. Dutson, S. Wakeham, M. Thwaites, Thin Solid Films 520:1278, 2011.

V. Sravanthi " The Effect of Annealing Temperature on the Physical Properties of Electron Beam Evaporated Cuprous Oxide Thin Films" International Journal of Computational Engineering Research (IJCER), vol. 08, no. 02, 2018, pp. 59-63.