Cataloging Telugu Sentences by Hidden Markov Techniques

V. Suresh
Department of Computer Science and Engineering, Vignan’s Institute of Information Technology, Duvvada, Visakhapatnam, A.P., India
e-mail : vayasisuresh@gmail.com
Corresponding Author: *V. Suresh

ABSTRACT
Morphological based automatic cataloging for Telugu is present without requiring any machine learning algorithm or training data, in this paper. We believe that inflectional and agglutinating language, the critical information required for cataloging comes more from word internal structure than from the context and we show how a well designed morphological analyzer can assign correct catalogs and disambiguate many cases of catalog ambiguities too. We have used fine grained, hierarchical catalog set, carrying not only morph-syntactic information, but also some aspects of lexical and semantic information that is necessary or useful for syntactic parsing. We believe our approach can also be applied to other Dravidian languages. We give details of our experiments and results obtained.

Keywords: Cataloging, Morphology, POS cataloging, Telugu, Lexicon.

I. INTRODUCTION

Natural language processing (NLP) is to understand human or natural languages is the ultimate goal of research and to facilitate human-machine interaction through human language or natural language. To achieve such research goal, NLP people have focused on different sub tasks. Part of speech cataloging is one of such sub-task. Cataloging is the process of assigning short labels to words in a text for the purpose of indicating lexical, morphological, syntactic, semantic or other such information associated with these words. In computational linguistics part of speech cataloging also called grammatical cataloging is a classification system. When the focus is mainly on syntactic categories and/or sub-categories, this is also known as part-of-speech or POS cataloging. It may be noted that the term cataloging is broader than the term POS cataloging. One of the main reasons for incorporating a cataloging level between lexical and morphological levels on the one side and syntactic parsing on the other side is to reduce ambiguities. Syntactic parsing is more difficult for making catalog ambiguities multiply at an exponential rate.

The study of sentence structures are crucial to word categories or classes. In fact, they are more important than words. Each sentence has different words and different order. For example The Ram saw the running deer, and The running dear saw the Ram, and The Ram saw the deer running. Sentences having the same set of words can vary in meaning and the sentence structure difference can only be accounted.

Noun, verb and adjective are word classes such as also called 'Parts of Speech' (POS) by tradition. For the sake of convenience, we may use short labels, called catalogs, for these. For example, nouns may be indicated by N and verbs by V. POS Cataloging are the process of attaching such short labels to indicate the Parts of Speech for words.

Cataloging is usually intended to reduce, if not eliminate, ambiguities at word level and is only for its convenience. It is well known that syntactic parsing is at least cubic in computational complexity and having to consider several alternative interpretations for each word can exponentially increase parsing complexity.

Cataloging has been invented in NLP as an independent layer of analysis, sitting between morphology and syntax, mainly to help the syntactic parser to do better in terms of speed. Therefore, syntactic parsing is actually orders of magnitude simpler than what we usually think it is. To this extent, the importance of cataloging is reduced. As separate layers of analysis sitting between morphology and syntax, it is worth noting that linguistic theories never posited cataloging or chunking.

Date of Submission: 11-08-2017
Date of acceptance: 13-09-2017
1.1 About Telugu Language
Telugu is a morphologically rich language resulting in its relatively free-word order characteristics. Telugu nouns are inflected for number (singular, plural), gender (masculine, feminine, and neuter) and case (nominative, accusative, genitive, dative, vocative, instrumental, and locative). The principal parts of the verb morphology are the root, the infinitive, and the participles. There are three conjugations of Telugu verbs, each containing several classes of verbs. The five different verb forms (Present, Past, Future, and the Imperative, durative) are formed with the addition of personal affixes with some particles. All other categories of words can occur in any position in the sentence and the relatively free word order of Telugu normally has the main verb in a terminating position. Pure word based approaches for POS cataloging are not effective. Morphological analyzer can help in Assigning POS categories of a particular word. Before we get into designing a cataloger, we must ask what is the purpose of cataloging and where we get the information required to selecting a particular catalog out of all the possible catalogs for a given word in a given sentence. The general assumption in most cataloging work has been that this information comes from other words in the sentence. This is not always true. In the case of Dravidian, for example, we find that in most cases, information required for disambiguating catalogs comes from internal word structure, not from the other words in the sentential context. Morphology therefore does the major part of cataloging and there is no need for Markov models and things of that kind. In fact, we believe that the same approach can be effectively applied to all languages provided we change our view of what constitutes a word.

II. APPROACHES TO CATALOGING
There are mainly two approaches for POS cataloging 1) Linguistic or Rule-based approach 2) Machine learning or stochastic approach.
Rule-based cataloging is the oldest approach, in which there are two stages. In first stage, use a dictionary to assign all possible grammatical categories to each word. In the second stage, use a large list of hand crafted rules to identify the correct single catalog for each ambiguous word. Disambiguation is done by analyzing the linguistic features of the word, its previous word, its following word and other aspects. For example, if the previous word is article then the next word must be a noun. This information is coded in the form of rules. The rule-based catalogs are developed for European language. Rule based approaches for English achieved the best accuracy are 97.5 percent. For Indian languages a rule based POS cataloger for Tamil was developed and tested. It consists of 90 lexical rules and 7 context sensitive rules. It has given a precision of 92 percent.
The use of corpus makes stochastic cataloging techniques. The most common stochastic cataloging uses a HMM (Hidden Markov Model). Stochastic cataloging techniques can be either supervised/unsupervised/hybrid. In HMM the states usually denote the POS catalogs. The probabilities are estimated from a cataloged training corpus or the uncataloged training corpus in order to compute the most likely POS catalogs for the word of an input sentence. Stochastic cataloging techniques can be of two types depending upon the training data. Stochastic Supervised POS Cataloging requires pre-cataloged training corpus and uses HMM model whose parameters are calculated from cataloged training corpus. In POS cataloging task the input sentence is observed part, which is a sequence of words. POS catalogs are represented as states of the model. The states are hidden and we need to estimate state sequence for a given word sequence. We use the viterbi algorithm for computing state sequence, which is most likely to generate the observed word sequence. POS cataloging using HMM were developed for Bengali.
Stochastic Unsupervised POS Cataloging requires no cataloged training corpus, but instead use sophisticated computational methods to automatically induce catalog sets, and based on these they calculate the probabilistic values needed by stochastic cataloger.
Hybrid Model of POS cataloging, One way to achieve this is to have a combination of both supervised and unsupervised methods. Other way of hybrid model is to have combination of supervised and rule based method. A hybrid POS cataloger for Hindi, Bengali uses supervised HMM technique and a rule based system was developed. Other methods that are used for POS cataloging for English are condition random fields, decision trees. For Indian languages HMM based POS cataloger were developed and tested by various people, but the little amount of work is done in Telugu.
Machine learning approaches require training data. Generating training data is not an easy task and the quality and quantity may both be important considerations. Training data need to be large and representative. Labeled training data can be either generated completely manually or cataloged data generated by an existing cataloger can be manually checked and refined to create high quality training data and both of these methods have their obvious limitations. In practice, we will have to live with sparse data and smoothing techniques used may introduce their own artifacts.
Given the limited amount of training data that is practically possible to develop, a large and detailed catalog set will lead to scarcity of training data and machine learning algorithms will fail to learn effectively. Manual cataloging and checking also become difficult and error prone as the catalog set becomes large and fine-grained
and so there is a strong tendency to go for small, flat catalog sets in machine learning approaches. Such small catalog sets may not capture all the required and/or useful bits of information for carrying out syntactic parsing and other relevant tasks in NLP. Morphological features are essential for syntactic analysis in many cases. These have also been the conclusions of a practical experiment of using fine-grained morphological catalog sets reported by Schmid and Laws. Their experiments were carried out using German and Czech as examples of highly inflectional languages. Fine-grained distinctions may actually help to disambiguate other words in the local context. Flat catalog sets are also rigid and resist changes. Hierarchical catalog sets are more flexible. Thus the design of the catalog-set is strongly influenced by the approach taken for cataloging. Further, it is also influenced by the particular purpose for which cataloging is taken up. A dependency parser of a particular kind may need a somewhat different sort of sub-categorization compared to, say, parsing using LFG or HPSG. Reusability of cataloged data across applications is an issue. Although rule-based approaches may appear to be formidable to start with, once the proper set of rules has been identified through a thorough linguistic study, there are many things to gain. Linguistic approaches can give us deeper and far-reaching insights into our languages and our mind. Knowledge based approaches generalize well, avoiding over-fitting, errors can be detected and corrected easily, improvements and refinements are easier too. In a pure machine learning approach, we can only hope to improve the performance of the system by generating larger and better training data and re-training the system, whereas in linguistic approaches, we can make corrections to the rules and guarantee the accuracy of cataloging. Rule-based approaches are also better at guessing and handling unknown words.

In this paper, we present an approach that does not depend upon statistical or machine learning techniques and there no need for any training data either. we have chosen to render all Telugu words in Roman. No manual cataloging work is involved. We can afford to use a large, fine-grained, hierarchical catalog set and still achieve high quality cataloging automatically. We get both speed and accuracy.

III. MORPHOLOGY BASED CATALOGING

3.1 Architecture

There is only one critical question that we need to ask when it comes to cataloging – where can we find the crucial bits of information required to assign the correct catalog to a given word in a given sentence? Statistical approaches assume that the necessary information comes from the other words in the sentence. In many cases, only the words that come before the current word are taken into direct consideration. We believe, in sharp contrast, that the crucial information required for assigning the correct catalog comes from within the word. It is the internal structure of a word that determines its grammatical category as also sub-categorization and other features. True, there will be instances where the internal structure alone is not sufficient. Firstly, we find that such cases are not as frequent as you may be thinking. A vast majority of the words can be cataloged correctly by looking at the morphology. This is clearly true in the case of so-called morphologically rich languages. Secondly, in those cases where morphology assigns more than one possible catalog, information required for disambiguation comes mainly from syntax. Syntax implies complex inter-relationships between words and this cannot be reduced to a mere sequence of entities.

Statistical techniques are perhaps not the best means to capture and utilize such complex functional dependencies. Instead, chunking and parsing will automatically remove most of the tag ambiguities. Given this observation, we use simple pipe-line architecture as depicted in the figure below.

![Fig. 1 The cataloging architecture](image-url)
We keep going forward and we do not need to come back again and again to preceding modules. We carry with us all the necessary/useful information in the form of catalogs, each module adding or refining the information as we move on. The pre-processing module performs several useful tasks but the most important task is to identify words correctly. We find that this is double to a large extent in the case of Telugu at this stage itself. Where it is not feasible to divide given sentences into proper words, we proceed with morphology and after that, we will have sufficient and clear information required for obtaining proper words. This is one of the main tasks for the bridge module. Once we cross this morph-syntactic bridge, we can be sure that we are working only with the proper words and their catalogs. The lexicon assigns catalogs to words that appear without any overt morphological inflection. Morphology handles all the derived and inflected words, including many forms of sandhi. The bridge module combines the catalogs given by the dictionary and the additional information given by the morph, making suitable changes to reflect the correct structure and meaning where required. The overall catalog structure remains the same throughout, making it so much simpler and easier to build, test and use.

3.2 Morphology

Morphological features also very few. English morphology is very simple and direct to implement. The numbers of catalogs used for English POS cataloging system are not that large: it ranges from 45 to 203 (in the case of CLAWS C8 catalog-set). Also, average number of catalogs per token is low (2.32 catalogs per token on the manually cataloged part of the Wall Street Journal corpus in the Penn Tree-bank). The numbers of potential morphological catalogs in inflectional rich languages are theoretically unlimited. In English many of the unknown words will be proper nouns but in inflectional and/or agglutinate languages such as Indian languages, many common nouns and verbs may be absent in the training corpus. Therefore, a good morphological analyzer helps to make perfect sentence formation. POS cataloging for English seems to have reached the top level, but full morphological cataloging for inflectionally rich languages such as Romanian, Hungarian, is still an open problem. Indian Languages are highly inflectional and agglutinating too.

Statistical approaches assume that the information necessary for catalog assignment comes from the other tokens in the sentence. In many cases, only the tokens that come before the current word are taken into direct consideration. We believe, in sharp contrast, that the crucial information required for assigning the correct catalog comes from within the word, in Dravidian languages. The crux of cataloging lies in morphology. In Telugu, as in many other languages, morphological inflections apply mainly to nouns and verbs. Adjectives and adverbs show little or no inflection. Ambiguity between noun and verb is the most problematic issue in parsing. Nouns and verbs occur mostly in an inflected form in Telugu. Further, noun and verb morphology are generally mostly or completely disjoint. Therefore, morphology can resolve most of the critical catalog ambiguities. The remaining ambiguities can be resolved using well defined local syntactic rules. Even after all this, if a very small amount of ambiguity remains let it remain, there is no harm. Syntactic parsers must anyway have the capacity to deal with ambiguities. Thus, in our approach, morphology plays a major role in catalog assignment as also in catalog disambiguation.

The dictionary lists the root forms or the base forms of words in a given language and defines the meaning of each. When a listener hears an inflected or derived form, how exactly does he or she understand the meaning? Morphology is that part of grammar that systematically relates the internal structure of words to the meaning of the whole word form. While lexical meaning comes from the dictionary, the meaning changes brought about by the affixes is to be determined by morphology. For example, if a Telugu person hears the word ‘cestaanu’ ((he) did (something)), the listener knows that the root word ‘ceeyu’ means ‘do’. How exactly does he come to know that it is one single masculine person, other than the speaker and listener, who did something, and how exactly does he come to know that the action refers to a past event? This explanatory capability is the crux of morphology. Morphology should be useful for teaching and learning the language, for gaining deeper insights into how the language works.

The morph system is implemented as an extended Finite State Transducer. The FST has 398 transitions or arcs. The figure below shows a small part of the FST. A category field has been incorporated so that only relevant transitions are allowed. Derivation is handled by allowing category changes. Transitions are on morphemes, not on individual characters or letters. Dravidian morphology involves complex morph-phonemic changes at the juncture of morphemes and linguistically motivated rules have been used to handle these. We find that in any running text approximately 40% of the words are found directly in the dictionary. Less than 2% of the words in the dictionary are ambiguous. About one third of these are ambiguous between noun and verb. Since nominal and verbal morphology are more or less completely disjoint in Telugu, and since these words occur mostly in inflected forms (more than 92% of times), morphology can resolve most of these cases of ambiguity. Morphology can also resolve ambiguity between nouns / verbs other categories such as adjectives and adverbs.
Thus, morphology has a very important role in cataloging. If we work with proper words instead of tokens, we believe we will get a similar picture in other inflectional languages. Certain kinds of systematic structural ambiguities in a language can lead to multiple catalog assignment, calling for further disambiguation.

3.3 Designing a Catalog – Set

The design of a catalog-set is critically dependent on the purpose and the approach taken for cataloging. The beaten path is to develop a manual cataloged database of sentences and then use this for training a machine learning algorithm. The machine learning algorithm is expected to generalize from these training examples so that it can then catalog any new sentence. Manual cataloging is difficult, time consuming and prone to human errors. Consistency is difficult to achieve especially if the catalog set is fine grained and elaborate. Also, given the limited amount of training data that is practically possible to develop, a large and detailed catalog set will lead to the sparsity of training data and machine learning algorithms will fail to learn effectively. From these considerations, researchers tend to restrict themselves to small, shallow or flat catalog sets which are also least confusing to human annotators. When this idea is taken to the extreme, useful information may be lost. Flat catalog sets are also rigid and resist changes. Hierarchical catalog sets are more flexible. In this paper, we propose an alternative view and a novel approach to cataloging. We do not depend upon statistical or machine learning techniques, and we do not need any training data. No manual cataloging work is involved and so we can afford to use a large, fine grained, hierarchical catalog set that carries a lot of lexical, morphological, syntactic and semantic information.

One of the biggest difficulties that researchers face while designing catalog sets, while performing manual cataloging and while building and evaluating cataloging systems is the very definition of catalogs. catalogs involve lexical, morphological, syntactic and semantic considerations and often there are conflicts. One cannot go purely by intuitive definitions such as ‘nouns are things, pronouns stand in place of nouns and adjectives modify nouns’. We will need to give precise definitions and criteria to decide which catalog label should be given to which word. While meaning is supreme in language, grammatical considerations dictate the fine details. We will need to sub-categorize the major categories to reflect the significant differences, these sub-categories exhibit in syntax and these sub-categories also need to be defined very precisely. We have developed a detailed, hierarchical catalog set keeping these issues in mind.

We developed Telugu lexicon using the hierarchical catalog-set, currently there are 52,351 entries in our Telugu Lexicon system. Of these, only 649 are ambiguous. N-COM-COUN, SL-NOM, PRO-PER-P3.N.SL-PROX-NOM, N-CARDNHU- N.SL-DAT, V-TR1 are examples of catalogs we use. We call the complete labels such as N-COM-COU-N.SLNOM as single catalogs. catalogs are made up of catalog elements such as NOM and N.SL. Catalog elements may in turn be sub-categorized into catalog sets. There are 270 unique catalogs in the dictionary, there are 138 unique catalog elements and 121 unique catalog atoms.
Here are some examples of catalogs in the dictionary:

peddagaa		ADV-MAN	maduru		ADJ-ABS		V-IN
aMdamaina		ADJ-ABS	telusu		V-DEFE		
tinu		V-TR	paatika		N-CARD-NHU-NOM		
baDi		N-COM-COU-N.SL-NOM	adhikaari		N-COM-COU-FM.SL-NOM		
ataDu		PRO-PER-P3.M.SL-DIST-NOM					

3.4 Bridge

The lexicon assigns catalogs to words that appear without any overt morphological inflection. Morphology handles all the derived and inflected words, including many forms of sandhi. The bridge module combines the catalogs given by the dictionary and the additional information given by the morph, ensuring that the correct structure (and hence meaning) are depicted by the catalogs. The overall catalog structure remains the same throughout, making it so much simpler and easier to build, test and use. Let us now look at some examples of the output of morphological analyzer.

| ceppu have to meanings 1) to say or tell 2) a shoe or slipper |
| cepputoo (with the shoe): cepputoo<ceppu:N-COM-COU-N.SL-NOM||VTR12:%n- SL-obliq-INST-%-->
| ceppulanu (to the shoes): ceppulanu<ceppu:N-COM-COU-N.SL-NOM||VTR12:%n-PL-obliq-ACC-%-->

Here the bits of information obtained from the dictionary and morphology are combined to generate final catalogs. For the examples shown above, the cataloger will produce the following catalogs.
IV. EXPERIMENTS AND RESULTS

There are no publicly available standard data sets available for Telugu. We have developed our own Telugu text corpus of about 50 Million words. We have tested our system on a corpus of 15 Million words. Performance of the morph analyzer on randomly selected sentences from this corpus is shown below:

<table>
<thead>
<tr>
<th>File name</th>
<th># words</th>
<th>#tagged</th>
<th>#fully correct</th>
<th>P (precision)</th>
<th>R (Recall)</th>
<th>F (F-measure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>861</td>
<td>838</td>
<td>831</td>
<td>99.16</td>
<td>96.52</td>
<td>97.82</td>
</tr>
<tr>
<td>F2</td>
<td>4910</td>
<td>4575</td>
<td>4543</td>
<td>99.30</td>
<td>92.53</td>
<td>95.79</td>
</tr>
<tr>
<td>F3</td>
<td>9269</td>
<td>8560</td>
<td>8502</td>
<td>99.32</td>
<td>91.72</td>
<td>95.37</td>
</tr>
<tr>
<td>F4</td>
<td>14092</td>
<td>12965</td>
<td>12850</td>
<td>99.11</td>
<td>91.19</td>
<td>94.99</td>
</tr>
<tr>
<td>Total</td>
<td>29010</td>
<td>26691</td>
<td>26471</td>
<td>99.18</td>
<td>91.25</td>
<td>95.05</td>
</tr>
</tbody>
</table>

It is generally found that in any running text about 40% of the word forms are directly found in the dictionary and the rest are analyzed by morph [8]. Only some 5 to 10% of the words are ambiguous. Of these ambiguous words, 50 to 60% are uninflected and these ambiguities cannot be resolved by morph. A vast majority of structurally ambiguous words are resolved by morph. Most of the remaining ambiguities can be resolved using local context within the Bridge module. Here local syntactic constraints or chunking rules are used to resolve the ambiguities. Only a very small percentage of words will remain ambiguous after cataloging. In most cases, ambiguity is restricted to two catalogs. Most of these remaining cases of ambiguity are cases of true inherent ambiguity, that is, where the words have more than one meaning and sentences containing them may also be ambiguous in meaning. Some 5 to 10% of words will remain uncataloged. It is found that most of these words are loan words, named entities and compounds/words involving external sandhi. Efforts are on to improve the system along these dimensions. Since the whole system is rule governed, the results can be guaranteed to be correct. Manual verifications have validated this claim. In summary, we can say our system is capable of fairly high performance cataloging.

V. CONCLUSIONS

In this paper, we have presented a new approach to cataloging using a morphological analyzer and a fine grained hierarchical catalog-set. We have shown that it is possible to develop a high performance cataloging system without the need for any training data or machine learning or statistical inference for any training data or machine learning or statistical inference. Since the whole system is rule governed, the results can be guaranteed to be correct. Manual verification has validated this claim.

REFERENCES

Cataloging Telugu Sentences by Hidden Morkov Techniques

AUTHER’S PROFILE

V. Suresh received his B.E. Degree in Electronics and Communication Engineering from University of Madras in 1998 and the M.Tech Degree in Computer Science and Technology from Andhra University, Andhra Pradesh in 2002. He is pursuing Ph.D in Computer Science from Andhra University, Andhra Pradesh, India. His specializations are Natural Language Processing(NLP), Network Security and Cryptography, Image Processing and Soft Computing, Big Data. Presently, he is an Assistant Professor, ECM Department in Vignan’s Institute of Information Technology, Visakhapatnam, Andhra Pradesh, India. He had 17 years of teaching and 4 years of Industrial experience. He is a LIFE Member of Computer Society of India(CSI) (00174296), Institute of Electronics and Telecommunications Engineers (IETE) (M155602) and Associate Member in Institute of Engineers (IEI) (AM0915397).

International Journal of Computational Engineering Research (IJCER) is UGC approved Journal with Sl. No. 4627, Journal no. 47631.