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I. INTRODUCTION 
Queueing model with server breakdown can be helpful in predicting the performance of various machining 

systems wherein machines are subject to random failure require attention of repair crew to restore it 

functionality. In N-policy server turns on only when there are N or more than N jobs present in the system so 

that N-policy is a cost effective measurement. Many researchers have worked on queueing system under N-

Policy in different frameworks. A comprehensive survey on N-Policy queueing model can be found in Doshi 

(1986). Jain (1997) suggested an optimal N-Policy for a single server Markovian queue with break down, repair 

and state dependent arrival rate. Ke and Pearn (2004) analyzed optimal management policy for heterogeneous 

arrival queueing systems with server breakdowns and vacations. 

In most engineering systems including computer, communication, production, manufacturing, etc., breakdown 

of component while processing the jobs, is common phenomenon. Avi-ltzhak and Naor (1963) studied some 

queueing problems with the service station subject to breakdowns. Neuts and Lucantoni (1979) described a 

Markovian queue with N servers subject to break down and repair.   Jayarama, et al. (1994) discussed a general 

bulk service queue with arrival rate dependent on server breakdowns. Grey et al (2000) described a vacation 

queueing model with server breakdown. Recently Ke (2004) examined bi-level control for batch arrival queues 

with an early startup and un-reliable server. Dudina et al. (2013) analyzed retrial queuing system with phase 

service. Marin and Bulo (2014) studied a queue with hyper exponential service time and Poisson arrival. Yang 

and Wu (2015) obtained N-policy queue with unreliable server. Pradhan and Gupta (2017) discussed a   of an 

infinite-buffer batch-arrival queue with batch-size-dependent service. 

In the present paper we investigate single server finite Markovian queue with breakdown, repair and state 

dependent arrival rate under N policy by using recursive method. The steady state results for different states are 

obtained by using the probability generating technique. An attempt has been made to design optimal operating 

N-policy to minimize the total expected cost function. 

 

II. MODEL DESCRIPTION 
Formulation of the mathematical model for a Markovian single server queue with server breakdown under N-

policy has been considered. The customers arrive in Poisson process with rate dependent upon the states of the 

servers. The server may be one of the three states namely (i) state ‘0’ i.e. turn off state (ii) state ‘1’ i.e. turn on 

and in operating state and (iii) state ‘2’ i.e. turn on and under repair state. The server is subject to random 
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breakdown and is restored to its previous state after repair. The server may breakdown only when it is in 

working state. The service time of customers as well as the, lifetime and repair time of servers are assumed to be 

exponential distributed. As soon as the repairing of the breakdown server completed, it starts service of the 

customers with the same strength as prior to breakdown. The duration for which the server is turned on and in 

operation known as busy period. The length of time for which the server is turned off and in breakdown 

condition is known as breakdown period. The sum of idle period, busy period and breakdown period is called a 

busy cycle.  

 

The notations used for modeling purpose are as follows: 

   

             Arrival rate of customers when server is idle 

            1 (2)   Arrival rate of customers when server is turned on and in operation (under     

                                    repair)                                                           

                Failure rate of the server 

            0 (0)   Repair rate (Service rate) of the server for 1 Nn    

             (1)   Repair rate (Service rate) of the server for N+1 Kn    

            E[I], E[B]        Expected length of the idle (busy) period. 

            E[D], E[C]   Expected length of the breakdown (cycle) period. 

            PI, PB, PD        The long-run fraction of time for which server is idle, busy and breakdown      

                                    respectively.                           

            Pi(n)   The steady state probability that there are n customers present in the system       

                                    when server is in state i. 

 

The Governing Equations And Analysis 

)1(p)0(p0 100                                                                                              …(1)     

1Nn1),1n(p)n(p0 00                                                            ...(2) 

)1(P)2(P)1(P)(0 2010101                                                          ...(3) 

1Nn2),n(P)1n(P)1n(P)n(P)(0 201011101                  ...(4)                                                                                                

)1N(P)N(P)1N(P)1N(P)N(P)(0 0201111101              ...(5)                                                                                                                     

1Kn1N),n(P)1n(P)1n(P)n(P)(0 21111111 
                                                                                                                                                          ...(6)                                                                                            

)k(P)1k(P)k(P)(0 21111                                                    ...(7) 

)1(p)1(P)(0 1202                                                                               ...(8) 

   Nn2),n(p)1n(P)n(P)(0 122202                                              ...(9) 

1Kn1N),n(p)1n(P)n(P)(0 12222                                        ...(10)                             

  )1k(P)k(P)k(P0 2212                                                                                 ...(11) 

 

Solving equations (1)-(11) recursively, we find the analytical solution for P0 (n), P1 (n), and P2 (n) as 

 

                 P0 (n) = P0 (0)                n=1, 2, … , N-1                                                                      … (12) 
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III. GENERATING FUNCTION METHOD 
Define the following generating function 

                                           
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Solving (1) and (11), we obtain 
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The normalizing condition provides  
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where               211
  , )K(P)K(Pl 2211  , ))((    

                             

IV. OPERATIONAL CHARACTERISTICS 
Using generating function determined in previous section, we derive expressions for various operating 

characteristics as follows: 

 

 The long-run fraction of time for which server is idle 
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 The long-run fraction of time for which server is busy 
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 The long-run fraction of time for which server breakdown 
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 Expected number of customers when the server is turned off 
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 Expected number of customers when the server is turned on and in operation 
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 Expected number of customers when the server is turned on and broken                   
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 The Expected number of customers in the system is 

  

                    E [N] = E [N0] + E [N1] + E [N2]                                                                               ... (26)                                                                                

 

V. OPTIMAL OPERATING N-POLICY 
According to memoryless property of the Poisson process, the length of the idle period is the sum of the N 

exponential random variables each having mean 1/. 

Thus              E [I] = N/  

Since E[C] = E [I] + E [D] + E [B] and PI =
 E[C]

 [I] E
, PD=

 E[C]

 [D] E
, PB=

 E[C]

 [B] E
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VI. COST ANALYSIS 
Now we determine the optimal value of control parameter N with state dependent arrival rates so that the 

expected total cost per unit time could be minimized. 

The expected total cost per unit time is given by 

E{C (N)} = (C1+C2) 
)(

1

CE
+C3PB +C4PI +C5PD +C6E (Ns)                                                      ... (30) where  

C1(C2)  = start-up cost when server is in turned-on (turned-off) state 
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    C3 (C4)       = cost per unit time for keeping server on (off)  

    C5              = cost per unit time for a breakdown server 

    C6            = holding cost per customer per unit time present in the system 

 

The objective is to minimize E{C (N)} to determine an optimal value (say N*) of the decision variable N. In 

order to compute N* a heuristic approach can be employed.   

     

VII. SPECIAL CASES 

I. When 0= 1, 0=, =1=2 i.e. when service rate and arrival rate are constant and n  then our model 

reduces to a Markovian queueing system with a removable and non-reliable server.  

II. When 0= 1, 0=, and n=1, we get results for a single unreliable server queue with arrival rate depending 

upon server’s state. 

III. When 0= 1, 0= and K  then our results coincide with Jain (1997). 

 

VIII. Numerical Illustration 
In this section, we study the effect of various parameters on the system performance by taking the different 

combinations of the system parameters. The graphical presentation is provided in Figs. 1-6. 

Fig. 1 (2) illustrates the effect of different values of  () on the average queue length E(N). We observe that the 

average queue length is higher for homogenous input rate () in comparison of heterogeneous rate. Also we note 

that the average queue length increases (decreases) with the increase in the value of  (); the increment 

(decrement) is significant for higher (lower) value of  (). Fig. 3 (4) depicts the graphs for the average queue 

length E(N) vs.  (). It is noted that the average queue length increases (decreases) with the increase in  (). 

The effect of different values of N on the average queue length E(N) and arrival rate are shown in figure 5 and 

6. It is seen from figures that the average queue length increases linearly with N, also we note that the average 

queue length is higher for heterogeneous rate in comparison of homogeneous rate (1=2==0.5). In table 1 we 

summaries the minimum expected cost for different sets of  and (, , ) by varying N. The optimal value of N 

can be determined by considering minimum costs which are displayed by bold letters in the table.         

 

IX. CONCLUSION 
In this investigation, we have analyzed optimal N-policy for finite queue with server breakdown and state 

dependent rate. Using recursive method, we have determined steady state queue size distribution, which is 

employed to formulate other performance indices such as expected number of customers present in the different 

states and in the system, expected length of idle, busy and breakdown period, etc. We have determined the 

optimal N-policy so that expected total cost per unit time is minimized. The model investigated can be further 

extended to incorporate batch arrivals which is the subject of own future study.         
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Fig. 6: Average queue length vs. 
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