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ABSTRACT

In this paper, a finite Markovian queue with single server has been investigated under N-Policy. The
server is subject to random breakdown and is restored to its previous state after repair. The customers
arrive according to Poisson distribution to get service from the server. The server turns off when there is
no customer in the system i.e. the system is empty and turns on when there are N or more than N
customers present in the system. The server may break down when it is in working state. We derive
queue size distribution by using generating function method. The optimum value of threshold parameter
N is determined which minimizes the total average cost. To examine the effect of different parameters,
sensitivity analysis is facilitated.

Keywords: Queue size distribution, N-Policy, Markovian model, Finite capacity, State-dependent rate,
Cost analysis

Date of Submission: 06-07-2017 Date of acceptance: 15-07-2017

I. INTRODUCTION
Queueing model with server breakdown can be helpful in predicting the performance of various machining
systems wherein machines are subject to random failure require attention of repair crew to restore it
functionality. In N-policy server turns on only when there are N or more than N jobs present in the system so
that N-policy is a cost effective measurement. Many researchers have worked on queueing system under N-
Policy in different frameworks. A comprehensive survey on N-Policy queueing model can be found in Doshi
(1986). Jain (1997) suggested an optimal N-Policy for a single server Markovian queue with break down, repair
and state dependent arrival rate. Ke and Pearn (2004) analyzed optimal management policy for heterogeneous
arrival queueing systems with server breakdowns and vacations.
In most engineering systems including computer, communication, production, manufacturing, etc., breakdown
of component while processing the jobs, is common phenomenon. Avi-ltzhak and Naor (1963) studied some
queueing problems with the service station subject to breakdowns. Neuts and Lucantoni (1979) described a
Markovian queue with N servers subject to break down and repair. Jayarama, et al. (1994) discussed a general
bulk service queue with arrival rate dependent on server breakdowns. Grey et al (2000) described a vacation
queueing model with server breakdown. Recently Ke (2004) examined bi-level control for batch arrival queues
with an early startup and un-reliable server. Dudina et al. (2013) analyzed retrial queuing system with phase
service. Marin and Bulo (2014) studied a queue with hyper exponential service time and Poisson arrival. Yang
and Wu (2015) obtained N-policy queue with unreliable server. Pradhan and Gupta (2017) discussed a of an
infinite-buffer batch-arrival queue with batch-size-dependent service.
In the present paper we investigate single server finite Markovian queue with breakdown, repair and state
dependent arrival rate under N policy by using recursive method. The steady state results for different states are
obtained by using the probability generating technique. An attempt has been made to design optimal operating
N-policy to minimize the total expected cost function.

Il. MODEL DESCRIPTION
Formulation of the mathematical model for a Markovian single server queue with server breakdown under N-
policy has been considered. The customers arrive in Poisson process with rate dependent upon the states of the
servers. The server may be one of the three states namely (i) state ‘0’ i.e. turn off state (ii) state ‘1’ i.e. turn on
and in operating state and (iii) state ‘2’ i.e. turn on and under repair state. The server is subject to random
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breakdown and is restored to its previous state after repair. The server may breakdown only when it is in
working state. The service time of customers as well as the, lifetime and repair time of servers are assumed to be
exponential distributed. As soon as the repairing of the breakdown server completed, it starts service of the
customers with the same strength as prior to breakdown. The duration for which the server is turned on and in
operation known as busy period. The length of time for which the server is turned off and in breakdown
condition is known as breakdown period. The sum of idle period, busy period and breakdown period is called a
busy cycle.

The notations used for modeling purpose are as follows:

A Avrrival rate of customers when server is idle

A1 (o) Arrival rate of customers when server is turned on and in operation (under
repair)

a Failure rate of the server

Bo (o) Repair rate (Service rate) of the server for L< N < N

B () Repair rate (Service rate) of the server for N+1<n < K

E[l], E[B] Expected length of the idle (busy) period.

E[D], E[C] Expected length of the breakdown (cycle) period.

Py, Pg, Pp The long-run fraction of time for which server is idle, busy and breakdown
respectively.

Pi(n) The steady state probability that there are n customers present in the system
when server is in state i.

The Governing Equations And Analysis

0=—-Ap,(0) + p,p, () (1)
0=-Ap,(n)+Aip,(n-1), 1<n<N-1 )
0=—(A, +a+py)P @) +1,P(2) +B,P, (D -(3)
0=—(A, +a+p )P, (N)+AP, (-1 +p P (N+1)+B,P,(n), 2<n<N-1 @)

O=—(A, + o+ )P (N)+ AP (N=-1) +p,P,(N+1)+B ,P,(N)+ AP, (N-1) 5)

0=—(A,+a+p)P (nN)+AP(n-1)+p,P,(n+1)+pP,(n), N+1<n<K-1
..(6)
0 =—(n, + )P, (K) +2,P, (k=1) + P, (k) N
0=—-(1, +By)P, (@) +ap, (D) .(8)
0=—(L,+B,)P, (M) +1,P,(n-D+ap,(n), 2<n<N )
0=—(A, +B)P,(n)+A,P, (n-1) +ap,(n), N+1<n<K-1 .(10)
0=—BP, (k) + P, (k) +4,P, (k1) -(11)

Solving equations (1)-(11) recursively, we find the analytical solution for Py (n), P (n), and P, (n) as

Po (n) = P (0) n=1,2,...,N-1 ... (12)
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iPO(O), n=1
Ho
AR(n-1)-BR(M-2)- P Saring), 2<n<n-1
Hohy i
By, — Byt N-i+l N-i+l A
P(n)= [M]P(N —1)+—(ﬂ B -4,2 B, ) +—P(N-1)
T (A A ) uAuo ik TR (A= Agw) -
AP(n-1)-B,R(n-2)- ZB”'P ), N+1<n<K-1
thly i1
{(ﬂﬁaB) (K - 1)+aB P(K - 2)+aB P(K- 3+aB ZBK'aP )}
H
.(13)
o
— P, =1
By "
iiB”“Pl(i), 2<n<N
A, i3
P,(n) =< o N _
— > B,"'R.(i), N+1<n<K-1
A, i3
%[Pl(K)+ B,P(K —1) + B,2 > BX"?P (i) + P(n)}
a
where A:((uo+>~l)(x2+ﬁo)+a>~z} Alz(<u1+x1)(>»2+ﬁ)+asz
o (X +Bo) wi (A, +P)
z( Ay ] 5 Z[M(M +Bo)’ +aﬁox2)
A, +Bo ' o (A, +Bo)2
A (A, +P)° +af, A
|32 = > , B3 |2
u (A, +B) Ay +B
I1l. GENERATING FUNCTION METHOD
Define the following generating function
N-1 K
Gy (2)=D.Py(mz", G;(z)=>.P(n)z", i=12 .(15)
n=0 n=1
Solving (1) and (11), we obtain
ZN
G,(z )— P, (0) ..(16)
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[ 0222, ~Bh2(=2")P, (0) =1, 2(2 -1 (B, ~BJ2"P, (1) +BP, (K) 2"}

+(h 2=, =B)(Z-D{(k, _Hl)ngzlpl(n)zn +7‘1P1(K)ZK+1} ]
[ {2° - (0 +a+p)z+, 3,21, —p)-apz ]

Gl(z)=

..(17)
[£027 (0 + )2+ 13 (B, B2y () + arz(z" - P, (0
02" = (0 + 0+ )2 PP (K)2 2D — o= ~ 1) 3 (2" 42, (K)2} |
Gl = [{7‘122 = (A ot p)z+p R,z -1, -B) - apz ]

..(18)

The normalizing condition provides

I B (o - mIPMZ +1)+ (1, ~2 +1) B, ~BIP(N)
0 - NT]

where V= ﬂ:u1 - ﬂ“lﬂ - aﬂ‘zv I = 7\’1P1(K) +A,P, (K), n= (7/ +ﬂ*(a + ,B))
IV. OPERATIONAL CHARACTERISTICS
Using generating function determined in previous section, we derive expressions for various operating

characteristics as follows:

> The long-run fraction of time for which server is idle

N-1
Pi= Y P, (n) =6, (1) =NP,
n=0

[y + @+ B, (o~ )PL(MZ" + B+ 0y =2 +1,) S (B, —BIP,(n) I/

... (20)
> The long-run fraction of time for which server is busy

Pe= 2 P() =61 = [ AB=PLE, (o —m)R(MZ" + B+ (=2 £ By ~B)P() I .
(21)

> The long-run fraction of time for which server breakdown

oo’ P, (0) =6:)= 0k~ o X0ty )P (02" + B+ Gy 2~ 1) £, ~BP,(0) I

. (22)
> Expected number of customers when the server is turned off
: N(N -1)P, (0)
E[No]:Go(l): °
N =1 v+ (e + B} (o — k)P (M2 + 1+ 0y =2y +14,) 5 (Bo —B)P, (n) ] 2

2n
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> Expected number of customers when the server is turned on and in operation

EIN,1=G;(1)=[AB(N +1) 24,4, + 22,{S" —S?}- Q' - 1,Q* + K, ]/ 21+
[-A8X + BlA(a+ B)(N +1) + XIS* +{A(A, — 44 + i) [BIN +1) = 24, ]
=22, (a+ )+ X (A, —A)¥S? - Aa+ BIAR" + 1,Q°1+{A(a + B)
[BIN +1) - 24,]+ XBH + Aa + B)K 1/ 2y n

(24)
N N 2 _ N
where S' = n§1(uo — ;)P (n)z ST = nél(Bo - B) P2 (n)
N n N
Ql =n§1n(uo — )P (n)z Q2 = néln(Bo _B)PZ (n)
X=2, —AB—ak, —ph,)
Kl = 2}\’1}\‘2P1(K) - le(K +1)P1(K) - 27¥2B Pz (K) - 7VzBK Pz(K))
> Expected number of customers when the server is turned on and broken

E[N,]=G5(1)=[Aa(N +1) +245% —aQ" + (4 — 14)Q? + K, 1/ 7+

[-AaX +[aA(a+ B)(N +1) + Xa](S* + 1) +{aA(A, — Ay + 14)(N +1) + 214,
(@+ )= X (g — 1 = 2)IS° = Aa + B)[aQ" — (A4 — 1)Q* 11 = K, 1/ 2y

where .. (25)
K, = -Aa(K+DP(K) =24, P, (K)[2(A, —oe — ) —aK]
> The Expected number of customers in the system is
E [N]=E [Ng] + E[N{] + E [N;] ... (26)

V. OPTIMAL OPERATING N-POLICY
According to memoryless property of the Poisson process, the length of the idle period is the sum of the N
exponential random variables each having mean 1/\.
Thus E[I]=N/A
E[l] , _E[D] , _E[B]

E[C] * ~ E[C] '~ E[C]

Since E[C]=E[I]+E[D] +E [B]and P, =

we get,
E01= N[ ah—a(S! +1)+ (4 — - ) S(B- Bo)Po(n) 1/¢ e
n=N+1
K
eBl= N[ BA—B(ST +1)+(A-4,) D (B-Bo)Py(n) ]/ & . 28)
n=N+1
Elcl= N(y + Ala+ B)) I & .. (29)

where &= Ay + (a+ B){S* +1}+ (A, — A, + 14)S?]

VI. COST ANALYSIS
Now we determine the optimal value of control parameter N with state dependent arrival rates so that the
expected total cost per unit time could be minimized.
The expected total cost per unit time is given by

E{C (N)} = (C1+Cy) L ) +C3Pg +C4P +CsPp +CoE (Ny) ... (30) where
E(C

Ci(C,) = start-up cost when server is in turned-on (turned-off) state
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C3(Cy) = cost per unit time for keeping server on (off)
Cs = cost per unit time for a breakdown server
Cs = holding cost per customer per unit time present in the system

The objective is to minimize E{C (N)} to determine an optimal value (say N*) of the decision variable N. In
order to compute N* a heuristic approach can be employed.

VIlI. SPECIAL CASES
I.  When po= w, Bo=B, A=A1=A, i.e. when service rate and arrival rate are constant and n — oo then our model
reduces to a Markovian queueing system with a removable and non-reliable server.
Il.  When po= g, Bo=B, and n=1, we get results for a single unreliable server queue with arrival rate depending
upon server’s state.
I, When po= py, Bo=p and K —> oo then our results coincide with Jain (1997).

VIII. Numerical Illustration

In this section, we study the effect of various parameters on the system performance by taking the different
combinations of the system parameters. The graphical presentation is provided in Figs. 1-6.

Fig. 1 (2) illustrates the effect of different values of A (i) on the average queue length E(N). We observe that the
average queue length is higher for homogenous input rate (1) in comparison of heterogeneous rate. Also we note
that the average queue length increases (decreases) with the increase in the value of A (u); the increment
(decrement) is significant for higher (lower) value of A (w). Fig. 3 (4) depicts the graphs for the average queue
length E(N) vs. o (B). It is noted that the average queue length increases (decreases) with the increase in a (B).
The effect of different values of N on the average queue length E(N) and arrival rate are shown in figure 5 and
6. It is seen from figures that the average queue length increases linearly with N, also we note that the average
queue length is higher for heterogeneous rate in comparison of homogeneous rate (A;=A,=A=0.5). In table 1 we
summaries the minimum expected cost for different sets of A and (o, B, ) by varying N. The optimal value of N
can be determined by considering minimum costs which are displayed by bold letters in the table.

IX. CONCLUSION
In this investigation, we have analyzed optimal N-policy for finite queue with server breakdown and state
dependent rate. Using recursive method, we have determined steady state queue size distribution, which is
employed to formulate other performance indices such as expected number of customers present in the different
states and in the system, expected length of idle, busy and breakdown period, etc. We have determined the
optimal N-policy so that expected total cost per unit time is minimized. The model investigated can be further
extended to incorporate batch arrivals which is the subject of own future study.
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(o, f, )
i N (3,51 (1.3, 03,6,1) (1.6,1) 03,3.2) (1,3,2) (03,6,2) (1,6,2)
7 12.1369 11.9103 11.3033 11.1574 10.6647 10.3063 98527 9.5998
[ 11.9260 17773 11.1885 11.1015 10.4508 10.1556 9.7373 9.531
05 ] 11.8595 11.7765 111957 111590 103613 10,1373 97440 9.5758
10 11.8940 11.8683 11.2884 11.2958 104128 102115 98361 96939
i 12.0019 120275 114432 11.4904 10,5177 10.3530 99904 98817
7 13.4276 13.2939 12519 12.5074 1.3173 10.9913 10.4996 10.2736
[ 13.2457 13.1941 124924 124834 111231 108632 10.4033 10.2265
06 ] 13.2082 13.2267 12 5278 125728 11.0731 10.8674 10.4290 102928
10 13.2716 13.3518 12.6486 12,7415 111241 10.9641 10.5401 10.4385
11 13.4085 135443 12,8317 129680 112486 111283 10,7135 106418
7 14.9187 14.9374 14.0473 14.0940 12.0035 11.7116 11.1797 10.9821
] 147618 14.8663 139849 14.0975 1.8277 11.6048 11.1013 10.9553
0.7 k] 14.7492 14.9274 14.0446 14.2143 11.7962 11.6302 11.1450 11.0420
10 14 8376 15.0812 141898 14 4105 11.8657 11.7482 1.2742 11.2079
11 14.9994 15.3022 14.3971 14.6644 12.0087 11.9336 1146355 114317
7 16.7374 17.0655 15.8241 16.1015 12.7279 124732 11.8975 11.7306
] 16.6012 17.0179 15.7819 161277 12 5695 12.3862 11.8361 11.7230
08 B 16.6093 171026 15.8618 16.2672 12.5554 124316 11.8968 11.8287
10 16.7184 172799 16.0272 16.4861 12 6424 125695 12.0429 120138
11 16.9010 17.524b 16.2545 16.7626 12.8027 127747 12.2512 12.2560

Tablel: Expected total cost E{C (N)} by varying different parameters
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