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I. INTRODUCTION 
The action of shoaling waves, and wave breaking in the surf zone, in generating a wave-generated mean sea-

level is well-known and has been extensively studied, see for instance the monographs of Mei (1983) and 

Svendsen (2006). The simplest model is obtained by averaging the oscillatory wave field over the wave phase to 

obtain a set of equations describing the evolution of the mean fields in the shoaling zone based on small-

amplitude wave theory and then combining these with averaged mass and momentum equations in the surf zone, 

where empirical formulae are used for the breaking waves. These lead to a prediction of steady set-down in the 

shoaling zone, and a set-up in the surf zone. This agrees quite well with experiments and observations, see 

Bowen et al (1968) for instance. However, these models assume that the sea bottom is rigid, and ignore the 

possible effects of sand transport by the wave currents, and the wave-generated mean currents. Our purpose in 

this paper is to add an empirical model of sediment transport to the wave-averaged mean field equations and 

hence determine the effect of this extra term on wave set-up. 

There is a vast literature on sediment transport due to waves, see the recent works by Caballeria et al (2002), 

Calvete et al (2001, 2002), Garnier et al (2006, 2008), Hancock et al (2008), Lane and Restrepo (2007), McCall 

et al (2010), Restrepo (2001), Restrepo and Bona (1995), Roelvink et al (2009) and Walgreen et al (2002) and 

the references therein. There are several methods to model the movement of bottom sediment by the combined 

action of waves and currents, and these can often be quite complicated, depending inter alia on the nature of the 

sediment, and whether the sediment is confined to the bottom boundary layer, or is suspended throughout a 

larger portion of the water column. Various models have been used to describe the formation of sand bars, 

ripples and sand waves, where it has usually been assumed that the wave field is quasi-periodic and non-

breaking, see for instance the aforementioned articles and the review article by Blondeaux (2001). For the most 

part, application of these models to the near shore zone, where there is wave breaking, has been confined to 

numerical simulations. In particular, the effect of sediment transport on wave set-up, especially in the surf zone, 

does not appear to have been examined in analytical detail, which is contrast to the case when there is no 

sediment transport where a well-established analytical theory exists (see Mei (1983) or Svendsen (2006) for 

instance). To remedy this, we modify the well-known wave-averaged mean field equations by a bottom 

boundary condition that allows for the evolution of the bottom as sediment is moved. This leads to a single extra 

equation in the wave-averaged mean field model to represent the time evolution of the bottom, based on a 

relatively simple empirical law for the bottom sediment flux, based on the sediment transport models used in 

similar problems in the cited references above. 

In section 2 we present the usual wave-averaged mean field equations that are commonly used in the literature, 

supplemented here by a bottom sediment transport term. We then examine the consequences for wave set-up in 

section 3. We conclude with a discussion in section 4. 

 

ABSTRACT 
In this paper we augment the wave-averaged mean field equations commonly used to describe wave 

set-up and wave-induced mean currents in the near-shore zone, with an empirical sediment flux law 

depending only on the wave-induced mean current and mean total depth. This model allows the bottom 

to evolve slowly in time, and is used to examine how sediment transport affects wave set-up in the surf 

zone. We show that the mean bottom depth in the surf zone evolves according to a simple wave 

equation, whose solution predicts that the mean bottom depth decreases and the beach is replenished. 

Further, we show that if the sediment flux law also allows for a diffusive dependence on the beach 

slope then the simple wave equation is replaced by a nonlinear diffusion equation which allows a 

steady-state solution, the equilibrium beach profile. 
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II. FORMULATION 
2.1 Wave field 

In this section we recall the wave-averaged mean flow and wave action equations that are commonly used to 

describe the near-shore circulation ( see Mei 1983 or Svendsen 2006 for instance). We suppose that the depth 

and the mean flow are slowly-varying compared to the waves. Then we define a wave-phase averaging operator 

< f >= f
¯
, so that all quantities can be expressed as a mean field and a wave perturbation, denoted by a “tilde” 

overbar. For instance, 

δ = δ
¯
+ δ

˜
. (1) 

where δ is the free surface elevation above the bottom located at z = −h(x,t). Then outside the surf zone, the 

representation for slowly-varying, smallamplitude waves is, in standard notation, 

δ
˜
(x,t) ∼ acosθ . (2) 

Here a = a(x.t) is the wave amplitude and θ = θ(x,t) is the phase, such that 

the wavenumber k, frequency Ω are given by  

k = (k ,l) = ∇θ , Ω = −θt . 

Here ∇ = (∂x ,∂y). The local dispersion relation is 

(3) 

Ω = ω + k.U, ω
2 
= gκtanhκH where κ

2 
= k

2 
+ l

2 
. 

(4) 

Here U(x,t) is the slowly-varying depth-averaged mean current (see below), and H(x,t) = h(x,t) + δ
¯
(x,t) is the 

total fluid depth, also a slowly varying function of x,t. 

The basic equations governing the wave field is then the kinematic equation for conservation of waves 

kt + ∇ω = 0, (5) 

which is obtained from (3) by cross-differentiation, the local dispersion relation (4), and the wave action 

equation for the wave amplitude 

At + ∇· (cgA) = 0. (6) 

Here A = E/ω, where E = ga
2
/2 is the wave energy per unit mass, and cg = ∇k · ω = U + cgk/κ,(cg = dω/dκ) is the 

group velocity. 

 

2.2 Mean fields 

The equations governing the mean fields are obtained by averaging the depthintegrated Euler equations over the 

wave phase. Thus the averaged equation for conservation of mass is 

Ht + ∇· (HU) = 0. (7) 

For the velocity field we proceed in a slightly different way,  that is we define 

u = U + u
’ 
, (8) 

where we define U so that the mean momentum density is given by 

M = HU =  (9) 

 

But now we need to note that u
’ 
does not necessarily have zero mean, and that U and u¯ are not necessarily the 

same. Indeed, from (8) and (9) we get that 

  

u¯ = U+ < u
’ 
>, and =0 

However, u
’ 
= u˜ +O(a

2
), so that < u

’ 
> is O(a

2
) and it follows that, correct to second order in wave amplitude, 

M = Hu¯+Mw , where M The term Mw in (10) is 

called the wave momentum, and can be expressed as Mw = HUs where Us is the Stokes drift velocity. It follows 

that U is a Lagrangian mean flow. 

Averaging the depth-integrated horizontal momentum equation yields 

(Mei 1983) 

 

(HU)t + ∇.(HUU) = −∇. < + < p(z = −h) > ∇h. 

An estimate of the bottom pressure term is made by averaging the vertical momentum equation to get 

  . 
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For slowly-varying small-amplitude waves, the integral terms on the right hand side may be neglected, and so < 

p(z = −h) >≈ g(δ
¯
+ h). Using this in the averaged horizontal momentum equation, and replacing the pressure p 

with the dynamic pressure q = p + (z − δ
¯
) yields 

(HU)t + ∇.(HUU) = −∇.S − gH∇δ
¯   

(11) 

where S . (12) 

Here S is the radiation stress tensor. In the absence of any basic background current, so that U is O(a
2
), we may 

use the linearized expressions (2, ??) to find that 

S . (13) 

where the phase speed c = ω/κ, correct to second order in the wave amplitude. 

In summary, to this stage the wave field is described by equations (5, 6) for k,E, while the mean field equations 

to be solved for the mean variables U,δ,H
¯ 

are the averaged equation for conservation of mass (7) and the 

averaged equation for conservation of horizontal momentum (11), where the radiation stress tensor is given by 

(13). An additional equation is needed, and this is provided by the sediment transport flux law described in the 

next section 2.3. 

 

2.3 Sediment flux law 

To take account of bottom sediment transport, in addition to the kinematic bottom boundary condition, 

ht + u.∇h = −w , at z = −h(x,t), (14) 

a second bottom boundary condition is needed, which is an appropriate sediment flux law 

ht = ∇.Q, (15) 

where Q is the sediment flux, evaluated at the bottom. The kinematic condition (14) has already been used in 

deriving the mean mass equation (7). Hence we now also average the sediment flux equation (15) so that 

h
¯
t = ∇.Q

¯ 
, (16) 

where Q¯ is the wave-averaged sediment flux. 

In the literature various flux laws have been proposed, depending on the assumed sediment type. Here we follow 

the type of formulation suitable for use, as here, with the wave-averaged field equations, see for instance, 

Caballeria et al (2002), Calvete et al (2001, 2002), Garnier et al (2006, 2008) , Lane and Restrepo (2007), 

McCall et al (2010), Restrepo (2001), Roelvink et al (2009) and Walgreen et al (2002), although there are subtle 

differences between the models used by these authors. Hence here we set 

, (17) 

where ps ≈ 0.4 is the bed porosity, and µ ≈ 0.05 is a measure of how often the waves are large enough to move 

the sediment. The quantities Qb,s are the bed-load and suspended sediment fluxes respectively, and for wave-

dominated situations are given by expressions of the form 

Qb = νb(|uw|
2
U + λb|uw|

3∇b), 

(18) 

Qs = νs(H|uw|
3
 U + λs|uw|

5∇b). 

Here |uw| is the wave velocity magnitude, and we recall from (10) that is the depth-averaged mean flow, while b 

= h
¯ 
− hr(x) is the deviation of h

¯ 
from a reference depth hr(x), which can be taken to be either the initial depth, 

or an equilibrium depth. In each of these expressions, the second term proportional to ∇b is a diffusive term 

containing some explicit information about the effect of the beach slope on the sediment transport. We note that 

U = u¯+US where Us is the Stokes drift velocity, and especially in the surf zone, we will make the further 

approximation that the sediment is primarily moved by the waves, so that U ≈ Us. The coefficients νb and νs are 

for bed-load and suspended transport respectively, and representative values are νb = 1.8 × 10
−4 

s
2 

m
−1 

and νs = 

1.0 × 10
−3 

s
3 

m
−3

, see the cited literature. These expressions are usually used outside the surf zone, and need 

modification inside the surf zone, where there are many various approaches, see the reviews by Roelvink and 

Broker (1993) and that in the Coastal Engineering Manual (2002). Here we assume that they remain valid, but 

only in qualitative form, inside the surf zone. Importantly, we remind that the formulation adopted here is for 

waveaveraged fields, and hence details of how the sediment transport is moved on each phase of the wave have 

been removed by the averaging process, although some relic of this survives in the diffusive terms. Equation 

(16) with the definitions (17, 18) complete the basic equation set. 
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III.    WAVE SET-UP 
3.1 Shoaling zone 

To study wave set-up we first suppose that there is in the undisturbed state when there are no waves h = h0(x). 

We then make the simplification that there is no transverse dependence, so that all variables depend only on x,t. 

Thus, in particular, k = (k,0),U = (U,0). The shoaling zone is defined to be the region x > xb, where xb is defined 

below, and then the surf zone is xs < x < xb; here xs is the shoreline where H = 0, and is found as part of the 

solution. This surf zone, where wave breaking occurs, is discussed in the next section 3.2 . Note that here we 

assume that the waves propagate in the negative x-direction so that k < 0, with Ω > 0. 

In the shoaling zone, we can assume that δ,
¯ 

U¯ are order a
2
, so that Ω ≈ ω and h

¯ 
= h0(x) to the same order of 

approximation. Then, to leading order we can seek steady solutions with no t-dependence for the wavenumber k 

and the wave energy E. As is well-known, then the equation for conservation of waves (5) shows that the 

frequency ω is a constant, and so k determined from the dispersion relation (4). As h decreases the waves refract 

towards the shore, and |k| increases; in shallow water |k|∼ ω/(gh0)
1/2

. The wave action equation (6) reduces to 

Ecg is constant. Near the shore, where cg ≈ (gh0)
1/2

, 

 . (19) 

Note that if this is evaluated in shallow water, then , where a∞ is the wave amplitude at a location 

offshore where h0 = h∞. On the other hand, in deep water as kh0 →∞,cg → g/2ω, and then , 

where a∞ is the constant wave amplitude in deep water. The surf zone xs < x < xb can now be defined by the 

criterion that hb is that depth where a/h0 = Ac, that is, , defining an empirical breaking condition. 

A suitable value is Ac = 0.44, see Mei (1983) or Svendsen (2006). 

Next, we examine the mean sediment flux term in (16) given by (17 , 18). In the shoaling zone uw ≈ max|u˜| 

where u˜ is obtained from the usual linearised sinusoidal wave theory (see (2)). In shallow water u˜ ≈ cδ/h and 

so it follows that |uw|
2 
can be estimated as ga

2
/h = 2E/h. Since in the present theory, the beach slope is assumed 

to be small, the diffusion terms in (18) will be omitted (but see section 3.4). It follows that the sediment flux 

(17) is expressed as 

. (20) 

 

The Stokes drift is given by Us = Ek/ωh, and is O(E). Since we expect that the Eulerian mean flow u¯ forced by 

the waves will also be at least O(E), it follows that U is O(E). Hence, in the shoaling zone Q
¯ 

shoal is O(E
2
), and 

hence should be consistently neglected when compared with other wave-induced mean flow quantities. Hence in 

this preliminary study we shall ignore the effect of the mean sediment flux in x > xb, and so h
¯ 
= h0(x) , H = h0(x) 

+ δ
¯
. The steady wave set-up solution can now be derived in the usual manner from the mean momentum 

equation (11), see Mei (1983) or Svendsen (2006) for instance. 

However, it transpires that now, in the surf zone U 6= 0, and in order to match at x = xb, we may need to allow 

for U 6= 0 in the shoaling zone as well. Then, the conservation of mass equation implies that HU = M = HbUb, 

where the subscripts denotes the values at x = xb. Then, for this steady onedimensional case, the mean 

momentum equation (11) yields 

, (21) 

where E . (22) 

Here φ is the angle between the wave direction and the onshore direction, and S is the “xx” component of the 

tensor S. In shallow water, φ ≈ 0,cg ≈ c,S ≈ 3E/2, and using (19) which expresses a, and hence E = in terms of h, 

we find that 

 

 . (23) 

 

Here we have assumed that δ
¯ 

is zero far offshore. When there is no sediment transport, M = 0 and this reduces 

to the well-known result obtained by Longuet-Higgins and Stewart (1962) of wave set-down in the shoaling 

zone Note that the extra term here always enhances the set-down. We show below that when ν << 1, M is order 

ν, where ν << 1 is defined by (27) below; hence this extra term can usually be neglected. 

 

3.2 Surf zone formulation 

In the surf zone xs < x < xb, we assume that h0x > 0, and make the usual assumption (see Mei (1983) for instance) 

that the breaking wave height 2a is proportional to the total depth H, so that 
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2a = γ H , or  . (24) 

Here the constant γ is determined empirically, and a typical value is γ = 0.88.. The radiation stress term S is 

again evaluated by S = 3E/2, so that from (24), S = ΓgH
2
/2 where Γ = 3γ

2
/8. 

Next, we assume, as noted before, that the mean flow in the surf zone is dominated by the Stokes drift velocity 

Us = (Us,0). Hence in the expression (18) we assume that U ≈ Us. For the wave field in the surf zone we use the 

scaling |uw|/(gH)
1/2 ∼ 2a/H, so that using the empirical expression (24) , 

 

|uw|∼ γ(gH)
1/2

. Similarly, we estimate that US ∼−|uw|
2
/ √gH, and so Us ∼−γ

2
(gH)

1/2
. Again omitting the diffusive 

terms in (18), and setting Q
¯ 
= (Qsurf,0) we obtain the expression, 

  (25) 

, (26) 

(27) 

Using the estimates νb = 1.8 × 10
−4 

s
2 

m
−1

, νs = 1.0 × 10
−3 

s
3 

m
−3 

the dimensionless small parameter ν = 0.88 × 

10
−4 

and σ = 0.05s
3 
m

−3
. 

The basic set of equations is then (16) using the expression (25), and (7 , 11), that is, 

h
¯
t + νF(H)x = 0, (28) 

Ht + (HU)x = 0, (29) 

Ut + UUx + g(1 + Γ)Hx − gh
¯
x = 0. (30) 

 

Recall that H = h
¯ 
+ δ

¯
. 

First, we note that when ν = 0, that is, the sediment transport term is removed, we see from (28) that h
¯ 
= h0(x). 

A steady solution then exists with U = 0 from (29), and so also then M = 0. Equation (30 then reduces to 

ΓHHx + H(H − h0)x = 0, so that , (31) 

 

where the constant Hb = hb + δ
¯

b is determined by requiring continuity of the total mean height at x = xb. This is 

the well-known expression for wave set-up in the surf zone, see Mei (1983) or Svendson (2006). Note that the 

expression (31) is valid for any depth h(x), although in the literature it is often derived only for a linear depth 

profile h = αx. Also, using (23) with M = 0, Hb = hb − F0/4h
3
b

/2
, and since Hb must be positive, there is a 

restriction  on either the offshore wave amplitude a0 or a∞ through F0, or on the breaker depth hb, for 

this wave set-up solution to hold. The shoreline position x = xs can now be found by setting H = 0 in (31). 

Next, since U = 0 when ν = 0 (that is, there is no sediment transport), we anticipate that when ν << 1, then U is 

O(ν), but importantly is not zero. It transpires that for the wave set-up solution of interest this is indeed the case. 

Before proceeding we return to the full expressions (18) and note that the criteria for the neglect of the diffusive 

terms are λbα << 1,λsα < (H/g)
1/2 

where α is a measure of the beach slope h
¯
x. With λb = 0.7, λs = 2.5s, H = 2m 

this implies that we require that α << 1.4,0.2 respectively. 

 

3.3 Surf zone solution 

The system (28, 29, 30) is a 3 × 3 nonlinear hyperbolic system of the form 

vt + A(v)vx = 0, v
t 
= [H,U,h

¯
]. (32) 

The eigenvalues λ of A for this system are given by 

det[A(v) − λI] = 0, (33) 

which leads to the cubic equation, 

λ{g[1 + Γ]H − (U − λ)
2
}− νgHF 

0
(H) = 0 (34) 

The system is hyperbolic if this expression has three real roots. For ν << 1 , the roots are 

 . (35) 

All are real-valued, and so in this limit the system is hyperbolic. The first root is the one of main interest here, as 

it is arises directly from the sediment transport term. 

Nonlinear hyperbolic systems support a family of simple wave solutions, of the form 
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v = v(α), (36) 

where α = α(x,t) is an arbitrary new variable, and could be taken as any one of the set H,U,h
¯
. Substitution into 

(32) shows that 

αt + c(α)αx = 0, where c = λ, (37) 

is one of the eigenvalues of A, and vα is then a corresponding eigenvector given by 

−λh
¯

α + νF 
0
(H)Hα = 0, (38) 

(U − λ)Hα + HUα = 0, (39) 

(U − λ)Uα + g(1 + Γ)Hα − gh
¯

α = 0. (40) 

We choose λ = λ1, the root corresponding to the sediment transport term, and given approximately by (35) when 

ν << 1. We then readily find that 

  (41) 

, (42) 

(43) 

Here C0 is a constant of integration, determined from a boundary matching condition. Because the relation (43) 

is conserved through shocks, see (51) below, this can be applied at x = xb so that, 

C0 = Γhb + (1 + Γ)δ
¯
b , (44) 

so that  , (45) 

which is the same expression as (31) with h replaced by h
¯
. Note that U is O(ν) with U > 0. Thus in this simple 

wave solution, the mean flow is weak and offshore. 

A hyperbolic system can also support discontinuous, or shock, solutions. Assuming that across a discontinuity, 

the sediment flux, mass and momentum are conserved, the shock conditions can be derived in the usual way by 

integrating across the discontinuity. If the shock speed is V , then these are readily obtained from the set (28, 29, 

30) , 

, (46) 

(47) 

(48) 

Here [·] denotes the jump across the discontinuity. When ν << 1, we see that the shock speed V of interest is 

O(ν). Assuming that, as above, also U is O(ν), the shock relations are approximated by 

−V [h
¯
] + ν[F(H)] = 0, (49) 

−V [H] + [HU] = 0, (50) 

(1 + Γ)[H] − [h
¯
] = 0. (51) 

Only equation (50) involves U, and equation (51) can be used to eliminate h
¯ 
so that (49, 50) reduce to 

−V (1 + Γ)[H] + ν[F(H)] = 0 (52) 

[(1 + Γ)HU − νF(H)] = 0. (53) 

 

Since F(H) is an increasing function of H, the expression (52) shows that the shock speed V is positive. Also the 

expressions (53) shows that the simple wave relation (42) for U is conserved across the shock. 

In general, the system (32) is to be solved with the boundary conditions at x = xb that [H,U,h
¯
] = [Hb,M/Hb,hb], 

where Hb = hb + δ
¯
b. When we assume that the solution in the shoaling zone x > xb is steady, given by (23) , then 

these boundary data are all known constants. The initial condition is more problematic to specify. Here we shall 

assume that in the surf zone [H,U,h
¯
] = [H0(x),0,h0(x)] at t = 0, where H0(x) is the solution (31) in the absence of 
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any sediment transport. This choice corresponds to turning on the sediment transport at t = 0, and is clearly an 

over-simplification of reality, but we expect the solution to be indicative of more realistic initial conditions. In 

effect, we are assuming that the wave field is turned on at t = 0 and reaches the sediment-free solution (31) 

instantaneously. That is we are assuming that the time scale for the steady sediment-free solution to be reached 

is much shorter than that for the sediment transport terms to take effect. Note that there is a discontinuity in U at 

the point x = xb,t = 0 , which requires that a shock emanates from this point. In the limit of interest when ν << 1, 

the shock speed V = O(ν) > 0, and we infer that a thin layer develops near x = xb but lying in x > xb. In order to 

use the simple wave solution discussed above when ν << 1 to solve this problem, we see that in this solution U 

6= 0, albeit of O(ν). We infer that there is a thin boundary layer near t = 0 within which there an adjustment for 

U from zero to the simple wave value. 

The simple wave solution can now be found by the method of characteristics, that is 

, for x < xb , (54) 

h
¯ 
= hb at x = xb , h

¯ 
= h(x) at t = 0, (55) 

so that x − c(h
¯
)t = x0 ,h

¯ 
= h(x0) for x0 < xb , (56) 

where x0 is the initial value of x along each characteristic. The solution can be written in the form 

h
¯ 
= h(x − c(h

¯
)t), for x − c(hb)t < xb . (57) 

Since c(h
¯
) is an increasing function of h, it can be shown that in this simple wave solution, h,H

¯ 
decrease at 

each fixed x as t increases, and also decrease for each fixed t as x decreases, since we have assumed hx(x) > 0. 

Thus, in this solution the beach is continually replenished. Because the characteristics go offshore, they intersect 

a shock x = xS(t)) emanating from x = xb,t = 0 , where the jump conditions (52) is imposed. Thus we get that 

 . (58) 

Here H(xS,t) is obtained from the simple wave solution, and because the shock is thin, we have approximated the 

values of H(x → xS+,t) as that at x = xb for simplicity. The expression (58) is a differential equation that 

determines the shock. This completes the solution. Also the expression (53) for U can now be used to find the 

value of M, that is 

 . (59) 

A typical timescale can be estimated as the time for a characteristic from x = 0 to reach x = xb, that is ts = xb/c(h
¯ 

= 0), or 

 . (60) 

For instance, with the parameter values already specified, and with xb = 20m,Hb = 2m,hb = 1.8m, we find that ts = 

4800s which is a reasonable value. THis estimate is dominated by the suspended sediment term, that with 

coefficient σ. If this is removed the estimated timescale is 7 times larger. 

For a linear beach slope h0 = αx, the simple wave solution (57) reduces to 

h
¯ 
= α(x − c(h

¯
)t), 

For ν << 1 this reduces to the expression 

(61) 

, (62) 

where . 

The first expression reduces to (31) when ν → 0, but for ν > 0 it is a quartic polynomial equation for Y = (gH)
1/2

, 

which can be written as 

 
Explicit solutions are not readily available, but it is readily shown that there is only one positive root for Y , for 

each given X > 0,T > 0. Also, the shoreline, where Y = 0 does note change in time, and remains at X = 0. 

However, explicit solutions can be found in the two limits when either bedload or suspended sediment 

dominate. These correspond formally to the respective limits σ → 0,σ →∞, when we get that 

 

 , or  , (64) 
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respectively. Note that the limit σ →∞ is non-dimensional form is σnd = σ(gHb)
3/2 

→∞, and is only valid when 

Y,X > 0. These are plotted in figure 1 for h
¯ 
as a function of h for a fixed value of t = 10

4
s, where for the limit σ 

→∞, the non-dimensional σnd = 43.5 for the plot in this figure. 

 

3.4 Steady state 

It is clear from (28, 29) that the present sediment transport model cannot allow any steady state to form, as h
¯
t = 

Ht = 0 would then imply that H = 0 , which is unacceptable. Hence, if a steady state is to be reached, we must 

replace the sediment law (25) by an expression which takes account of the beach slope through the diffusive 

terms in (18). Thus, from the discussion in section 3.2 we now replace (25) with 

  (65) 

. 

Consequently equation (28) is replaced by 

h
¯
t = ν{−F(H) + D(H)bx}x , b = h

¯ 
− hr(x). (66) 

The remaining two equations (29, 30) are unchanged. Equation (66) has the structure of a nonlinear diffusion 

equation, and so there is a possibility that a steady-state can be achieved. Indeed if we assume that there is a 

steady-state solution then U = 0, (66) implies that Q
¯
surf = 0, and then 

F(H) − D(H)bx = 0. 

Equation (30) can be integrated to yield 

(67) 

H(1 + Γ) = h
¯ 
+ constant. (68) 

  

 
Figure 1: Plot of the solution (64) for h

¯ 
(blue) for the parameter setting 
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= 0 for t = 10
4 
s for the case 

σ = 0 in the upper panel, and for the case σ = 0.5s
3
m

−3 
in the lower panel. 

In each case the red line is h, the value at t = 0. 

Substituting (68) into (67) yields 

1 + γσ(gH)
3/2 

= (λb + σλsγgH)((1 + Γ)Hx − hrx). (69) 

 

Clearly the solution will depend on the choice of the reference depth, and here we make the simple choice that 

hr(x) = constant + αrx. The general solution can now be found by quadrature. However it is more instructive to 

consider the two limits σ → 0,∞, which correspond to the cases when either bed-load or suspended transport 

dominates. These limits yield respectively 

  (70) 

, (71) 

where   . 

Here x = xs is the shoreline, and the corresponding expressions for h
¯ 
are recovered from (68). In the case σ = 0, 

the profile is just a linear slope but enhanced over the reference slope αr. In the case σ → ∞, we note that when 

αr = 0,D0 = 0 and (70) reduces to a quadratic expression in 

, while when D0 →∞, the profile 

is again a quadratic expression, but now 4H → C1(x − xs)
2
. Also, for this same case as H → 0, again 4H → C1(x 

− xs)
2
, while as H →∞, H → 

C1(x − xs)
2
. In effect the entire solution is close to some parabolic profile. For intermediate values of σ the 

solution varies between the linear slope (70) and the expression defined by (71). We infer that these equilibrium 

beach profiles range between a linear and a parabolic profile, and can probably be well approximated by a 

power law (x − xs)
β
,1 ≤ β ≤ 2. However, it seems that the well-known Dean’s law (Dean 1991, Dean and 

Darlymple 2002) when the profile is proportional to (x−xs)
2/3 

is not described by the present class of solutions. 

Indeed, to obtain Dean’s law by the present approach requires that D(H)/F(H) ∝ (gH)
1/2

, Examining the formula 

(18), we see that this would require a stronger dependence on |uw| in the diffusive term than this formula allows 

for. Whether or not the unsteady simple wave solutions of the previous subsections will eventually reach a 

steady state requires numerical solutions of (29, 30, 66), and will not be investigated here. 

 

IV. SUMMARY AND DISCUSSION 
In this paper we have augmented the usual wave-averaged mean field equations, described in section 2, 

commonly used to describe wave set-up and wave-induced mean currents in the near-shore zone, with a 

sediment flux law (18), which has a form similar to several available in the literature. In this present model, any 

sediment movement in the shoaling zone is ignored as being O(E
2
), and instead our focus is on how the 

augmented model modifies wave set-up in the surf zone. Here the sediment flux law is modelled empirically, 

based on (18), but with a modification to reflect the dominant effect of the Stokes drift term, leading to (25). Our 

main result in section 3.3 is that, when the diffusive terms in the flux law are ignored, then there is no steady-

state set-up, and instead the mean bottom depth h
¯ 
in the surf zone evolves according to a simple wave equation. 

This is solved to yield a prediction that the beach is replenished. In section 3.4 we show that if the diffusive 

terms in the sediment flux law (25) are retained, then the simple wave equation, whose solutions are intrinsically 

unsteady, is replaced by a nonlinear diffusion equation (66) which allows a steady-state solution. This can be 

well represented by a power-law profile with index varying between one and two, that is between linear and 

parabolic profiles. 

Although our present model makes a specific choice of the empirical parameters in (18), we would expect that 

other choices will lead to qualitatively similar results to those obtained here. A more serious limitation of the 

present model is that the outer boundary of the surf zone x = xb is assumed here to be fixed for all time. When 

sediment transport is allowed, the wave set-up becomes unsteady, and our solution indeed indicates that xb will 

also be unsteady, and migrate offshore as the mean total depth decreases in the surf zone. This issue will await 

future study. Also, the present model is entirely one-dimensional, and it would be interesting to examine the 

stability of the solutions found here to transverse perturbations, 
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