
ISSN (e): 2250 – 3005 || Volume, 07 || Issue, 06|| June – 2017 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 72

Error Modeling in Dependable Component-based Systems

1
debasish Pradhan,

2
ruchira Tripathy

Gandhi Institute of Excellent Technocrats, Bhubaneswar, India

Samanta Chandra Sekhar Institute of Technology and Management, Koraput, Odisha, India

INTRODUCTION

ThemainadvantagesofCBDapproacharetheabilitytomanagecomplexityandthepossibilitytoselectthemostsuitableco

mponentamongtheonesthatprovidesamefunc-tionality.However, the latter can be best achieved only ifthe design

step incorporates rigorous analysis for this spe-cific need. This issue becomes all the more relevant whenCBD is

used for developing dependable systems, since onehastoanalyzemultipleextra-functionalpropertiesaswell.

Our main goal is development of a framework based onwell-founded theories, while keeping industrial realities

infocus, which will provide meaningful reasoning about de-pendability attributes in CBS based on the

characteristicsof the component model, properties of individual compo-

nentsandcomponentconnectionschemeinagivendesign.Sinceerrorsareoneofthemainimpedimentsforachieving

dependability, this paper particularly focuses on modelingtheerrorbehaviorofcomponentsanderrorpropagationas-

pects in order to reason about the dependability attributesof the composed system and its failure modes. We use

anin-housedevelopedcomponentmodel(SaveCCM)[2]toil-lustrate how a specific component model can influence

theerrorpropagationaspects.

In a recent work, Elmqvist and Nadjm-Tehrani [7] ad-dressed formal modeling of safety interfaces and

providedcompositional reasoning about safety properties of com-posed systems. Our focus is more on reliability

and timingaspects and on analytical approaches.Grunske and Neu-mann [9] have proposed an approach to

model error be-havior of composed systems by using the Failure Propaga-

tionandTransformationNotation(FPTN)foreacharchitec-turalelementandtoconstructthecomposedsystems’Com-

ponent Fault Trees (CFT) from the FPTN models to per-form safety analysis. Rugina et al. [14] proposed a

frame-work where the Architecture Analysis and Design Lan-guage (AADL) with the features of Error Model

Annex isusedtocreatemodelsofcomposedsystems’errorbehavior.Then, these models are converted to

GeneralisedStochas-ticPetriNets(GSPNs)orMarkovChainstobeanalyzedbyexisting tools.More recently, Joshi et

al.[11] have pro-posedanapproachtoconverterrormodels,generatedusingAADL with Error Model Annex, to Fault

Trees to performfurtheranalysis.

Asubstantialamountofresearchhasbeenconductedonreliability modeling of composed systems based on indi-

vidual component reliabilities, with a recent focus on ar-chitecture based models.Most of these works assume

theexistence of known probabilities for error state transitions,and only a few address the error propagation

aspects.Onthe other hand, research on dependable systems has beenfocussing more on fundamental system level

models of er-

rors,andmechanismsfortoleratingthoseerrormodes,witharguablylessinterestonhowthesemodelsarelinkedtotherelia

bilitypredictionmodels.Inourview,thelinksbetweenthese two research directions are loosely coupled and

ABSTRACT

Component-

BasedDevelopment(CBD)ofsoftware,withitssuccessesinenterprisecomputing,hasthepromiseofbe-ing

a good development model due to its cost effectivenessand potential for achieving high quality of

components byvirtue of reuse.However, for systems with dependabilityconcerns, such as real-time

systems, a major challenge inusing CBD consists of predicting dependability

attributes,orprovidingdependabilityassertions,basedontheindivid-

ualcomponentpropertiesandarchitecturalaspects.Inthispaper, we propose a framework which aims

to address thischallenge. Specifically, we present a revised error classifi-

cationtogetherwitherrorpropagationaspects,andbrieflysketch how to compose error models within

the context ofComponent-Based Systems (CBS). The ultimate goal is

toperformtheanalysisonagivenCBS,inordertofindbottle-necks in achieving dependability

requirements and to pro-vide guidelines to the designer on the usage of

appropriateerrordetectionandfaulttolerancemechanisms.

Error Modeling in Dependable Component-based Systems

www.ijceronline.com Open Access Journal Page 73

lessexplored. Specifically in CBD, architectural decisions

andspecificaspectsofthecomponentmodelwillinfluencethe

dependability evaluations. Our aim is to enable end-to-

endlinkingfromsystemleveldependabilityrequirements(nor-mally specified in terms of diverse

qualitative/quantitaiveterms), to models for dependability evaluation and predic-tions of composed systems.We

envision our research toprovide substantial clarity and simplifications needed

forCBDofapplicationswithdependabilityconcerns.

The rest of the paper is organized as follows: in Section2 we state the challenges in system level modeling of

errorbehavior, and present the principal parts of our proposedframework.Section 3 presents our revised error

classifi-cation from a CBS perspective.Section 4 discusses

errorpropagationandcompositionaspects,whicharefurtherex-

emplifiedinSaveCCM,andSection5presentsconclusionsandongoingresearch.

1. Outlineoftheproposedframework

The major challenges in realization of a generalizedframeworkfordependabilityevaluationofCBSare:

• diversityofdependabilityrequirementsspecification

differentdependabilityattributesrequiredifferentanalysistechniquesandapproaches

• limitedinformationoncomponentproperties

lackoftechniquesforperforminganalysiswithpartialorevolvinginformation

relating usage profiles of components to target systemcontexts

non-scalabilityofmostoftheformalanalysistech-niquestoindustrial-sizesystems

In order to enable modeling and analysis of system-level dependability behavior, the framework must

includedependability requirements specification, component-levelerror modeling, and system-level

dependability analysis,whicharebrieflymentionedinfollowingsubsections.

Dependabilityrequirementspecifica-tions

At this step, the system designer has to specify the de-pendability requirements for the target system. Due to

thediversity of the dependability attributes, as well as the var-ied industrial priorities and practices, this step is

critical asithasaconsiderableimpactonthesubsequentanalysis(in-cluding the choice of techniques).For instance,

the reli-ability requirements of systems are usually defined in di-

verseterms,rangingfromqualitativetoquantitativeones.

Atypicalrequirementspecificationcanbe’Systemreliabil-

ityshouldexceed0.99999’or’Systemshouldnothaveanytiming failures even under a hardware node

failure’.Theframework must have means to accurately capture and for-mally specify a wide variety of such

requirements, whichthesubsequentanalysistechniquesneedtoaddress.

While designing a dependable system, the goal is typi-cally to achieve fail-controllability [3], i.e., to introduce

acertain degree of restrictions on how the system can fail.The level and type of such restrictions are usually

dependentontheapplicationdomain,criticalityofthesystem,andthedependability attributes that are

considered.Typical fail-ure modes include fail-operational, fail-safe, fail-soft, fail-silent,fail-

stop,crashandByzantine(arbitrary)failures[3].Failuremoderequirementscaneffectivelybeusedforgen-erating

subsystem-level requirements in a hierarchical wayandcanhelpinperforminglocalizedanalysis.

Component-levelerrormodeling

Typically, this step involves modeling error behavior ofindividual software components, as well as other

systemelements, such as component connectors, hardware nodes,middleware, and communication media. Our

plan is to useprobabilistic automata with timing, where nodes of the au-tomata represent error states, and edges

denote transitionprobabilities.An approach based on AADL [14] can besuitable for this step, with proper

extensions on the errormodelingaspects.Ourintegrateddevelopmentenvironmentfor CBS is being designed to

specify and include informa-tion about component error behaviors with varying levelsof details, based on the

available specifications. The levelof details in component-level error models, as well as

thedependabilityrequirementspecificationsofthesystem,willdecidethechoiceofanalysistechniquetobeperformed.

System-leveldependabilityanalysis

The analysis to be performed at this step depends on thedependability specifications and the component-level

errormodels.Our aim is to get the basic structure in place

sothatmultipleanalysistechniquescanbeeasilyintegratedtoour framework. A challenging issue is how to compose

er-ror models to obtain a system-level error behavior.Errorpropagation can occur between two

components,betweena component and another system element, or between twosystem elements. The

Error Modeling in Dependable Component-based Systems

www.ijceronline.com Open Access Journal Page 74

input

Case:”failoperational” Case:“failsilent” ...

“Forward” analysis “Backward”analysis …

No All

criticalpaths

analyzed?

Yes

output Low level information

(wherearethebottlenecks

?)

High level

information(Y

/N)

“type-m” analysis

Case: “type-

m”failuremod

e

Pick a

criticalpath

that is

notyetanalyze

d

Criticalpathidentification

Criticaloutputs

System level

failuremodespecific

ation

−

∈

architecture of the system will serveas an input to this step, where both impact and criticalityanalysis will be

performed.Ideally, by looking at the er-ror model of the composed system, one should be able toobserve

whether the system can possibly fail in a certainmode that is not allowed. If this is the case, the

frameworkshouldfurtherenabletheidentificationofthecriticalpathsin the architecture, and provide guidelines for

efficient de-tection/recovery/correction strategies along with appropri-

atelocationforincorporatingthem,sothattheresultingsys-temmeetstheoriginaldependabilityrequirementsasspeci-

fiedbythesystemdesigner.

Figure1illustratestheskeletonofourproposedmethod-ologyforcomposingerrorinformationtoperformasystem-level

error analysis.The methodology consists of criticalpath identification followed by propagation analysis per-

formed on each identified path where the type of analysisdepends on the specific failure mode requirement.

Thoughcomponents are usually considered as black boxes, we as-

sumetraceabilityofacriticalparameterevaluationthroughthe component chain. If, on the other hand, this is not

pos-sible,wemayhavetoconsiderallpossiblescenarios.

Compone

ntmodelp

roperties

Error

modelspec

ification

ofcompo

nents

System

architect

ure

Figure1.System-levelerroranalysis

Domain

Incomponentbasedsystems,outputsgeneratedbycom-ponents can be specified by two domain parameters,

viz.,value and time [3, 4, 13]. Our hypothesis is that toleratingvalueandtimingerrorsatcomponent-

level,requiresdiffer-entapproacheswithsignificantlydifferentassociatedcosts.Hence, separation of value and time

domains will enablethe use of dedicated fault tolerance mechanisms for eachtype, as well as aid in achieving

better error coverage

withminimumcost.Inthispaper,wedefinethespecifiedoutputgeneratedbyacomponentasatuplebasedonthesedomain

parameters:

SpecifiedOutput(SO)= <v∗,V,T,∆1,∆2>

where the v∗is the exact desired value, Vis the set of ac-ceptable values, Tis the exact desired point in time

whenthe output should be delivered and [T∆1, T + ∆2] is theacceptabletimerangefortheoutputdelivery.

Theoutputgeneratedbyacomponentisdenotedas:GeneratedOutput(GO)=<v,t>

wherevisthevalueandthetisthetimepointwhenthe

outputisactuallydelivered.

TheGOisconsideredtobecorrectif:

v∈VandT−∆1≤t≤T+∆2

Value errors:The output generated by a component iserroneous in value domain (ev) if v /V , where Vis theset

of acceptable values.We first classify errors in valuedomainassubtle(e
s
),andcoarse(e

c
)basedonourknowl-

v v

Error Modeling in Dependable Component-based Systems

www.ijceronline.com Open Access Journal Page 75

v

v

v

∈ { }

1

v

2 1 2 } −
∈ { − −

t

t

t

v,t

2. Errorclassification-revised

The error characteristics presented in this section arebasedonasynthesizedviewofseveralworks[3,13,4,10, 6].We

follow the basic classification of Avizieniset.al.[3] while extending it into details with other

works,mostofwhichaddressnarrowerareasbutwithfinerdetails.It also presents various aspects of errors in two

categoriesbasedontheirinfluenceontheerrorhandlingmechanisms.Thesecategoriesessentiallydetermine’whichmec

hanisms’and ’how much’ are needed for adequate error

handling.Thevariousaspectsconsideredaredomain,consistency,de-

tectability,impact,criticality,andpersistenceoferrors.Thedomain and consistency determine what kind of error

han-dling mechanisms are appropriate while the rest determinetheamountoferrorhandlingneeded.

edgeaboutthesetofreasonablevaluesfortheoutputandthesyntaxthatshouldbefollowedasin[4,13].

• Inexactvalueerrors(e
e
)

v∈/V,whereV={v∗}

• Unacceptabledistinctvalueerrors(e
d
)

v/ V , where V=v∗, v1, v2, ..., vn, v∗is the idealvalueandv1,v2,...,vnaretheotheracceptablevalues

• Inaccuratevalueerrors(e
a
)

v/ V , where V = v∗∆v, ..., v∗1, v∗, v∗+1,...,v∗+∆vand[v∗∆v,v∗+∆v]istherangeofacceptablevalues

Avalueerrorisacombinationoftheaboveclassifica-tions,i.e.,e
xy

,wherex∈{c,s}andy∈{a,d,e}.

Timing errors:In [4, 13, 6] and in our classification, er-rors in time domain are classified into early, late and in-

finitelylate(omission)timingerrors.

• earlytimingerrors(e
e
):t<T−∆1

• latetimingerrors(e
l
):t>T+∆2

• omissiontimingerrors(e
o
):t=∞

Additional classes [13] are, bounded, omission, and per-manent omission (crash or permanent halt) errors.para-

graph Errors in both time and value domain:Componentoutputsunderthiscategoryareerroneousinbothvalue

andtimedomainsimultaneously,i.e.,e
a,b

,wherea ∈

{ce,cd,ca,se,sd,sa}andb∈{e,l,o}if:

v∈/Vand(t<T−∆1ort>T+∆2)

 Consistency

If a component provides replicas of an output to sev-eral components,consistency issues may arise.In

thiscase,the errors are considered consistent if all receiversget identical errors.In [13], multi-user service errors

areclassified into consistent value errors, consistent timing er-rors,consistentvalueandtimingerrors,andsemi-

consistentvalue errors. In semi-consistent value errors, some out-put replicas have unreasonable,or out-of-

syntax values,whiletheresthaveidenticallyincorrectvalues.In[4],non-

homogeneousoutputreplicasaredefinedtobeerroneous.

Inconsistent errors: Replicas of an output are definedas inconsistent if there are both correct and

incorrectreplicas.

The characteristics presented so far define our error classi-fication and will be used in both propagation analysis

andcomposition of component error models.Furthermore theclassification will be used to determine which error

han-dlingmechanismsareadequatetocontroltheerrorbehaviorduringcomposition.

3. ErrorpropagationinCBS

Errors in a component based system can occur in soft-ware components, middleware, or hardware platform,

andcan propagate up to a system interface causing a systemfailure with a certain probability. This probability is,

in itsturn, dependent on the probability of error occurrences, theisolation between different system elements,

existing errordetection and handling mechanisms, as well as the type oferrors. The research effort is currently

increasing for find-ing ways to get these probabilities, and to use them appro-priately[10,8,12,1,5].

We define the set of errors E, which includes instantia-

tionsoferrortypesdiscussedintheprevioussection.WealsodefinethefollowingsubsetsofEasfollows:

•

Error Modeling in Dependable Component-based Systems

www.ijceronline.com Open Access Journal Page 76

i

• E

pass

i

i

i

i

i i

i i i

E
in

is the set of errors that are propagated into com-ponentCi

Anon-homogeneousvalue(ortiming)erroroccursifthe

geni

isthesetoferrorsthatareinternallygener-

values(ortimes)ofreceivedoutputsarenotcloseenough

toeachother.Closenessisspecifiedbyusingthresholdval-ues. In our classification, we use both consistency and ho-

mogeneityconcepts.

• Consistenterrors:Replicasoftheoutputfromacom-

atedbycomponentCiandpropagatedout withoutany

changes

Ei is the set of errors propagated into Cithatare

propagatedoutwithoutanychanges

• E
mod

is theis thesubsetofE
in

thataretransformed

sameerrorcategory,e.g.,bothhavecoarsevalueerrorsorlatetimingerrors.

Wefurtherclassifytheseerrorsas:

– Precise: The values or generation times of repli-

casareconsistentlyerroneousaswellasbotharewithinaprecisionrangeoridentical.

– Imprecise:Thevaluesortimingofreplicasare

toanothererrortype,maskedorcorrected

E
trans

isthesetoferrorsthatwereoriginallybelong-ingtoE
mod

orinternallygeneratederrorsandtrans-

formedintothemembersformingthisset

E
out

is the set of errors that are propagated from com-ponentCi

consistentlyerroneous.Howevereithervaluesor

Ein

= Emod∪Epass

Eout

= Egen∪Epass∪Etrans

Semi-consistent errors: Replicas of an output are de-fined as semi-consistently erroneous if all users

receiveerroneousoutputswhileatleastoneofthembelongstoadifferenterrorcategorythantheothers.

ErrorscanbetransformedintoE
trans

byeitherCi’snor-mal execution or by error handling

mechanisms.Thesemechanisms can be implemented within components atcomponentdesignstage, atthe

componentinterfacesat the

architectural design, or at integration stages of CBD. Var-ious mechanisms for different types of errors and their

ef-fects on error propagation are discussed in the followingparagraphs.

Transformation of value errors:The possible ways oferrortransformationsinvaluedomainareshowninTable1.

Cause Initialerror Finalerror

Errordetection ev ev(transformationi

ntimedomain)

Errormasking ev noerror

Errorcorrection ev noerror

Componentoperation ev

es

noerror

ec

i i i

i

generationtimes(dependingontheerrortype)

•

•

•

•

•

ponentareconsistentlyerroneousiftheybelongtothe

areoutsidethespecifiedprecisionrange.

Error Modeling in Dependable Component-based Systems

www.ijceronline.com Open Access Journal Page 77

−

t t t

 ec es

 v v

Table1.Transformationsofvalueerrors

One way to detect coarse value errors is using reason-ableness checks. Implementing reasonableness checks ne-

cessitates having knowledge about the behavior of the pro-

ducer,forexample,arangecheckingmechanismmarksthetemperaturereadingofaroomaserroneousifthevaluereadis20

0◦C based on our knowledge about the reasonableboundaries for that output.Coding checks are used to de-

tectnon-codevalueerrorswhichisaspecifictypeofcoarsevalue errors (parity-check is an example for this type

ofcheck). Obviously, if more advanced error detection mecha-

nismsareused,whichcanidentifymorecomplexerroneousbehaviors, the coverage of detectable errors is

increased.Detecting subtle value errors is performed by more expen-

siveerrordetectionmechanisms,suchasreplicacheckingatavoterelement.Propagationofvalueerrorscanbeblockedafte

rdetection,bysimplynotallowingtheerroneousoutputto be delivered to the next component. In this case a

valueerroristransformedintoanomissiontimingerror.

Certain means allow masking of value errors, such asN-modular redundancy techniques, while some others

cancorrect value errors by using, e.g., error correction codes.Both masking and correction techniques enable

continua-tionofcorrectfunctioninguponerrors.

Transformationoftimingerrors:Errorsintimedomaincanbetransformedaccordingtothefollowingorder:

e
e
→noerror →e

l
→e

o

Timing checks and watchdog timers can be used to de-tect timing errors produced by components.Early

timingerrors can be corrected by introducing delays. Propagationof early or late timing errors can be blocked by

not trans-mittingthem,iftherearenomeanstocorrectthem.Insuch cases, these errors are transformed into omission

er-rors.When a value error is detected and omitted, as de-scribed previously, the output is actually transformed

fromhavingnotimingerrortoanomissionerror.

For errors regarding consistency, similar checks can beusedandinconsistenterrorscanbetransformedintoconsis-

tenterrorsinbothvalueandtimingdomains.

To illustrate how a specific component model can in-fluencetheerrorpropagationaspects,wehaveconsid-

eredthein-

housedevelopedSaveCompComponentModel(SaveCCM)[2]andpropagationbetweencomponentsthroughconnect

ors.

SaveCCMcomponentmodel

SaveCCM was developed under the SAVE project andwasintendedforuseinautomotiveapplications.InSaveCCM,

systems are built by composing entities

whichbelongtooneofthreemaincategories,namelycomponents,switchesandassemblies,viawell-definedinterfaces.

Components are basic entities in SaveCCM that followstrict read-execute-write semantics.A component is ini-

tially in an inactive state.Once all input trigger ports

areactivated,inputdataportsarereadandthecomponentstartsexecuting.When the execution is completed, results

arewritten to output data ports, input data ports are reset, andall output trigger ports are activated. Then the

componentreturnstotheidleorinactivestate.Switchesarelightweightcomponents that allow changing the

interconnections ofcomponents either statically, for offline configuration, ordynamically at run-time.Switches

are not triggered andonly perform routing of incoming data to output ports ac-cording to the connection pattern

guards.Finally, assem-

bliesareencapsulatedsubsystemswhoseinternalstructuresmay(ormaynot)bevisiblefromtherestofthesystem.

Interfaces between SaveCCM entities consist of

inputandoutputports.Theyarefurtherclassifiedintodataports,trigger ports, and both data and trigger ports.

Connectionsbetween components consist of immediate or complex con-nections, where immediate connections

are assumed to be-have as ideal connections which take place instantly

withoutanylossofinformation.Complexconnections,ontheotherhand,areusedtomodelmorerealisticconnectionscena

rios,e.g.,withcertaindelaysandpossiblelossofinformation.

ErrorpropagationinSaveCCM

Inthissection,wefirstinvestigatewhicherrortypescanbe propagated from one entity to another through

differentSaveCCM ports (Table 2).If two SaveCCM entities areconnected by a trigger port, then the preceding

Error Modeling in Dependable Component-based Systems

www.ijceronline.com Open Access Journal Page 78

entity canpropagate only timing errors by triggering (therefore acti-

vating)thefollowingentityatanincorrecttime.Ifthecon-

 ValueErrors TimingErrors

Dataports C C

Triggerports - C

Dataandtriggerports C C

Table2.ErrorpropagationthroughSaveCCM

nection is implemented with a data and trigger port, bothvalue and timing errors can be propagated. This is also

thecase for connections implemented with a data port, sincethe time when the data is written to the port will

determineif there is a timing error. Hence, SaveCCM entities can beclassified with respect to error generation

and propagationasfollows:

SaveCCMentitiesthatcangeneratevalueerrors:These are the entities that have output data or

outputdataandtriggerports.

SaveCCMentitiesthatcanpropagatevalueerrors:En-tities in this group have input data or input data andtrigger

ports to receive a value error from a preced-ing entity. Furthermore they must have output data

oroutputdataandtrigger portsinordertopropagatetheerrortothefollowingentity.

SaveCCM entities that can generate timing errors: Anyentitythathasoutputportscangeneratetimingerrors.

SaveCCM entities that can propagate timing errors:Similarly any SaveCCM entity can propagate timingerrors

provided that there exists at least one input andoneoutputport.

As different component models have different levels ofimpact on the error propagations, similar detailed

analysis,inthecontextofthegivencomponentmodel,isessentialforanaccurateandcomputationallyfeasiblesystemlevel

errorbehaviorprediction.

4. SummaryandOngoingWork

In this paper, we have proposed a framework to enablecompositional reasoning of error models. We have

surveyedvarious error classifications and failure modes in the litera-ture with the aim of identifying their

relations/contrasts aswell as in arriving at an ’all-encompassing compilation

ofclassifications’.WehaveinvestigatedtheerrorpropagationinCBSanddiscussedtheeffectsoferrorhandlingmecha-

probabilisticvariantsofthem),b)providelinkstoarchitec-tural reliability prediction models together with new theo-

ries on dependability reasoning of multi-level compositions,as well as c) instantiate our framework on the

SaveCCMsuccessor,i.e.,ProComp,currentlyunderdevelopment.

REFERENCES
[1] W.Abdelmoez,D.Nassar,M.Shereshevsky,N.Gradetsky,R. Gunnalan, H. Ammar, B. Yu, and A. Mili.Error prop-agation in software

architectures.Proceedings of the 10thInternationalSymposiumonSoftwareMetrics,2004.

[2] M.Akerholm,J.Carlson,J.Fredriksson,H.Hansson,J.Hakansson,A.Möller,P.Pettersson,andM.Tivoli.The SAVEapproachtocomponent-
baseddevelopmentofvehic-ular systems. Journal of Systems and Software, 80(5):655–667,2007.

[3] A.Avizienis,J.Laprie,andB.Randell.Fundamentalcon-cepts of dependability.Research Report N01145, LAAS-CNRS,April2001.

[4] A.
BondavalliandL.Simoncini.Failureclassificationwithrespecttodetection.Proceedingsof2ndIEEEWorkshoponFutureTrendsinDistribut

edComputin,1990.

[5] V.CortellessaandV.Grassi. Amodelingapproachtoanalyze the impact of error propagation on reliability ofcomponent-based
systems. Proceedings of the Component-basedSoftwareEngineeringConference,2007.

[6] K.EchtleandA.Masum.Afundamentalfailuremodelfor fault-tolerantprotocols.ProceedingsofComputerPerfor-
manceandDependabilitySymposium,2000.

[7] J.ElmqvistandS.Nadjm-Tehrani. Safety-orientedde-signofcomponentassembliesusingsafetyinterfaces.Elsevier-
ElectronicNotesinTheoreticalComputerScience,(182):57–72,2007.

[8] L.Grunske.Towardsanintegrationofstandardcomponent-based safety evaluation techniques with SaveCCM.Pro-ceedings of the
Conference Quality of Software Architec-tures,2006.

[9] L.GrunskeandR.Neumann.Qualityimprovementbyin-tegrating non-functional properties in software
architecturespecification.ProceedingsoftheSecondWorkshoponEval-uatingandArchitectingSystemdependabilitY,2002.

[10] M.Hiller,A.Jhumka,andN.Suri.EPIC:Profilingtheprop-agationandeffectofdataerrorsinsoftware.IEEETransac-
tionsonComputers,53(5):512–530,2004.

[11] A.Joshi,S.Vestal,andP.Binns.Automaticgenerationofstaticfaulttreesfromaadlmodels.ProceedingsoftheWork-

shoponArchitectingDependableSystems,2007.

[12] P. Popic, D. Desovski,W. Abdelmoez,and B. Cukic.Errorpropagation in the reliability analysis of component
basedsystems.Proceedings of the 16th IEEE International Sym-posiumonSoftwareReliabilityEngineering,2005.

[13] D.Powell.Failuremodeassumptionsandassumptioncov-erage.Proceedingsof22ndInternationalSymposiumon

•

•

•
•

