

Design of Belt Conveyor to Reduce Loss Batch-Cullet

¹saikat Deb, ²smrutiranjan Panda,

Gandhi Institute of Excellent Technocrats, Bhubaneswar, Bhubaneswar Orissa Engineering College, Bhubaneswar, Odisha, India

ABSTRACT

In glass-making production process, the quality of the а rawmaterialisveryimportanttoproducegoodqualityofglass.Butsometimes not all of material have a good quality, there mustbe foreign object contamination in the raw materials so that donotmatchwith the expected material quality and has an impact on rejected material and can interfere with the second sec heproductionprocess or the glass The purpose quality. of this paper is toreducemetalcontamination, so that batch-cullet material is not wasted by designing and realizing abatchculletrejectconveyor which consists of two conveyors. Conveyor Α has atotallengthof7.5meterswithaheightof3.5meters, as lope of 20°, has a power of 2.62 kW with a suspended magnet andmetaldetector.ConveyorBhasatotallengthof4.5meters,hasa power of 1.29 kW and both conveyors accommodate can aproductioncapacityof620000kg/day.Fromthedesignofthetwoconveyors, it was found that the amount of batch-culletlossper day was reduced by 87.92% from 7890 kg/ day to 952.6kg/day Keywords:batch-cullet,beltconveyor,metal,contaminant.

INTRODUCTION

The Teutonic "Glaza" word of glass comes from word which means yellow. Theoldest blueprint that is found and printed on clay in 669-627 BC which describe the initial composition of glass making, there is 60 parts of sand, 180 parts of ash frommarine plants and 5 parts of [1]. The properties of glass areuniqueandvariedforchemicalofglass, and can be adjusted by changing the composition or production technique of the glass[2]. Along with the development of the era, the method of glass making is growing [3]. The current most popular sheet $glass production process is the float process method. \cite{the float} The flow of the glass production process with the float process is the float process of the float proces of the float process of the float proces$ ustratedinFigure 1

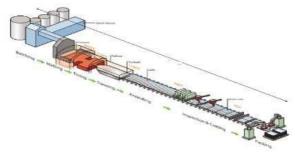


Figure1.Flowproduction of floatprocess[4].

One of the companies that produce flat glass is PT MuliaglassFloatDivisioninIndonesia.Figure2describestherawmaterialbatchingprocess:

Figure2.Batchingprocess[5].

The problem that often occurs in the batching process is theamount of material that is discarded due contamination in theraw material, one of the sources of contamination in the glassraw material is from foreign objects [6]. According to Sugito, Head Section of The Batch Plan Department at PT MuliaglassFloatDivisionFloat3, there are several types of contamination that cannot pass into the melting process such as metal, aluminium, and rock. Figure 3 shows the contamination that can be filtered out:

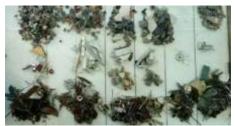


Figure3. Examples of contaminations.

The wasted material of batch-cullet by metal contaminationcausesnewproblem. The problem is the wastebatchcullet that increase every day by metal contamination in the batch-cullet material. Figure 4 show that the one of flow process in BatchPlan:

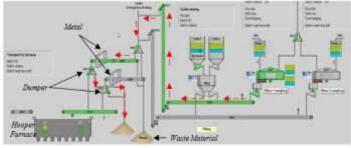


Figure4.Flowprocessofbatching-plan

Observation of the area becomes a reference for designing aconveyor that can distribute batch-culet material and reducemetalcontaminationinthematerial.Beltconveyorsystemisaneconomicalequipmentfortransportinglargequant itiesofmaterial [7]. The addition of this belt conveyor system is aninnovation in the Batch Plan Department that is considered effective, because ithas function to distribute and movematerial from one place to another place by adding a magnet which function is to attract metal contamination in the metal detector to detect metal contamination. Figure 5shows the example of conveyor supports tructure:

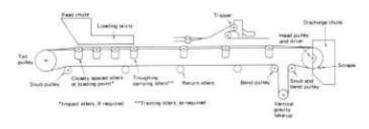
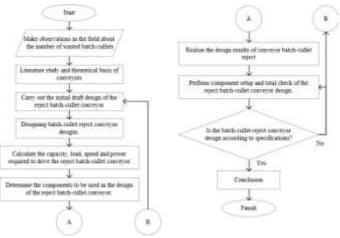



Figure 5. Support structure of belt conveyor [7].

1. METHOD OF DESIGN

The flow chart design of batch-cullet reject conveyor is showninFigure6:

 $\label{eq:Figure6.} Figure 6. Flow chart of conveyor batch-cullet reject design.$

The belt conveyor can be characterized by a belt or steel wirethat rotates around a driving pulley supported by several rollwithastructure[7]. Theuseofbeltconveyorsinseveralindustries is different according to needs of each industry. Indesigning a conveyor batch-cullet reject there are several stepsthat need to be done. The first thing to do is conduct a fieldstudy on the wasted batch-cullet material, and then looking forliterature on conveyor design [8-10], make the initial design ofbatch-cullet reject conveyor, determine what components willbeused, then proceed with calculating the capacity, tension and power required, after that realize the conveyor of batch-

cull etreject and then make adjust ment of component and total checking all of components. If the design is successful, the transmission of transmission of the transmission of tran

conclusions will be drawn. However, if it is not fit, it can be several components or make another priority design. Toget more detailed technical data such as the capacity used, beltspeed, tension and power required, and this is several equations can be used to calculate them [11]:

1. Capacityand beltspeed:

 $Q_t = 3.6 x A x \gamma x k x v \dots (1)$ Where,

Qt=Beltconveyorcapacity(ton/hr)A=Crosssectionarea(m²)

 γ =Materialdensity(kg/m³)v=Beltspeed(m/s)

k=Inclineordeclinefactor.

Material	Density (kg/m3)	Angle of repose	Angle of surcharge	
Chips, paper mill - softwood	190-480	*	25"	
- yeilow pine	320-400	-	25%	
Clay - dry, loose	1010-1440	40°- 45°	15°-25°	
- brick, ground fine	1760	35°	15*	
Coal - 150mm domestic sizes	830-900	10.00	25*	
- run-of-mine	720-880	35*	25"	
- ziack	690-800	37*	25*	
- pulverized for coking	480-590		10*	
- fignilie, broken	720-880		25*	
Cacoli	480-560		(m))	
Coke - run of oven	400-480	30°	25°	
- breeze	380-560	307-45°	20"	
Concrete, wet, on conveyor	1760-2400		15.0	
Copper ores, crushed	2080-2400		25*	
Copra	350			
Corn grits	670			
Cryolite - 50-75mm iumps	1600-1680		20*	
- 15mm screenings	1440-1600	+	15*	
- diat	1200-1440		5*	
Dolomite - lump	1440-1600	See limestone		
Earth - as excavated, dry	1120-1280	30*-45*	20*-25*	
- wet mud	1600-1760		50	
Foundry refuse, old sand, cores, etc.	960-1280		15*	
Garbage - household	800			
Glass - batch	1680	*		
- broken	1280-1600	- 10 H		
Granite - 40-30mm Jumpa	1360-1440	25*		
- 15mm acreenings	1280-1440			
- broken	1520-1600	1 - C		
Gravet -dry, sharp	1440-1600	30°- 45°	25"	
worf	1606-1920	32*	25"	
Gutta percha	960	24	20	
Gypsum - 50-75mm lumps	1200-1280	30*	20*	
calification and count muchin	1200 1200	300	20	

Table1.MaterialDensity[12].

Table2.Crosssectionofload[11].

Eren W	6411	A,L	7988-8	ector.	1483.4	40.00	ð	AQ.	084 54	tfan	1071.00	AU (77)	0
		Badathie	gà Ary	(file			-	Burg	arija e	1224			
-	100	6.1	111	18*	125	28	111'	8	110	18"	001	38	10
410	118)	0.000	0.01	8.01	0.00	100	10.01	2.18 . H	10.12	8118 P	11	8.78	1.00
108	(24)	0.0.0	0.02	0.02	1010	10	100	617	11.24 8	0.28	1.12	0.310	6.300
758	-180)	11.000	10.00	1.04	8	1.10	10.00	1.18	640 2	0.40 3	1 12	2.548	1.640
100	00	0.08	0.08	0.06	017	1.00	0.01	142	1.75	6.65	1.17	1.000	1.00
1,002	142	11.000	0.01	100	5.0	11	112	114	141	0.00	117	1.301	1.10
1.58	1480	0.05	04	411	0.13	0.46	016	3.14	1.39	1.30	142	1.00	1.345
1,940	(54)	0.881	0.10	11.16	2.14	1.11	0.21	1.00	1.40	1.01	142	1.97	2354
1.04	1801	0.198	0.10	10	6.21	125	1.0	124	1.74	18	1.17	1100	1199
CRE	-1728	0.170	0.23	10.01	8.30	1.54	0.00	1.82	3.64	2.03	121	1.101	8 102
2,58	(84)	0.735	0.32	8.3F	542	0.47	0.52	251	2.27	4.00	4.55	1.06	5.83
140	(94)	0.387	0.41	1.40	10.00	10	0.66	1.10	+=1	1.30	P.	6.001	1.411

Table3."k"factorforinclineanddeclineconveyor.

Belt Slope	5'	10°	15°	17,5'	20*
Cos φ	0.996	0.985	0.954	0.940	0.906

2. Effectivetensionandpowerrequirment $T_e = LxK_t(K_x + K_{yc}xW_b + 0.015W_b)$ $+W_m(LxK_{yr}\pm H) + T_x + T_y + T_z + T_{ac}$...(2)Where, Te=Effectivetension(kg). T_x=TheTensionto movetheemptybelt(kg). $=Gxf_xxL_c$...(3) Ty =Thetensiontomovetheloadhorizontally(kg). $=W_mx f_yxL_c$...(4) T_z =Thetensiontolifttheload(kg). $=HxW_m$...(5) Tac=The tensionasaresultofaddingaccessories(kg).

Tabel5:Massofmovingparts[12].

-		Mas	s of Moving	Parts (kg/m)	(lb/ft)
Belt Width (mm)	Belt Width (in)	Light Duty 4" Idlers Light Belt	Medium Duty 5" Idlers Moderate Belt	Heavy Duty 6" Idlers Heavy Belt	Extra Heavy Duty 6" Idlers Steel Cord Belt
450	18	23 (15.4)	25 (16.8)	33 (22.2)	
600	20	29 (19.5)	36 (24.2)	45 (30.2)	49 (33.0)
750	24	37 (25.0)	46 (31.0)	57 (38.3)	63 (42.3)
900	30	45 (30.0)	55 (37.0)	70 (47.0)	79 (53.0)
1050	36	52 (35.0)	64 (43.0)	82 (55.0)	94 (63.2)
1200	42	63 (42.3)	71 (47.7)	95 (63.8)	110 (74.0)
1350	48	70 (47.0)	82 (55.0)	107 (72.0)	127 (85.3)
1500	54		91 (61.2)	121 (81.3)	143 (96.0)
1650	60		100 (67.2)	132 (88.7)	160 (107.5)
1800	66			144 (96.7)	178 (119.6)
2100	72			168 (112.8)	205 (137.7)
2200	84			177 (119.0)	219 (147.2)

_<u>f_sxW_mxLs</u>

vx b

 $L \qquad = Horizontal length of conveyor(m) Lc = Corrected length of conveyor(m).$

 K_t =Temperatureambientcorrectedfactor K_x =Idler frictionfactor(kg/m).

...(6)

		Value o	of the friction	factor	
poq		Normal operating conditions.	Normal operating conditions.	Very well aligned structure. No	
Symbol	Description	Horizontal length up to 250 m (820 ft)	Horizontal length more than 250 m (820 ft)	tilted idlers. Horizontal length more than 500 m (1640 ft)	
fc	Friction coefficient for scrapers	0.600	0.600	0.600	
fs	Friction coefficient for skirtboards	0.650	0.650	0.650	
f _x	Friction coefficient for empty belt	0.022	0.020	0.020	
f _Y	Friction coefficient for loaded belt	0.027	0.022	0.020	

Table6:Frictionfactor[12].

= friction coefficient for loaded belt (Table

- Kyc =Factorsforcalculatingthebeltforceandflexureloadonthe idler roll. (0,022).
- $Kyr \qquad = Factors for calculating the belt force and flexure loan on the return roll (0,015).$

 $W_m = Materialweight(kg/m)W_b = Beltweight(kg/m)$

G =Massofmovingparts(kg/m)(Table5)

 f_s = friction coefficient for skirt board (Table 6) f_y

 $6) f_X = friction coefficient for empty belt (Table 6)$

		Operating Conditions					
Belt Width (mm)	Beit Width (in)	Light Duty kg/m (lb/ft)	Medium Duty kg/m (ib/ft)	Heavy Duty kg/m (lb/ft)			
500	20	4.1 (2.75)	6.2 (4.16)	10.3 (6.92)			
600	24	5.0 (3.36)	7.4 (4.97)	12.3 (8.26)			
750	30	6.2 (4.16)	9.3 (6.25)	15.5 (10.41)			
900	36	7.4 (4.97)	11.1 (7.46)	18.5 (12.43)			
1050	42	8.6 (5.78)	13.0 (8.73)	21.6 (14.51)			
1200	48	9.8 (6.58)	14.8 (9.94)	24.7 (16.60)			
1350	54	11.0 (7.39)	16.7 (11.22)	27.8 (18.68)			
1500	60	12.3 (8.26)	18.6 (12.50)	30.9 (20.76)			
1650	66	13.5 (9.07)	20.5 (13.77)	33.9 (22.78)			
1800	72	14.7 (9,88)	22.3 (14.98)	37.0 (24.86)			

Table4:Beltweight[12].

3. Powerofconveyor:

P=(Texv)/75 ...(7)

Where, P=Beltpower (HP). Te= Effective tension (kg).v=Kecepatanbelt(m/min)

2. DESIGNOFCONVEYORBATCH-CULLETREJECT

Conveyord esign specifications are planned based on field conditions or installation are as which are also adjusted to production, so that it fits to the production process in the Batch Planarea, Table 7 describes the required conveyors pecifications:

Table7:Productdesignspesification

No	Item Spesification		Wish / Demand
1	General Function	Capable to transport batch-cullet materials.	D
2	Performance	 Transport capacity 620 tons/day or 150 times of mixing process. 	D
2 Performance	2. Capable to filtering metal contamination in batch-cullet reject.	W	
3	Dimension	 Conveyor A: maximal length of 8 meters with angle icnlined 30⁰ dan maximal height of 5 meters. 	w
		2. Conveyor B: maximal length of 5 meters.	W

The conceptual design of conveyor batch-cullet reject is arranged based on all the sub-functions listed in Table 8: **Table 8:** Sub-function of conveyor batch-cullet reject.

No	Sub-function	1 ^{S7} Solution	2 ⁵⁰ Solution	3 ^{8D} Solution	4 TH Solution	5 ⁷⁸ Solution	6 TH Solution
I	Drive Arrangemnts	Single drive without snub pulley	Single drive with snub pulley	Tandem type single drive	Tandem drīve	Dual drive	Multiple drive
2	Belt tension adjustment	Screw take- up	Gravity take-up	Horizontal gravity type	Power sistem type	1	
3	Belt support	2 Idler roll	3 Idler roll	5 Idler roll			
4	Contamination filter	Suspended magnet	Supended electro magnetic		×	1	
5	Contamination detector	Metal detector	-		20		85
6	Dumper drive	Motor	Pneumatic				23

consist of two types of conveyor, first conveyor is conveyor A(inclinedconveyor)andthesecondoneisconveyorB(horizontalconveyor).

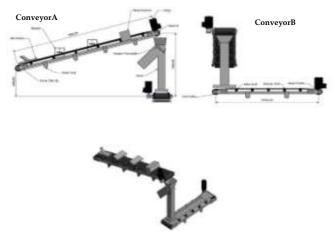


Figure7:Designofbatch-culletrejectconveyor.

Figure7showsthedetaileddesignofbatch-

culletrejectconveyorthathasbeenadjustedtothespecificationneededandwiththeconceptualdesignthathasbeendeterm ined.Thetechnicaldataforconveyorbatch-culletrejectwillbedescribedbased on the equation used to calculate the conveyor capacity,belt speed, the tension generate by the belt and the powerrequired ofbatch-culletrejectconveyor.

- 1. ConveyorA
- The conveyor capacity to be used is based on production

The combined results of all function will for mover all function that qualify the design product specification. There are several variants of solutions, design priority is given based on technical and fields need. The first option is considered to be the first

capacity= 620ton/day 150mixingx60

• Beltspeed: *x*1000=68.83 kg/s

priority that will lead to the selection of a conceptual design. Here is a combination of solutions with subfunction as the basis for conceptual design: Q_t 68,83

 $v = \frac{Qt}{3,6xAxyxk} = \frac{68,83}{3,6x0,043x1680x0,906}$

• Teganganefektif:

=0.292m/s...(1)

1. 1STconceptualdesign:1-1,2-1,3-2,4-1,5-1and6-2.

2. 2NDconceptualdesign:1-2,2-1,3-3,4-2,5-1and6-1.

3. 3RDconceptualdesign:1-1,2-1,3-3,4-1,5-1and6-2.

4. 4THconceptualdesign:1-2,2-1,3-2,4-1,5-1and6-2.

The conceptual design is determined based on the assessmentofeachalternativesolutionbasedonthetechnicalrequirements and operational conditions in the area and the first conceptual design variant is the main priority. Based on the specification Table 1, the drive system uses a single drive without a snubpulley, belt tension adjustment using screw take-up [13], beltsupport using 3 idler-roll [14], contaminant catcher using asuspended magnet [15], contamination detector using a metal detector and dumper driver using appneumaticsystem [16-17].

3. DETAILDESIGNOFCONVEYORBATCH-CULLETREJECT

Figure7showsthedesignofbatch-culletrejectconveyorwhich

 $T_{e} = LxK_{t}(K_{x} + K_{vc}xW_{b} + 0.015W_{b}) +$ $W_m(LxK_{vr}\pm H) + T_x + T_v + T_z + T_{ac}$...(2) Where, Tx = 67.62 kg...(3) Ty=137.10kg ...(4) Tz =229.32kg ...(5) Tac=217.68kg ...(6) L $= 7.5 \text{ meters} W_{\text{m}} = 65.52 \text{kg/mWb} = 9.9 \text{kg/m}$ = 39.66 kg/mKyc = 0.022G Kvr =0.015Kt=1 Kx=1.96kg/m

Then, $T_e = LxK_t(K_x + K_{yc}xW_b + 0.015 W_b) + W_m(L xK_{yr} \pm H) + T_x + T_y + T_z + T_{ac}$ = 7.5x1(1.96 + 0.022x9.9 + 0.015x9.9) + 65.52(7.5x0.015 + 3.5) + 67.62 + 137.10 + 229.32 + 217.68= 905.81 kg

Then, $T_e = LxK_t(K_x + K_{yc}xW_b + 0.015W_b)$ $+ W_m(LxK_{yr} \pm H) + T_x + T_y$ $+T_z+T_{ac} = 4.5x1(1.97+0.022x9,9+0.015x9.9)+$ 72.48(4.5x0.015+0)+65+145.79+0+ 266.35 = 492.54 kg

• PowerofConveyor $P=\frac{Texv}{492.54x^{0.264}}=1.73$ HP=1.29kW

75 75

• Powerofconveyor: $P=\underline{Texv}=\frac{905.81_{x}0.292}{}=3.52\text{HP}=2.62\text{kW}$ 75 75 ...(7)

2. ConveyorB

• The conveyor capacity to be used is based on

Thedetaildesignofbatch-culletrejectconveyorproducestechnical specification for conveyor A and conveyor B whicharedescribedinTable9basedonthecalculationthathavebeencarried out

Table9: Technical spesification

production capacity= 150*mixingx*60

Conveyor		Conveyor		
Technical Spes		Technical Spe		
1. General Data		1. General Data Conveyor		
Length	: 7.5 meter	Length	: 4.5 meter	
Height	: 3.5 meter	Height	:-	
Max Inclined	: 20 ⁰	Max Inclined	:-	
Capacity	: 68.83 kg/s	Capacity	: 68.83 kg/s	
Belt Speed	: 0.292 m/s	Belt Speed	: 0.264 m/s	
Belt Width	: 800 mm	Belt Width	: 800 mm	
Effective Tension	: 905.81 kg	Effective Tension	: 492.54 kg	
Conveyor Power	: 2.62 kW	Conveyor Power	: 1.29 kW	
2. Pulley Dia	meter	2. Pulley Diameter		
Head Puley Diameter	: 406 mm	Head Puley Diameter: 406 mm		
Tail Pulley Diameter	: 318 mm	Tail Pulley Diameter	: 318 mm	
3. Carry R	oll	3. Carry Roll		
Idler Roll Diameter	: 101,6 mm	Idler Roll Diameter	: 101,6 mm	
Idler Roll Length	: 200 mm	Idler Roll Length	: 200 mm	
Idler Roll Spacing	: 1200 mm	Idler Roll Spacing	: 1200 mm	
Troughing Angle	: 20 ⁰	Troughing Angle	: 20 ⁰	
4. Return I	Roll	4. Return	Roll	
Return Roll Diameter		Return Roll Diamete	: 106,68 mm	
Return Roll Spacing		Return Roll Spacing		
5. Skirt Bo	ard	5. Skirt B	oard	
Length	: 1000 mm	Length	: 1000 mm	
Width	: 670 mm	Width	: 670 mm	
6. Material		6. Material	Data	
Material Density	: 1680 kg/m ³	Material Density	: 1680 kg/m ³	
Surcharge Angle	: 10 ⁰	Surcharge Angle	: 10 ⁰	
Cross section of load	$0.043 m^2$	Cross section of load	$0.043 m^2$	

x1000=

68.83 kg/s• Beltspeed: v= Qt = 68,83

=0.264 m/s

3,6 *xAxy* 3,6 *x*0,043*x*1680

• Teganganefektif: $T_e=LxK_t(K_x+K_{yc}xW_b+0,015W_b)+W_m(LxK_{yr}\pm H)+T_x+T_y+T_z+T_{ac}$...(2)

Where, Tx=65kg ...(3) Ty=145,79 kg ...(4) Tz=229.32kg ...(5) Tac=266.35kg ...(6) L=4.5 metersWm = 72.48 kg/mWb = 9.9 kg/m G = 39.66 kg/mKyc=0.022 Kyr=0.015 Kt= 1Kx=1.96 kg/m

3. **RESULTS**

Aftergettingthetechnicalspesificationofthebatch-culletreject conveyor which is show in Table 9. The next thing to dois to realize the design and evaluate the results of the batch-culletrejectconveyortoreducelossbatch.Figure8istheresult

from design of batch-cullet reject conveyor based on conceptual design and detail design of batch-cullet reject conveyor based on the second second

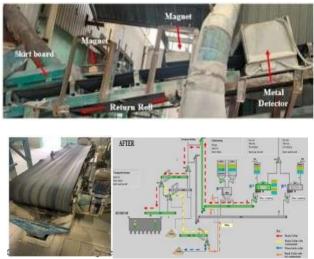


Figure8: ConveyorA, ConveyorB and flow process of batching-planafter designing

The design of this batch-cullet reject conveyor affect the amount of batch-cullet loss produced per day, where the loss batch-cullet per day is 7890 kg. After the batch cullet reject conveyor realize, loss batch-cullet decreased by 87% or 952.6kg per day. Figure 9 shows the difference in the number of batch-cullet reject produced per day before and after designing.

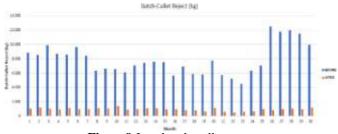


Figure9:Lossbatch-cullet.

Basedontheresults, that batch-cullet reject conveyor is able to reduce loss batch-

culletcausedbymetalcontaminationandthedesignresultisqualifywithspecificationwhichcanaccommodateaproducti oncapacityaround620000kgperdayand can split contamination in batch-cullet. Where the lengthoftheconveyorAis7.5meters,3.4metersofconveyor height,slope angle is 20^{0} and suspended permanent magnet and metaldetector. The conveyor B has a 4.5 meters of conveyor lengthwithoutmagnet andmetal detector

SUMMARY AND CONCLUSION

This describes the innovation of batch cullet paper recyclingdesignthatiscontaminatedbymetal.Designofabeltconveyorusing a single drive system without snub adjusting beltwith screw take-up, belt idler pulley, support with 3 rolls. metal catcherwithsuspendedpermanentmagnet, contamination detector

with metal detectors and driving dumper with pneumatic system have been successfully and according to specifications. The total length of the conveyor A is 7.5 meters, the height is the system of the system of

3.5 meters, conveyor angle is 20⁰, and power generate by the conveyor is 2.62 kW with suspended permanent magnet as a contaminant accherand metal detector as a contaminant detector. The total length of the conveyor B is 4.5 meters and power generate by conveyor B is 1.29 kW. The application of this conveyor batch-cullet reject is effective in reducing batch-cullet reject affected by metal contamination. The number of batch-cullet rejective around 87.92% of 7890 kg/day

REFERENCES

- [1] Berenjian, A., & Whittleston, G. (2017). History and Manufacturing of Glass. American Journal of Materials Science, 18-24
- [2] Berenjian, A., & Whittleston, G. (2017). History and Manufacturing of Glass. American Journal of Materials Science, 18-24
- [3] Rasmussen, S. (2012). How Glass Changed World Springer Briefs in History of Chemistry. DOI: 10.1007/978-3-642-28183-9_2.
- [4] Henkel,R.(n.d.).TheFloatGlassProcess.Retrievedfrom Diagrammatic Illustration: http://www.henkel-diagrams.com.
- [5] Sugito. (2020, January 10). Flow process of glassmakinginBatchPlanDepartmentPT.MuliaglassFloatDivision.PersonalInterview.
- [6] Bartuska,M.(2008).GlassDefect.Prague:GlassService
- [7] Bridgestone Corporation. (2020, June 23). ConveyorBelt Design Manual. Retrieved from vdocuments:https://vdocuments.mx/conveyor-belt-design-manual- bridgestone-1.html
- $[8] \qquad Shah, K.P. (2018). Construction and Maintenance of Belt Conveyors for Coal and Bulk Material Handling Plants. Practical Maintenance.$
- [9] Cpsconveyor. (2020, December 6). Retrieved from cpsconveyor: https://cpsconveyors.com.au/idlers/
- [10] Douglas Manufacturing. (2020, December 6). Retrieved from Douglas Manufacturing: www.douglasmanufacturing.com
- [11] Jurandir Primo, P. (2009). Belt Conveyors for BulkMaterialsPracticalCalculations.MeadowEstatesDrive:PDHCenter.
- [13] Govindan, V. (2014). Conveyor Belt Troubles.InternationalJournalofEmergingEngineeringResearchandTechnology, 22
- [14] DouglasD. (2020, August 26). Douglas Idler. Retrievedfrom douglasmanufacturing.com/media/Douglas_Idlers.pdf
- [15] Kanetec. (2020, December 6). Retrieved from Kanetec:http://kanetec.co.jp/en/pdf/120_138.pdf.
- [16] Norgantara.(2020,December16).Retrievedfromnorgantara: https://norgantara.co.id/our-product/pneumatic/.
- [17] Abdul elekto. (2020, December 31). Retrieved fromhttps://abdulelektro.blogspot.com/2019/11/penggerak- drive-motor-listrik.