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I. INTRODUCTION 

The following result known as the Enestrom-Kakeya Theorem [3]  is of fundamental importance on locating a  

region containing all the zeros of a polynomial with monotonically increasing positive coefficients: 

Theorem A: Let 
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Then all the zeros of P(z) lie in 1z . 

In the literature several generalizations and extensions of this result are available [].  

Recently Gulzar et al  [1,2] proved the following results: 
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Then all the zeros of P(z) lie in 

                        

n

n

j

jn

n

n

a

Lk

a

k
z










0

2)1(
)1(






 . 

Theorem C: Let 
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Then the number f zeros of P(z) in 10,  z  does not exceed 
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II. MAIN RESULTS 
In this paper we prove the following generalizations of Theorems B and C: 

Theorem 1: Let 
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Then all the zeros of P(z) lie in 
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Theorem 2: Let 
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Then the number of zeros of P(z) in 10,  z  does not exceed 
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Remark 1: Taking 1
2
k , Theorem 1 reduces to Theorem B and Theorem 2 reduces to Theorem C. 

For different values of the parameters in Theorems 1 and 2 , we get many interesting results. For example taking 

1 , Theorem 1 gives the following result: 

Corollary 1: Let 
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 Taking 1 , Theorem 2 gives the following result: 

Corollary 2: Let 
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III. LEMMA 
For the proof of Theorem 2, we need the following result: 

Lemma: Let f (z) be analytic for 0)0(,1  fz  and Mzf )( for 1z . Then the number of zeros of 

f(z) in  10,  z  does not exceed  
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(for reference see [4] ). 

3. Proofs  of Theorems 

Proof of Theorem 1: Consider the polynomial  
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For 1z so that nj
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This shows that those zeros of F(z) whose modulus is greater than 1 lie in                      
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Since the zeros of F(z) whose modulus is less than or equal to 1  already satisfy the above inequality and since 

the zeros of P(z) are also the zeros of F(z) , it follows that all the zeros of P(z) lie in  
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That proves Theorem 1. 

Proof of Theorem 2: Consider the polynomial  

       )()1()( zPzzF   
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Since F(z) is analytic for 1z , 0)0(
0
 aF , it follows by the Lemma that the number of zeros 

of F(z) in  10,  z  des not exceed 
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Since the zeros of P(z) are also the zeros of F(z) , it follows that the number of zeros 

of P(z) in  10,  z  des not exceed 
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 That completes the proof of Theorem 2. 
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