
ISSN (e): 2250 – 3005 || Volume, 06 || Issue, 04||April – 2016 || 

International Journal of Computational Engineering Research (IJCER) 

www.ijceronline.com                                         Open Access Journal                                         Page 1 

Matlab Based High Level Synthesis Engine for Area And Power 

Efficient Arithmetic Operations 
 

Semih Aslan 
Ingram School of Engineering Texas State University San Marcos, Texas, 78666, USA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

I. Introduction 
Today, a significant number of embedded systems are focused on multimedia applications with almost insatiable 

demand for low cost, high performance and low power hardware. Designing complex systems such as image 

and video processing, compression, face recognition, object tracking, 3G or 4G modems, multi-standard 

CODECs, and HD decoding schemes requires the integration of many complex blocks and a long verification 

process [1][2]. These complex designs are based on I/O peripherals, one or more processors, bus interfaces, 

A/D, D/A, embedded software, memories and sensors. In the past, complete systems were designed with 

multiple chips and connected together on PCBs, but with today’s technology, all functions can be incorporated 

in a single chip. These complete systems are known as System-on-Chip (SoC) [2].System-on-chip (SoC) 

designs are mainly accomplished by using Register Transfer Languages (RTL) such as Verilog and VHDL. RTL 

design flow [1] [2] for both FPGA and ASIC is similar and is shown in Figure 1. An algorithm can be converted 

to RTL using the behavioral model description method or by using pre-defined IP core blocks. After completing 

this RTL code, formal verification must be done before implementation. After implementation of the RTL code, 

timing verification needs to be done for proper operation. 

RTL design abstracts logic structures, timing and registers [1]. Because of this, every clock change 

causes a state change in the design. This timing dependency causes every event to be simulated, which results in 

a slower simulation time and longer verification period of the design. The design and verification of an 

algorithm in RTL in Figure 1 can take up 50-60% of the “Time to Market” (TTM). The RTL design becomes 

impractical for larger systems that have high data flow between the blocks, and it requires millions of gates. 

Even though design time may improve by using behavioral modeling and IP cores, the difficulty in synthesis, 

poor performance results and rapid changes in the design make IP cores difficult to adapt and change. Therefore, 

systems rapidly become obsolete.The limitations of RTL and longer TTM forced designers to think of the 

design as a whole system rather than blocks. In addition, software integration in SoC was always done after the 

hardware was designed. When the system gets more complex, software integration is desirable during hardware 
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implementation. Over the last two decades, designers were forced to find new methods to replace RTL due to 

improvements in SoC and shorter TTM. Because of the extensive work done in Electronics System Level 

Design (ESLD), HW/SW co-design of a system and High Level Synthesis (HLS)[2][4] are integrated into 

FPGA and ASIC design flow.  
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Figure 1. FPGA RTL level synthesis flow 

 

The next section will describe the proposed MATLAB HLS Arithmetic (MHA) Engine design and 

implementation. Section III and IV will focus on the error analysis and testbench generation respectively and the 

conclusion will describe future work and improvements. 

 

II. Mha Engine 
RTL description of a system can be implemented from a behavioral description of the system in Perl, 

C, Python and MATLAB. This will result in a faster verification process and shorter TTM. It is also possible to 

have a hybrid design where RTL blocks can be integrated with HLS [2].The HLS design flow shows that a 

group of algorithms that represent the whole system or parts of a system can be implemented using a high level 

language such as Perl, C, C++ , Java, MATLAB [2][5]. Each part in the system can be tested independently 

before the whole system is tested. During this testing process, the RTL testbenches may also be generated. After 

testing is complete, the system can be partitioned into HW and SW. This enables SW designers to join the 

design process during HW design; in addition, RTL can be tested by using both HW/SW together. After the 

verification process, the design can be implemented using FPGA synthesis tools.The integration of HLS into 

FPGA design flow is shown in Figure 2. 
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Figure 2. FPGA high level synthesis flow with MHA Engine 

 

Since the early days of VLSI design, application-specific hardware has been used for optimal 

implementation of algorithms. This approach is considered the fastest design scheme but is also the most area 

consuming system due to the inherently redundant nature of a design that only computes one operation. 

However, there are other possible designs for DSP implementations that can be used for two or more operations 

[1][3]. This design approach consists of processing blocks that can compute multiple operations using dedicated 

hardware designed for a particular cluster of operations. An improved design approach should exploit the 

redundancy and common elements that exist among the sub-blocks. This would result in shared building blocks 

and dramatically reduced hardware requirements. 
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The proposed design focuses on designing a large system that will be faster with a design principle 

similar to HLS, asexplained above. The main work focuses on multi-purpose, reused hardware structures that 

produce a unified, area efficient reconfigurable system. This design can reduce the area by 64% [2][[6]. The 

components of the MHA Engineare shown in Figure 3. 
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Figure 3. MATLAB Based HLS Arithmetic Engine (MHA) block 

 

The MHA block has three important principles: 

 Compute required arithmetic operations 

 Customized range and accuracy 

 Generate an area-efficient, fast system for low power applications 

          The MHA accepts inputs from the user via two GUIs to make it more user friendly and efficient. The 

“Main” GUI that is shown in Figure 4 below includes the following sections: 

 FPGA or ASIC support 

 Vendor based IP Core support 

 Project Name (default is c:\MHA\MHA) 

 Top Module Name (default is MHA) 

 Language – Verilog or VHDL (design and verifications – current system only supports Verilog HDL) 

 Rounding - Truncation or RNE (Rounding cannot be done without a selection)   

 Number system – Fixed or Floating Point (Fixed point up to 64-bit - current system only supports Fixed 

Point Number system)   

 

 
Figure 4. Main GUI for MHA Engine 

 

 Signed or unsigned number systems 

 Target – Frequency and throughput 

 Area or speed based optimization 
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 Testbench generation 

o Automated testbench with MATLAB  

o Modelsim .do file for fast automation 

o Automated testbench file for Modelsim 

o Error comparison with MATLAB 

o User defined test data option 

          The “Arithmetic” tab shown in Figure 5 has the following sections: 

 Basic arithmetic operations 

o Addition/Subtraction (Area or speed optimized based on Ripple-Carry Adder (RCA) or Carry-Lookahead 

Adder (CLA)) 

o Multiplication (Array or Booth multiplier) 

 Advanced arithmetic operations 

o Division (Newton-Raphson, Goldschmidt, or CORDIC) 

o Square Root (Newton-Raphson, Goldschmidt, or CORDIC) 

o Inverse Square Root (Newton-Raphson, Goldschmidt, or CORDIC) 

 Elementary functions 

o Trigonometric functions – sine, cosine, tangent, and cotangent (table method, CORDIC or polynomial 

based design) 

o Hyperbolic functions – sinh, cosh, tanh (table method, CORDIC or polynomial based design) 

o Exponential function – exp(x) (table method, CORDIC or polynomial based design) 

 

 
Figure 5. Arithmetic operations GUI 

 

The MHA uses a bottom-up design process that starts with the elementary functions and then moves to 

the simplest arithmetic operations such as multiplication and addition. This is shown in Figure 6 below. 

This design flow contains the following procedure: First, selection of elementary functions [7], selection of 

basic arithmetic operations, and generation of area efficient hardware for FPGA and VLSI. There are 2-64 bit 

selections that are suitable for a vast variety of applications with the requested precision. The section’s addition 

and multiplications are used based on the previous designs. Division, inverse square root and square roots are 

designed based on the same architecture, and the modified design reduces the area by 64% [8]. Next, the 

CORDIC [9] [10] or polynomial methods [4] are used to calculate elementary functions [7] [11]. This area-

efficient design is optimized for speed by implementing a smart control system. For performance evaluation and 

synthesis are implemented with Xilinx FPGAs [12] and Microwind [13] VLSI design tool. 
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Figure 6. The MHA design flow 

 

III. Error Analysis 
When designing hardware with many arithmetic operations, one of the most important objectives is to 

produce results that have a minimal absolute and average computation error. Arithmetic operations in digital 

systems generally introduce three types of errors: number representation, rounding, and algorithmic or design 

error [14][15].The exact representation of some numbers or events in radix-n may not be possible due to the 

limitations in ADCs, the sampling rate, and the number of available bits. In addition, many numbers cannot be 

converted from radix-n to radix-m without an error. For example, number 0.1 and 0.2 in radix-10 cannot be 

represented in radix-2 without an error. This error can be reduced by increasing the number of bits. The 

reduction of this error with respect to the number of bits is shown in Figure 7.  

 

 
Figure 7. Error representation of number radix conversion 

 

Figure 8 shows the error generated for radix-10 to radix-2 conversion of 128 fractional numbers (fractional part 

of 30 bits).  

 

 
Figure8. Random 128-number conversion error from Radix-10 to Radix-2 
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During and after the calculation of certain arithmetic operations, the total number of bits may exceed 

the number of bits available; these values need to be rounded. For example, multiplying two n-bit numbers 

produces a product of 2n-bit and this result may need to be represented with n-bit.If there were more 

multiplications on the design path, the number of bits would increase in a linear fashion. To prevent this, each 

multiplier output needs to be rounded. There are a few ways to implement rounding in hardware, with the most 

commonly used methods being round to the nearest even, round towards zero (truncation), round down (floor), 

round up (ceiling) and round away from zero [14]. 

In this section, truncation (TRA)[14] and round to the nearest even (RNE)[14] schemes are compared. During 

these rounding operations, an error value is introduced. The RNE and TRA and their error values are shown in 

Table 1.  

 

Table 1. RNE and TRA 
Number RNE TRA 

Rounded Value Error Rounded Value Error 

X0.00 X0. 0.00 X0. 0.00 

X0.01 X0. 0.25 X0. 0.25 

X0.10 X0. 0.50 X0. 0.50 

X0.11 X0.+ulp -0.25 X0. 0.75 

X1.00 X1. 0.00 X1. 0.00 

X1.01 X1. 0.25 X1. 0.25 

X1.10 X1.+ulp -0.50 X1. 0.50 

X1.11 X1.+ulp -0.25 X1. 0.75 

Total --- 0 --- 3.00 

 

Figure 9 shows advantage of RNE over TRA when average error is considered. The requested number of 

precision and selected rounding scheme can affect the size of the hardware and overall speed and throughput. 

Users can change the selected accuracy to see area and throughput estimates simultaneously without increasing 

the overall design time. This will make it possible to select the optimal design for synthesis. The MHA Engine 

can create hardware for precision based on increase the bit size during the mid-operation and apply rounding 

before the output stage.  

 

 
Figure 9. 32-Bit to 16-Bit Rounding Errors with RNE and TRA 

 

Iv.  Testbench Generation 
One of the most important and complicated sections of the MHAEngine is generation of the testbench 

files and error checking using MATLAB and Modelsim. Before the RTL code is synthesized, it can be tested 

using a testbench that is created using MATLAB and Modelsim. The testbench generation and error checking 

block diagram is shown in Figure 10 below. 
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Figure 10. MATLAB and Modelsim flow 
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After generation of the design and testbench files,the user defined test vectors need to be generated. The 

first step is to generate positive random numbers [0,1]. These numbers must be converted into positive and 

negative numbers based on signed numbers. To generate random test values and test results, the following 

procedure is followed: 

 Get the user defined testvector number n. 

 Generate random test vectors (T{n}) 

 Generate random binary numbers using MATLAB 

o For fixed-point signed numbers: 

T_Bin=dec2bin(T*2^n,n) 

o For fixed-point unsigned numbers: 

T_Bin=dec2bin(T*2^(n-i),n) 

 Generate the Modelsim testbench file and get results 

 Compare results using MATLAB  

 

After generation of the design, testbench, and test vector files, the next step is to generate a Modelsim 

tcl .do file that can be transferred into Modelsim all together. The .do file will generate the project file and will 

import all design files, including testbench, into Modelsim. This will run all files and generate the results as a 

text file. Once Modelsim-generated results are imported into MATLAB, correct operation and error analysis 

needs to be performed. An important issue which needs to be addressed during the verification process is 

working with negative fixed-point numbers in MATLAB. It is important because it does not convert negative 

binary numbers and binary floating numbers to a decimal number. This problem is addressed using the 

MATLAB codes given in Figure 11.  

 

 
Figure 11. Signed binary to decimal conversion 

 

V.   Conclusion 
An area efficient, MATLAB based HLS engine for arithmeticoperations is designed for low power and 

high-speed applications. The MHA Engine decreases design system time and verification by up to 64% without 

compromising speed and efficiency. The MHA Engine uses a smart control system that is optimized based on 

the desired operations. The MHA Engine is a bridge between RTL and HLS. It uses RTL-based basic blocks to 

design most complicated arithmetic operations using structural model design and HLS-style fast and optimized 

verification. Any designed system can be reconfigured at any time in any way in MHA Engine without going 

through the same design and verification hassle.  

MATLAB-based verification makes it possible to use all the features of MATLAB for faster and more efficient 

verification. The MHA Engine can be easily reconfigurable to systems available at any level, due to changes in 

the computer system and software. 

As explained above, this system generates area efficient fast arithmetic and elementary functionsthat 

can be used over a wide area of applications in DSP, image processing, and communication systems. It can be 

used for FFT, DCT and DWT calculations and Chirplet transforms [16][17][18]. 

It can also be very important for educational institutions in order to test their systems using the verification 

testbench that, when desired, works as an independent design tool. Overall, this work will forge the way for 

those who need to make sudden changes in their systems and need fast verification. They can adopt and apply 

any changes using the MHA Engine or generate similar systems for faster design and verification. In addition, 

because the MHA Engine generated code is designed structurally, code can be changed easily at any level, if so 

desired. Future workwill integrate VHDL code and IEEE 754 floating point numbers (both single and double 

precision) implementation. Another future goal is to make this platform totally open source by using only 

Iverilog and replacing MATLAB with Octave.  
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