

# On intuitionistic fuzzy $\beta$ generalized closed sets

## Saranya M<sup>1</sup>, Jayanthi D<sup>2</sup>

<sup>1</sup> MSc Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India <sup>2</sup>Assistant Professor of Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India

### ABSTRACT

In this paper, we have introduced the notion of intuitionistic fuzzy  $\beta$  generalized closed sets, and investigated some of their properties and characterizations

**KEYWORDS:** Intuitionistic fuzzy topology, intuitionistic fuzzy $\beta$  closed sets, intuitionistic fuzzy  $\beta$  generalized closed sets.

### I. Introduction

The concept of fuzzy sets was introduced byZadeh [12] and later Atanasov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this paper, we have introduced the notion of intuitionistic fuzzy  $\beta$  generalized closed sets, and investigated some of their properties and characterizations.

### **II.** Preliminaries

**Definition 2.1:** [1]An *intuitionistic fuzzy set* (IFS for short) A is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

where the functions  $\mu_A : X \to [0,1]$  and  $\nu_A : X \to [0,1]$  denote the degree of membership (namely  $\mu_A(x)$ ) and the degree of non-membership (namely  $\nu_A(x)$ ) of each element  $x \in X$  to the set A respectively, and  $0 \le \mu_A(x) + \nu_A(x) \le 1$  for each  $x \in X$ . Denote by IFS (X), the set of all intuitionistic fuzzy sets in X.

An intuitionistic fuzzy set A in X is simply denoted by A= $\langle x, \mu_A, \nu_A \rangle$  instead of denoting A = { $\langle x, \mu_A(x), \nu_A(x) \rangle$ :  $x \in X$  }.

**Definition 2.2:** [1] Let A and B be two IFSs of the form A = { $\langle x, \mu_A(x), \nu_A(x) \rangle$ :  $x \in X$ } and B = { $\langle x, \mu_B(x), \nu_B(x) \rangle$ :  $x \in X$ }. Then,

- (a)  $A \subseteq B$  if and only if  $\mu_A(x) \le \mu_B(x)$  and  $\nu_A(x) \ge \nu_B(x)$  for all  $x \in X$ ,
- (b) A = B if and only if  $A \subseteq B$  and  $A \supseteq B$ ,
- (c)  $A^{c} = \{ \langle \mathbf{x}, \nu_{A}(\mathbf{x}), \mu_{A}(\mathbf{x}) \rangle \colon \mathbf{x} \in \mathbf{X} \},\$
- (d)  $A \cup B = \{ \langle \mathbf{x}, \, \mu_{\mathbf{A}}(\mathbf{x}) \lor \mu_{\mathbf{B}}(\mathbf{x}), \, \nu_{\mathbf{A}}(\mathbf{x}) \land \nu_{\mathbf{B}}(\mathbf{x}) \} : \mathbf{x} \in \mathbf{X} \},$
- (e)  $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \} : x \in X \}.$

The intuitionistic fuzzy sets  $0 \sim = \langle x, 0, 1 \rangle$  and  $1 \sim = \langle x, 1, 0 \rangle$  are respectively the empty set and the whole set of X.

**Definition 2.3:** [3]An *intuitionistic fuzzy topology* (IFT in short) on X is a family  $\tau$  of IFSsin X satisfying the following axioms:

- (i)  $0 \sim , 1 \sim \in \tau$
- (ii)  $G_1 \cap G_2 \in \tau$  for any  $G_1, G_2 \in \tau$
- (iii)  $\bigcup G_i \in \tau$  for any family  $\{G_i : i \in J\} \subseteq \tau$ .

In this case the pair  $(X,\tau)$  is called *intuitionistic fuzzy topological space* (IFTS in short) and any IFS in  $\tau$  is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A<sup>c</sup> of an IFOS A in an IFTS  $(X,\tau)$  is called an intuitionistic fuzzy closed set (IFCS in short) in X.

**Definition 2.4:**[5] An IFS A =  $\langle x, \mu_A, \nu_A \rangle$  in an IFTS (X, $\tau$ ) is said to be an

- (i) intuitionistic fuzzy  $\beta$  closed set (IF $\beta$ CS for short) if int(cl(int(A)))  $\subseteq$  A,
- (ii) intuitionistic fuzzy  $\beta$  open set (IF $\beta$ OS for short) if A  $\subseteq$  cl(int(cl(A))).

**Definition 2.5:** [6]Let A be an IFS in an IFTS  $(X,\tau)$ . Then the  $\beta$ -interior and  $\beta$ -closure of A are defined as  $\beta$ int(A) =  $\cup \{G / G \text{ is an IF}\beta OS \text{ in } X \text{ and } G \subseteq A\}$ .  $\beta$ cl(A) =  $\cap \{K / K \text{ is an IF}\beta CS \text{ in } X \text{ and } A \subseteq K\}$ .

Note that for any IFS A in  $(X,\tau)$ , we have  $\beta cl(A^c) = (\beta int(A))^c$  and  $\beta int(A^c) = (\beta cl(A))^c$ .

**Result 2.6:** Let A be an IFS in  $(X,\tau)$ , then

(i)  $\beta cl(A) \supseteq A \cup int(cl(int(A)))$ 

(ii)  $\beta int(A) \subseteq A \cap cl(int(cl(A)))$ 

**Proof:** (i)Now  $int(cl(int(A))) \subseteq int(cl(int(\beta cl(A))) \subseteq \beta cl(A), since A \subseteq \beta cl(A) and \beta cl(A) is an IF \beta CS. Therefore A <math>\cup int(cl(int(A))) \subseteq \beta cl(A)$ .

(ii) can be proved easily by taking complement in (i).

#### III. Intuitionistic fuzzy $\beta$ generalized closed sets

In this section we have introduced intuitionistic fuzzy  $\beta$  generalized closed sets and studied some of their properties.

**Definition 3.1:** An IFS A in an IFTS  $(X,\tau)$  is said to be an *intuitionistic fuzzy*  $\beta$  generalized closed set (IF $\beta$ GCS for short) if  $\beta$ cl(A)  $\subseteq$  U whenever A $\subseteq$  U and U is an IF $\beta$ OS in  $(X,\tau)$ . The complement A<sup>c</sup> of an IF $\beta$ GCS A in an IFTS  $(X,\tau)$  is called an intuitionistic fuzzy  $\beta$  generalized open set (IF $\beta$ GOS in short) in X.

The family of all IF $\beta$ GCSs of an IFTS (X, $\tau$ ) is denoted by IF $\beta$ GC(X).

**Example 3.2:**Let X = {a, b} and G =  $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0\sim, G, 1\sim\}$  is an IFT on X. Let A =  $\langle x, (0.4_a, 0.3_b) (0.6_a, 0.7_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$ We have  $A \subseteq G$ . As $\beta cl(A) = A, \beta cl(A) \subseteq G$ , where G is an IF $\beta OS$  in X. This implies that A is an IF $\beta GCS$  in X.

**Theorem 3.3:** EveryIFCSin  $(X, \tau)$  is an IF $\beta$ GCS in  $(X, \tau)$  but not conversely. **Proof:**Let A be an IFCS. Thereforecl(A) = A. Let A  $\subseteq$  U and U be an IF $\beta$ OS. Since $\beta$ cl(A)  $\subseteq$  cl(A) = A  $\subseteq$  U, we have  $\beta$ cl(A)  $\subseteq$  U. Hence A is an IF $\beta$ GCS in  $(X, \tau)$ .

**Example 3.4:**Let X = {a, b} and G =  $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0\sim, G, 1\sim\}$  is an IFT onX. Let A =  $\langle x, (0.4_a, 0.3_b) (0.6_a, 0.7_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0 \sim, 1 \sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}$ . We have  $A \subseteq G$ . As  $\beta cl(A) = A, \beta cl(A) \subseteq G$ , where G is an IF $\beta$ OS in X. This implies that A is an IF $\beta$ GCS in X, but not an IFCS, since  $cl(A) = G^c \ne A$ .

**Theorem 3.5:** EveryIFRCSin  $(X,\tau)$  is an IF $\beta$ GCS in  $(X,\tau)$  but not conversely. **Proof:** Let A be an IFRCS[10]. Since every IFRCS is an IFCS [9], by theorem 3.3, A is an IF $\beta$ GCS.

**Example 3.6:**Let  $X = \{a, b\}$  and  $G = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0 \sim, G, 1 \sim\}$  is an IFT on X. Let  $A = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}$ . We have  $A \subseteq G$ . As  $\beta cl(A) = A, \beta cl(A) \subseteq G$ , where G is an IF $\beta$ OS inX. This implies that A is an IF $\beta$ GCS in X, but not an IFRCS, since  $cl(int(A)) = cl(0\sim) = 0 \sim \neq A$ .

**Theorem 3.7:** EveryIFSCSin  $(X,\tau)$  is an IF $\beta$ GCS in  $(X,\tau)$  but not conversely.

**Proof:**Assume A is an IFSCS [5]. Let  $A \subseteq U$  and U be an IF $\beta$ OS. Since $\beta$ cl(A)  $\subseteq$ scl(A) = A and A  $\subseteq$  U, by hypothesis, we have $\beta$ cl(A)  $\subseteq$  U. Hence A is an IF $\beta$ GCS.

**Example 3.8:**Let X = {a, b} and G =  $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0\sim, G, 1\sim\}$  is an IFT on X. Let A =  $\langle x, (0.4_a, 0.3_b) (0.6_a, 0.7_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0 \sim, 1 \sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}$ . We have  $A \subseteq G.As \ \beta cl(A) = A, \beta cl(A) \subseteq G$ , where G is an IF $\beta OS$  in X. This implies that A is an IF $\beta GCS$  in X, but not an IFSCS, since int(cl(A)) = int(G<sup>c</sup>) = G \not\subseteq A.

**Theorem 3.9:** Every IF $\alpha$ CSin (X, $\tau$ ) is an IF $\beta$ GCS in (X, $\tau$ ) but not conversely.

**Proof:**Assume A is an IF $\alpha$ CS [5]. Let A  $\subseteq$  U and U be an IF $\beta$ OS. Since $\beta$ cl(A)  $\subseteq \alpha$ cl(A) = A and A  $\subseteq$  U, by hypothesis, we have $\beta$ cl(A)  $\subseteq$  U. Hence A is an IF $\beta$ GCS.

**Example 3.10:** Let X = {a, b} and G =  $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then $\tau = \{0\sim, G, 1\sim\}$  is an IFT on X. Let A =  $\langle x, (0.4_a, 0.3_b) (0.6_a, 0.7_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0 \sim, 1 \sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}$ . We have  $A \subseteq G$ . As  $\beta cl(A) = A, \beta cl(A) \subseteq G$ , where G is an IF $\beta OS$  in X. This implies that A is an IF $\beta GCS$  in X, but not an IF $\alpha CS$ , since  $cl(int(cl(A))) = cl(int(G^c)) = cl(G) = G^c \not\subseteq A$ .

**Theorem 3.11:** EveryIFPCSin  $(X,\tau)$  is an IF $\beta$ GCS in  $(X,\tau)$  but not conversely.

**Proof:** Assume A is an IFPCS [5]. Let  $A \subseteq U$  and U be an IF $\beta$ OS.Since $\beta$ cl(A)  $\subseteq$ pcl(A) = Aand A \subseteq U, by hypothesis, we have  $\beta$ cl(A)  $\subseteq$  U. Hence A is an IF $\beta$ GCS.

**Example 3.12:** Let X = {a, b} and G =  $\langle x, (0.5_a, 0.6_b), (0.5_a, 0.4_b) \rangle$ , Then  $\tau = \{0\sim, G, 1\sim\}$  is an IFT on X. Let A =  $\langle x, (0.5_a, 0.7_b) (0.5_a, 0.3_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \mu_b < 0.6 \text{ whenever } \mu_a \ge 0.5, \mu_a < 0.5 \text{ whenever } \mu_b \ge 0.6, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$ 

Now  $A \subseteq 1 \sim As \beta cl(A) = 1 \sim \subseteq 1 \sim$ , we have A is an IF $\beta$ GCS in X, but not an IFPCS since  $cl(int(A)) = cl(G) = 1 \sim \not\subseteq A$ .

**Remark 3.13:** Every IFGCS and every IF $\beta$ GCS are independent to each other.

**Example 3.14:** Let  $X = \{a, b\}$  and  $G_1 = \langle x, (0.5_a, 0.5_b), (0.5_a, 0.5_b) \rangle$  and  $G_2 = \langle x, (0.3_a, 0.1_b), (0.7_a, 0.8_b) \rangle$ . Then  $\tau = \{0\sim, G_1, G_2, 1\sim\}$  is an IFT on X. Let  $A = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$  be an IFS in X. Then  $A \subseteq G_1$  and  $cl(A) = G_1^c \subseteq G_1$ . Therefore A is an IFGCS in X.

Now IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \text{ either } \mu_a \ge 0.5 \text{ and } \mu_b \ge 0.5 \text{ or} \mu_a < 0.3 \text{ and } \mu_b < 0.1, 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}.$ 

Since  $A \subseteq G_1$  where  $G_1$  is an IF $\beta$ OS in X but  $\beta$ cl(A) =  $\langle x, (0.5_a, 0.5_b), (0.5_a, 0.5_b) \rangle \not\subseteq A$ , A is not an IF $\beta$ GCS.

**Example 3.15:** Let X = {a, b} and G =  $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0\sim, G, 1\sim\}$  is an IFT on X. Let A =  $\langle x, (0.4_a, 0.3_b) (0.6_a, 0.7_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0 \sim, 1 \sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}$ . We have  $A \subseteq G$ . As  $\beta cl(A) = A, \beta cl(A) \subseteq G$ , where G is an IF $\beta OS$  in X. This implies that A is an IF $\beta GCS$  in X, but not an IFGCS in X, since  $cl(A) = G^c \nsubseteq G$ .

**Theorem 3.16:** Every IF $\beta$ CSin (X, $\tau$ ) is an IF $\beta$ GCS in (X, $\tau$ ) but not conversely. **Proof:** Assume A is an IF $\beta$ CS [5] then  $\beta$ cl(A) = A. Let A  $\subseteq$  U and U be an IF $\beta$ OS. Then $\beta$ cl(A)  $\subseteq$  U, by hypothesis. Therefore A is an IF $\beta$ GCS.

**Example 3.17:**Let X = {a, b} and G =  $\langle x, (0.5_a, 0.7_b), (0.5_a, 0.3_b) \rangle$ , then $\tau = \{0 \sim, G, 1 \sim\}$  is an IFT on X. Let A =  $\langle x, (0.5_a, 0.8_b) (0.5_a, 0.2_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / \text{ provided } \mu_b < 0.7 \text{ whenever} \\ \mu_a \ge 0.5, \\ \mu_a < 0.5 \text{ whenever } \\ \mu_b \ge 0.7, \\ 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1 \}.$ 

Now  $A \subseteq 1 \sim$  and  $\beta cl(A) = 1 \sim \subseteq 1 \sim$ . This implies that A is an IF $\beta$ GCS in X,but not an IF $\beta$ CS,sinceint(cl(int(A))) = int(cl(G)) = int(1 \sim) = 1 \sim \nsubseteq A.

**Theorem 3.18:** Every IFSPCS in  $(X,\tau)$  is an IF $\beta$ GCS in  $(X,\tau)$  but not conversely.

**Proof:** Assume A is an IFSPCS[11]. Since every IFSPCS is an IF $\beta$ CS [7], by theorem 3.16, A is an IF $\beta$ GCS.

**Example 3.19:**Let X = {a, b} and G =  $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ . Then  $\tau = \{0 \sim, G, 1 \sim\}$  is an IFT on X. Let A =  $\langle x, (0.4_a, 0.3_b) (0.6_a, 0.7_b) \rangle$  be an IFS in X.

Then, IF $\beta C(X) = \{0\sim, 1\sim, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1] / 0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_b + \nu_b \le 1\}$ . Here A is an IF $\beta CS$  in X. As int(cl(int(A))) =  $0\sim \subseteq A$ . Therefore A is an IF $\beta GCS$  in X.

Since IFPC(X) = {0~, 1~,  $\mu_a \ \epsilon[0,1], \ \mu_b \ \epsilon[0,1], \ \nu_a \ \epsilon[0,1], \ \nu_b \ \epsilon[0,1]$  /either  $\mu_b \ge 0.6$  or  $\mu_b < 0.4$  whenever  $\mu_a \ge 0.5, \ 0 \le \mu_a + \nu_a \le 1$  and  $\ 0 \le \mu_b + \nu_b \le 1$  }.

But A is not an IFSPCS in X, as we cannot find any IFPCS B such that  $int(B) \subseteq A \subseteq B$  in X.

In the following diagram, we have provided relations between various types of intuitionistic fuzzy closedness.



The reverse implications are not true in general in the above diagram.

**Remark 3.20:** The union of any two IF $\beta$ GCS is not an IF $\beta$ GCS in general as seen from the following example.

**Example 3.21:**Let X = {a, b} and  $\tau = \{0\sim, G_1, G_2, 1\sim\}$  where  $G_1 = \langle x, (0.7_a, 0.8_b), (0.3_a, 0.2_b) \rangle$  and  $G_2 = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$ . Then the IFSsA =  $\langle x, (0.6_a, 0.5_b), (0.4_a, 0.3_b) \rangle$  and B =  $\langle x, (0.4_a, 0.8_b), (0.4_a, 0.2_b) \rangle$  are IF $\beta$ GCSs in (X, $\tau$ ) but A  $\cup$  B is not an IF $\beta$ GCS in (X, $\tau$ ).

Then IF $\beta$ C(X) = {0~, 1~,  $\mu_a \epsilon$ [0,1],  $\mu_b \epsilon$  [0,1],  $\nu_a \epsilon$ [0,1],  $\nu_b \epsilon$  [0,1] / provided  $\mu_b < 0.7$  whenever $\mu_a \ge 0.6$ ,  $\mu_a < 0.6$  whenever  $\mu_b \ge 0.7$ ,  $0 \le \mu_a + \nu_a \le 1$  and  $0 \le \mu_b + \nu_b \le 1$  }.

As $\beta$ cl(A) = A, we have A is an IF $\beta$ GCS in X and  $\beta$ cl(B) = B, we have B is an IF $\beta$ GCS in X. NowA  $\cup$  B =  $\langle x, (0.6_a, 0.8_b), (0.4_a, 0.2_b) \rangle \subseteq G_1$ , where  $G_1$  is an IF $\beta$ OS, but  $\beta$ cl(A  $\cup$  B) = 1~  $\not\subseteq$  G<sub>1</sub>.

**Theorem 3.22:** Let  $(X,\tau)$  be an IFTS. Then for every A  $\epsilon$  IF $\beta$ GC(X) and for every B  $\epsilon$  IFS(X), A  $\subseteq$  B  $\subseteq \beta$ cl $(A) \Rightarrow$  B  $\epsilon$  IF $\beta$ GC(X).

**Proof:**Let  $B \subseteq U$  and U be an IF $\beta$ OS. Then since,  $A \subseteq B$ ,  $A \subseteq U$ . By hypothesis,  $B \subseteq \beta cl(A)$ . Therefore  $\beta cl(B) \subseteq \beta cl(\beta cl(A)) = \beta cl(A) \subseteq U$ , since A is an IF $\beta$ GCS. Hence B  $\epsilon$  IF $\beta$ GC(X).

**Theorem 3.23:** An IFS A of an IFTS  $(X,\tau)$  is an IF $\beta$ GCS if and only if  $A_q^c F \Rightarrow \beta cl(A)_q^c F$  for every IF $\beta$ CS F of X.

**Proof:** (Necessity): Let F be an IF $\beta$ CS and A  $_q^c$  F, then A  $\subseteq$  F<sup>c</sup> [9], where F<sup>c</sup> is an IF $\beta$ OS. Then  $\beta$ cl(A)  $\subseteq$  F<sup>c</sup>, by hypothesis. Hence again [9]  $\beta$ cl(A)  $_q^c$  F.

**Sufficiency:** Let U be an IF $\beta$ OS such that A  $\subseteq$  U. Then U<sup>c</sup> is an IF $\beta$ CS and A  $\subseteq$  (U<sup>c</sup>)<sup>c</sup>. By hypothesis, A<sub>q</sub><sup>c</sup> U<sup>c</sup> $\Rightarrow \beta$ cl(A)  $_{q}^{c}$  U<sup>c</sup>. Hence by [9],  $\beta$ cl(A)  $\subseteq$  (U<sup>c</sup>)<sup>c</sup> = U. Therefore  $\beta$ cl(A)  $\subseteq$  U. Hence A is an IF $\beta$ GCS.

**Theorem 3.24:**Let  $(X,\tau)$  be an IFTS. Then every IFS in  $(X,\tau)$  is an IF $\beta$ GCS if and only if IF $\beta$ O $(X) = IF\beta$ C(X).

**Proof :** (Necessity):Suppose that every IFS in  $(X,\tau)$  is an IF $\beta$ GCS. Let U  $\epsilon$  IF $\beta$ O(X), and by hypothesis,  $\beta$ cl(U)  $\subseteq$  U  $\subseteq$   $\beta$ cl(U). This implies  $\beta$ cl(U) = U. Therefore U  $\epsilon$  IF $\beta$ C(X). Hence IF $\beta$ O(X)  $\subseteq$  IF $\beta$ C(X). Let A $\epsilon$  IF $\beta$ C(X), then A<sup>c</sup> $\epsilon$  IF $\beta$ O(X)  $\subseteq$  IF $\beta$ C(X). That is, A<sup>c</sup> $\epsilon$  IF $\beta$ C(X). Therefore A $\epsilon$ IF $\beta$ O(X). Hence IF $\beta$ C(X)  $\subseteq$  IF $\beta$ O(X). Thus IF $\beta$ O(X) = IF $\beta$ C(X).

**Sufficiency:** Suppose that  $IF\beta O(X) = IF\beta C(X)$ . Let  $A \subseteq U$  and U be an  $IF\beta OS$ . By hypothesis  $\beta cl(A) \subseteq \beta cl(U) = U$ , since  $U \in IF\beta C(X)$ . Therefore A is an  $IF\beta GCS$  in X.

**Theorem 3.25:** If A is an IF $\beta$ OS and an IF $\beta$ GCS in (X, $\tau$ ) then A is an IF $\beta$ CS in (X, $\tau$ ). **Proof:** Since A  $\subseteq$  A and A is an IF $\beta$ OS, by hypothesis,  $\beta$ cl(A)  $\subseteq$  A. But A  $\subseteq \beta$ cl(A). Therefore  $\beta$ cl(A) = A. Hence A is an IF $\beta$ CS.

**Theorem 3.26:** Let A be an IF $\beta$ GCS in (X, $\tau$ ) and  $p_{(\alpha,\beta)}$  be an IFP in X such that  $int(p_{(\alpha,\beta)})_q\beta cl(A)$ , then  $int(cl(int(p_{(\alpha,\beta)})))_q A$ .

**Proof:** Let A be an IF $\beta$ GCSand let  $(int(p_{(\alpha,\beta)}))_q\beta$ cl(A).

Suppose  $\operatorname{int}(\operatorname{cl}(\operatorname{int}(p_{(\alpha,\beta)})))_q^c$  A, since by [9]  $A \subseteq [\operatorname{int}(\operatorname{cl}(\operatorname{int}(p_{(\alpha,\beta)})))]^c$ . This implies  $[\operatorname{int}(\operatorname{cl}(\operatorname{int}(p_{(\alpha,\beta)})))]^c$  is an IF $\beta$ OS. Then by hypothesis,

 $\beta$ cl(A)  $\subseteq$  [int(cl(int(p\_{(\alpha,\beta)})))]<sup>c</sup>

 $= cl(int(cl[(p_{(\alpha,\beta)})]^{c}.$ 

 $\subseteq cl(cl[(p_{(\alpha,\beta)})]^{c}.$ 

 $= \operatorname{cl}[(p_{(\alpha,\beta)})]^{c}.$ 

=  $(int(p_{(\alpha,\beta)}))^c$ . This implies  $int(p_{(\alpha,\beta)})_q^c \beta cl(A)$ , which is a contradiction to the hypothesis. Hence  $int(cl(int(p_{(\alpha,\beta)})))_q A$ .

**Theorem 3.27:**Let  $F \subseteq A \subseteq X$  where A is an IF $\beta$ OS and an IF $\beta$ GCS in X. Then F is an IF $\beta$ GCS in A if and only if F is an IF $\beta$ GCS in X.

**Proof:** Necessity: Let U be an IF $\beta$ OS in X and F  $\subseteq$  U. Also let F be an IF $\beta$ GCS in A. Then clearly F  $\subseteq$  A  $\cap$  U and A  $\cap$  U is an IF $\beta$ OS in A. Hence the  $\beta$  closure of F in A,  $\beta$ cl<sub>A</sub>(F)  $\subseteq$ A  $\cap$  U. By theorem 3.25, A is an IF $\beta$ CS. Therefore  $\beta$ cl(A) = A and the  $\beta$  closure of F in X,  $\beta$ cl(F)  $\subseteq \beta$ cl(F)  $\cap \beta$ cl(A) =  $\beta$ cl(F)  $\cap A = \beta$ cl<sub>A</sub>(F)  $\subseteq A \cap U \subseteq U$ . That is,  $\beta$ cl(F)  $\subseteq U$  whenever F  $\subseteq$  U. Hence F is an IF $\beta$ GCS in X.

**Sufficiency:** Let V be an IF $\beta$ OS in A such that F  $\subseteq$  V. Since A is an IF $\beta$ OS in X, V is an IF $\beta$ OS in X. Therefore  $\beta$ cl(F)  $\subseteq$  V, since F is an IF $\beta$ GCS in X. Thus  $\beta$ cl<sub>A</sub>(F) = $\beta$ cl(F)  $\cap$  A  $\subseteq$  V  $\cap$  A  $\subseteq$  V. Hence F is an IF $\beta$ GCS in A.

**Theorem 3.28:**For an IFS A, the following conditions are equivalent:

- (i) A is an IFOS and an IF $\beta$ GCS
- (ii) A is an IFROS

**Proof:** (i)  $\Rightarrow$  (ii) Let A be an IFOS and an IF $\beta$ GCS. Then  $\beta$ cl(A)  $\subseteq$  A and A  $\subseteq \beta$ cl(A) this implies that  $\beta$ cl(A) = A. Therefore A is an IF $\beta$ CS, since int(cl(int(A)))  $\subseteq$  A. Since A is an IFOS, int(A) = A. Therefore int(cl(A))  $\subseteq$  A. Since A is an IFOS, it is an IFPOS. Hence A  $\subseteq$  int(cl(A)). Therefore A = int(cl(A)). Hence A is an IFROS.

(ii)  $\Rightarrow$  (i) Let A be an IFROS. Therefore A = int(cl(A)). Since every IFROS in an IFOS and A  $\subseteq$  A. This implies int(cl(A))  $\subseteq$  A. That is int(cl(int(A)))  $\subseteq$  A. Therefore A is an IF $\beta$ CS. Hence A is an IF $\beta$ GCS.

**Theorem 3.29**: For an IFOS A in  $(X,\tau)$ , the following conditions are equivalent.

- (i) A is an IFCS
- (ii) A is an IF $\beta$ GCS and an IFQ-set

**Proof:** (i)  $\Rightarrow$  (ii) Since A is an IFCS, it is an IF $\beta$ GCS. Now int(cl(A)) = int(A) = A = cl(A) = cl(int(A)), by hypothesis. Hence A is an IFQ-set[8].

(ii)  $\Rightarrow$  (i) Since A is an IFOS and an IF $\beta$ GCS, by theorem 3.28, A is an IFROS. Therefore A = int(cl(A)) = cl(int(A)) = cl(A), by hypothesis. A is an IFCS.

**Theorem3.30:**Let  $(X,\tau)$  be an IFTS, then for every  $A \in IFSPC(X)$  and for every B in X,  $int(A) \subseteq B \subseteq A \Rightarrow B \in IF\beta GC(X)$ .

**Proof:** Let A be an IFSPCS in X. Then there exists an IFPCS, (say) C such that  $int(C) \subseteq A \subseteq C$ . By hypothesis,  $B \subseteq A$ . Therefore  $B \subseteq C$ . Since  $int(C) \subseteq A$ ,  $int(C) \subseteq int(A)$  and  $int(C) \subseteq B$ , by hypothesis. Thus  $int(C) \subseteq B \subseteq C$  and by [5],  $B \in IFSPC(X)$ . Hence by Theorem 3.18, $B \in IF\beta GC(X)$ .

#### References

- [1] K. Atanassov. Intuitionistic Fuzzy SetsFuzzy Sets and Systems, 1986, 87-96.
- [2] C. Chang. Fuzzy Topological SpacesJ. Math. Anal. Appl., 1968, 182-190.
- [3] D. Coker. An Introduction to Intuitionistic Fuzzy Topological Space, Fuzzy Sets and Systems, 1997, 81-89.
- [4] D. Coker and M.Demirci. On Intuitionistic Fuzzy Points, Notes on Intuitionistic Fuzzy Sets1(1995), 79-84.
- [5] H. Gurcay, D. Coker and Es. A.Haydar. On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces, The J. Fuzzy Mathematics, 1997,365-378.
- [6] D. Jayanthi.Generalized  $\beta$  Closed Sets in Intuitionistic Fuzzy Topological Spaces, International Journal of Advance Foundation and Research in Science & Engineering (IJAFRSE) Volume1, Issue 7, December 2014.
- [7] D. Jayanthi.Relation BetweenSemipre Closed Sets andBeta Closed sets in Intuitionistic Fuzzy Topological Spaces, Notes on Intuitionistic Fuzzy Sets, Vol. 19, 2013, 53-56.
- [8] R. Santhi, and D. Jayanthi. Generalized Semi- Pre Connectedness in Intuitionistic Fuzzy Topological Spaces, Annals of Fuzzy Mathematics and Informatics, 3, 2012, 243-253.
- [9] S.S. Thakurand Rekha Chaturvedi. Regular Generalized Closed Sets in Intuitionistic Fuzzy Topological Spaces, Universitatea Din Bacau, Studii SiCercetariStiintifice, Seria: Mathematica, 2006, 257-272.
- [10] S.S. Thakur and S. Singh.On Fuzzy Semi-pre Open Sets and Fuzzy Semi-pre Continuity, Fuzzy Sets and Systems, 1998, 383-391.
- [11] Young Bae Jun & seok Zun Song. Intuitionistic Fuzzy Semi-pre Open Sets and Intuitionistic Semi-pre Continuous Mappings, jour. of Appl. Math & computing, 2005, 465-474.
- [12] L.A. Zadeh.Fuzzy Sets, Information and control, 1965, 338-353.