Maintenance and Performance Analysis of Draglines Used In Mines

D. Vidyasagar1, Dinkar B. Kishorilal2
1 M.Tech Student Department Of Mining Machinery Engineering, Indian School Of Mines, Dhanbad,
2 Assistant Professor, Department Mining Machinery Engineering; Indian School Of Mines, Dhanbad

Abstract
A Dragline Is Surface Mining Equipment Which Is Used To Extract Coal By Removing Overburden. Its Performance Depends Upon The Maintainability; Availability And Reliability Characteristics Of The System. For Improving The Performance Of Draglines By Decreasing The Cycle Time, Ideal Time And Upgrade The Maintenance Strategies. Failures in Any Component Of Dragline And Improper Maintenance Could Cause Entire System To Cease. The Objective Is To Study The Performance And Maintenance Of Dragline. This Paper Also States That Immediate Improvement Has To Be Taken For Standards Of Dragline Performance.

Keywords: Dragline, Maintenance of Dragline, Availability and Utilization Factor, Major

I. Introduction
A Dragline Plays A Crucial Role In Coal Excavation. It Is Mostly Used In Open-Cast Coal Mines To Strip The Overburden Covering The Coal. When Coal Industry Started Using Draglines, Strategies Were Made For Maintenance And Initial Development By The Equipment Suppliers. Its Performance Mainly Depends On Maintainability, Availability And Reliability Characteristics Of System And Sub Systems Like Hoist, Swing, Boom And Others. If Any Failure Occurs In The Component Of Subsystem, It Results In Stoppage Of Dragline System [6]. Boom Failures, Rope Failures, Ring Gear And Pulley Failures Are Major Breakdowns Of Dragline Which Occur Due To Improper Maintenance Of System [4]. This Study Discusses About Calculating The Annual Output And Ownership Cost, Maintenance Of Dragline. The Maintenance Strategies Are Mine Size, Productivity Requirements, Machinery Configuration And Economic Factors. The Maintenance Strategy Is Highly Dependent On The Initial Effort During Commencement Of Planning For Mining Operation. For Effective Operation Of Dragline There Should Be Constant Supervision, Good Overburden Preparation, And Preventive Maintenance Of Dragline And Selecting Proper Bench Height Of Overburden For Suitably Selected Machine. The Main Objectives Of This Study Are

a. Performance And Maintenance Of Dragline.
b. Calculate The Annual Output, Ownership And Operating Cost Of Dragline.

Dragline

Conditions for Operation of Dragline

a. Gradients Should Be Flatter Than 1 In 6.
b. Seams Must Be Free Of Faults & Any Other Geological Disturbances
c. Deposits Have To Be With Major Strike Length.
d. Thick Seams With More Than 25m Thickness Are Unsuitable.
e. A Hilly Property Is Unsuitable.
1. Maintenance

Their strategy of maintenance depends on mine sites, numbers of draglines used on site and their operating conditions. It is more advantageous when compared to alternative strip mining methods because it can efficiently handle very large volumes of material. In quarrying operations a great force exerts on machine by opencast mining operations, there is great importance for machine maintenance and availability. Better maintenance results in better availability of machines which in turn contributes for better production. Better maintenance is not simply implementation of maintenance schedules and carrying out repairs. With better maintenance it can reserves in smooth and efficient operations of an industry which helps in maintenance in deeds in improving productivity which helps in maintenance of machine with maximum efficiency of economy. For improvement of reliability many new control system technologies are utilized.

2. Data Collection

The data is collected from the reputed mine. The mining parameters of dragline and dragline parameters will show in Table 1, Table 2 and Table 3.

Table 1 Productivity Factors

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Recommended Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swell Factor (S)</td>
<td>0.719</td>
</tr>
<tr>
<td>Fill Factor (F)</td>
<td>0.733</td>
</tr>
<tr>
<td>Machine Travel And Positioning Factor (M)</td>
<td>0.8</td>
</tr>
<tr>
<td>No Of Days In A Year (N_d)</td>
<td>365</td>
</tr>
<tr>
<td>No Of Hours In A Day (N_h)</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 2 Parameters Of Dragline

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dragline [Bucket (M^3) Boom (M)]</td>
<td>24/96</td>
</tr>
<tr>
<td>Operating Radius (M)</td>
<td>88</td>
</tr>
<tr>
<td>Cutting Width (M)</td>
<td>60</td>
</tr>
<tr>
<td>Bench Height (M)</td>
<td>30-35</td>
</tr>
<tr>
<td>High Slope Angle (Degrees)</td>
<td>70</td>
</tr>
<tr>
<td>Bench Slope (Degrees)</td>
<td>60</td>
</tr>
<tr>
<td>Angle Of Repose (Degrees)</td>
<td>38</td>
</tr>
<tr>
<td>Digging Depth (M)</td>
<td>25</td>
</tr>
<tr>
<td>Method Of Working</td>
<td>Extended Bench Method</td>
</tr>
<tr>
<td>Thickness Of Coal Seam (M)</td>
<td>4.5</td>
</tr>
<tr>
<td>Over Burden Dump Height (M)</td>
<td>42</td>
</tr>
</tbody>
</table>

Table 3 Mining Parameters Of An Opencast Mine

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH (Scheduled Shift Hour)</td>
<td>720</td>
</tr>
<tr>
<td>Working Hours (WH)</td>
<td>507</td>
</tr>
<tr>
<td>Maintenance Hours (MH)</td>
<td>119</td>
</tr>
<tr>
<td>Breakdown Hours (BH)</td>
<td>33</td>
</tr>
<tr>
<td>Idle Hours (IH)</td>
<td>61</td>
</tr>
<tr>
<td>Standard Cycle Time (S)</td>
<td>60</td>
</tr>
<tr>
<td>Observed Cycle Time (S)</td>
<td>61.7</td>
</tr>
</tbody>
</table>

II. Methodology

The dragline performance and maintenance data is collected from the reputed mine. This data will give the annual output of dragline based on the data. The ownership and operating cost is also calculated.

3.1 Availability (A) And Utilization (U):

To calculate the availability and utilization factor [5] of the dragline by submitting the field data in the below equations (I) and (II).

\[
\text{Availability (A)} = \frac{\text{SSH} - (\text{MH} + \text{BH})}{\text{SSH}} \quad \text{...... (I)}
\]

\[
\text{Utilization (U)} = \frac{\text{SSH} - (\text{MH} + \text{BH} + \text{IH})}{\text{SSH}} \quad \text{...... (II)}
\]

Where,

- SSH is a scheduled shift hour,
- MH is maintenance hours,
- BH is breakdown hours,
IH Is Idle Hours.
Based On The Observed And Recorded Data In Terms Of Average Cycle Time, A And U Values The Annual Output (P) Of The Dragline Has Been Projected Using Equation (iii),

\[P = \frac{B}{C} \times A \times U \times F \times N_S \times N_h \times N_d \times 3600 \]

Where
A Is Availability,
U Is Utilization Factor,
B Is Bucket Capacity of the Dragline in Cubic Meter,
C Is the Average Total Cycle Time of Dragline in Second,
S Is the Swell Factor,
F Is the Fill Factor,
M Is the Machine Travelling and Positioning Factor,
N_S Is the Number of Operating Shifts in a Day,
N_h Is The Number Of Operating Hours In A Shift
N_d Is the Number Of Operating Days in a Year.

3.2 The Maximum Depth Of The Dragline :
The Maximum Depth Can Be Work Done By Dragline H,

\[H = \frac{T + \tan(x(R - W))}{S + \tan(y)} \]

Where,
T Is The Thickness Of Coal Seam
X Is The Angle Of Repose Of Overburden
R Is The Reach Of Dragline
S Is The Swell Factor
W Is The Width Of Cut
Y Is The Slope Angle Of Highwall To Horizontal.

3.3 Amount Of Rehandle (P_{RM}) :

\[P_{RM} = \frac{1.125T + 0.644H + 0.1R}{W} + \frac{0.25T - 0.4T - 0.16R}{0.1T + 0.08R - 0.01W} \]

Where,
Prm Is The % Amount Of Rehandle Material,
H Is The Overburden Dump Height,
T Is The Thickness Of Coal Seam,
R Is The Reach Of Dragline,
W Is The Width Of Cut.

III. Calculations

By Using The Field Data And Recommended Values In Equations (I), (ii), (iii), (iv) And (v) Then Following Result Is Obtained,

a. The Projected Annual Output Of The Dragline Is 2.87 M M³,
b. The Maximum Depth That Can Be Worked Is 29.74 M,
c. The Amount Of Rehandle Percentage Is 40.2%.

4.1 Calculation of Ownership Cost Of Dragline

a. Cost Of The Equipment Rs 100 Crore.
b. Depreciation Cost For 30 Year I.E. Yearly Flat Rate Of 5% Yearly Depreciation Cost Of 24/96 Dragline = Rs.5 Crore.
c. Average Investment Cost = \(\frac{N+1}{2N} \) Cost Of Dragline, N Is Life Of The Dragline 30 Years. Average Yearly Investment

\[= \text{Rs.} \frac{100+1}{2 \times 30} = \text{Rs.} 51.66 \text{crore.} \]
d. Yearly Interest, Insurance Rates And Taxes I.E. Yearly Flat Rate Of 12.5% =12.5 % Of Rs. 51.66crore = Rs. 6.45crore.

Hence The Total Owner Ship Cost Per Year = Annual Cost + Annual Interest .Hence The Total Owner Ship Cost Per Year

\[= 5+6.45 = \text{Rs.} 11.45 \text{crore.} \]
4.2 Operating Cost Per Year

a. Yearly Manpower Cost (Salary And Wages) Operator Cost @ Rs. 2 Lakh/Operator For 2 Operators In Shifts =Rs.12L.
 Helper Cost @ Rs. 1.4 Lakh And For 1 Operator In 3 Shifts =Rs. 4.2 Lakh, Total Manpower Cost = Rs.16.2 Lakh.

b. Power And Energy Consumption On The Basis Of 13.65MKWH For 24/96 Yearly Power Consumption Cost @ Rs 4.89/KWH
 = 4.89*13.65*10^6 =Rs.6.675 Crore.

c. Yearly Lubrication Cost @ 30% Of Power Consumption = Rs. 2.0 Crore.

d. Yearly Maintenance Cost @ 20% Of Depreciation Cost = Rs.1 Crore.

e. Major Breakdown Cost @ 2% Of Cost Of Equipment = Rs. 2 Crore.

Hence, Total Yearly Operating Cost = Manpower Cost/Year + Electrical Cost/Year + Maintenance Cost/Year + Lubrication Cost/Year

= Rs. (0.162 + 6.67 + 2 +1+2) Crore = Rs. 11.837 Crore

Total Owner Ship Cost = Ownership Cost/Year + Operating Cost = Rs. (11.8 +11.45) Crore = Rs. 23.25 Crore.

4.3 Calculation Of Cost Per Ton Of Coal Exposed Of Dragline By Extended Bench Method

a. Dragline Deployed Is 24/96 Having A Production Capacity Of 2.87 M M^3/Year Percentage Rehandling Is 40.2%.

b. Total Overburden Handled = Overburden Directly Over The Exposed Coal + Overburden Rehandled = Overburden Directly Over The Exposed Coal (1+Coefficient Of Rehandling).

Here, Coefficient Of Rehandling = Overburden Rehandle/Overburden Removal To Expose Coal.

Therefore, 2.87 M M^3 = Overburden Directly Over The Exposed Coal *1.402.

Hence Overburden Directly Over The Exposed Coal Removed By The Dragline = (2.87/1.402)M M^3 = 2.04 M M^3.

Amount Of Coal Exposure = (2.04 M M^3)/(2.41m^3/Tonne) = 0.84 M Tonne

Estimated Cost Per Tonne Of Coal Exposed = Rs. (23.25*10^3)/(0.84*10^6) = Rs. 276.67 Tonne Of Coal Exposed.

IV. Result

By SSH, WH, BH, IH And MH The Results Are Obtained From Above Calculations Cost Per Tonne Of Coal Exposed Is Rs. 276.67 Annual Output Of The Dragline Is Rs 2.87m^3 Annual Ownership Cost Is Rs. 11.8 Crore And Annual Operating Cost Is Rs. 11.45 Crore. Dragline Is Best Suitable Machinery In Order To Achieve Huge Production, Remove Huge Volumes Of Overburden With In Shortest Available Time. Availability And Utilization Plays A Crucial Role And They Also Considered As A Tool For Making Decision In Opencast Mining Operation.

V. Conclusion

By This Study Its States Calculation Of Annual Output, Maintenance And Operation Cost. With Better Maintenance It Gives Better Productivity, Wear And Tear.

To Improve Performance Of Dragline Following Suggestions May Be Adopted.

a. Employing A Spare Dragline Operator And Reducing The Variability In Dragline Operator Performance.

b. Better Preventive Maintenance Schedule To Reduce The Breakdown Time And Breakdown Costs.

c. For Improving The Performance Of Draglines By Decreasing The Cycle Time, Ideal Time And Upgrade The Maintenance Strategies.

d. Communication System Should Be Modernized.

References

