
ISSN (e): 2250 – 3005 || Volume, 06 || Issue, 03||March – 2016 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 16

The Parallel Architecture Approach, Single Program Multiple

Data (Spmd) Implementation on Clusters of Terminals Using

Java Rmi

Sudhir Kumar Meesala
1
, Dr. Pabitra Mohan Khilar

2
, Dr. A. K. Shrivastava

3

1
ph.D. Scholar, Dept. Of Computer Science & Engineering,Dr. C.V. Raman University, Kota, Bilaspur(Cg),

India
2
assistant Professor, Department Of Computer Science And Engineering, Nit, Rourkela(Orrissa) , India

3
professor & Head, Department Of Physics, Dr. C. V. Raman University, Kota, Bilaspur(Cg), India

I. Introduction
In Computer Calculations , SPMD (Single Program, Multiple Data) Is A Technique Employed To Achieve

Parallelism; It Is A Subcategory Or One Of The Basic Type Of MIMD. Tasks Are Split Up And Run

Simultaneously On Multiple Processors With Different Input In Order To Obtain Results Faster. SPMD Is The

Most Common Style Of Parallel Programming.[1] It Is Also A Essential For Research Concepts Such As Active

Messages And Distributed Shared Memory.

Deference Between SPMD & SIMD

In SPMD, Multiple Autonomous Processors Simultaneously Execute The Same Program At Independent Points,

Rather Than In The Lockstep That SIMD Imposes On Different Data. With SPMD, Tasks Can Be Executed On

General Purpose Cpus; SIMD Requires Vector Processors To Manipulate Data Streams. Note That The Two

Are Not Mutually Exclusive.

Concept Of Distributed Memory
SPMD Usually Refers To Message Passing Programming On Distributed Memory Computer Architectures. A

Distributed Memory Computer Consists Of A Collection Of Independent Computers, Called Nodes. Each Node

Abstract
The Complexity Of Computation Computer Power Is Unexpectedly Increasing Day By Day.

Today's Hight Level Computer And Its High Level Utility Is Already Effected Each And Every Part

Of Of Our Real Life. We All Know That Computer Power Is Effected From Astrophysics To Rural

Areas And It Covers All Internal Subareas Of Each And Every Organization Either It Is A Related

National Level Government Project Or International Level Projects. Many Scientific, Economic,

And Research Areas Need A Specific Power To Solve Their Unsolved, Large And Complex

Problems, But Maximum Solution Are Highly Economic Effective And Expensive. The Numeric

Simulation Of Complex Systems Like Molecular Biology , Weather Forecast, Climate Modeling,

Circuit Design, Biometric , Re-Engineering, Recycling Engineering And Many More Are Some Of

Such Problems. There Are Many Approaches To Solve Them. But Tow Major Effective Solutions

Are Either An Expensive Parallel Supercomputer Has To Be Used [First], Or The Computer

Power Of Workstations In A Net Can Be Bundle To Computer The Task Distributed [Second]. The

Second Approach Has The Advantage That We Use The Available Hardware Cost-Effective. This

Paper Describes The Architecture Of A Heterogeneous, Concurrent, And Distributed System,

Which Can Be Used For Solving Large Computational Problems. Here We Present The Basic

Solution By Single Program Stream And Multiple Data Stream(SPMD) Architecture For Solving

Large Complex Problem. We Present A Concurrent Tasks Distributed Application For Solving

Complex Computational Tasks In Parallel. The Design Process Is Parallel Processing

Implementation On Clusters Of Terminals Using Java RMI.

Keywords: Single Program Multiple Data(SPMD), Remote Method Invocation(RMI), Parallel

Processing, Distributed Technology, Molecular Biology , Weather Forecast, Climate Modeling,

Circuit Design, Biometric , Re-Engineering, Recycling Engineering

The Parallel Architecture Approach, Single Program Multiple Data(SPMD) Implementation On..

www.ijceronline.com Open Access Journal Page 17

Starts Its Own Program And Communicates With Other Nodes By Sending And Receiving Messages, Calling

Send/Receive Routines For That Purpose. Barrier Synchronization May Also Be Implemented By Messages.

The Messages Can Be Sent By A Number Of Communication Mechanisms, Such As TCP/IP Over Ethernet, Or

Specialized High-Speed Interconnects Such As Myrinet And Supercomputer Interconnect. Serial Sections Of

The Program Are Implemented By Identical Computation On All Nodes Rather Than Computing The Result On

One Node And Sending It To The Others.

Nowadays, The Programmer Is Isolated From The Details Of The Message Passing By Standard Interfaces,

Such As PVM And MPI.

Distributed Memory Is The Programming Style Used On Parallel Supercomputers From Homegrown Beowulf

Clusters To The Largest Clusters On The Teragrid.

Concept Of Shared Memory
On A Shared Memory Machine (A Computer With Several Cpus That Access The Same Memory Space),

Messages Can Be Sent By Depositing Their Contents In A Shared Memory Area. This Is Often The Most

Efficient Way To Program Shared Memory Computers With Large Number Of Processors, Especially On

NUMA Machines, Where Memory Is Local To Processors And Accessing Memory Of Another Processor Takes

Longer. SPMD On A Shared Memory Machine Is Usually Implemented By Standard (Heavyweight) Processes.

Unlike SPMD, Shared Memory Multiprocessing, Also Called Symmetric Multiprocessing Or SMP, Presents

The Programmer With A Common Memory Space And The Possibility To Parallelize Execution By Having The

Program Take Different Paths On Different Processors. The Program Starts Executing On One Processor And

The Execution Splits In A Parallel Region, Which Is Started When Parallel Directives Are Encountered. In A

Parallel Region, The Processors Execute A Single Program On Different Data. A Typical Example Is The

Parallel DO Loop, Where Different Processors Work On Separate Parts Of The Arrays Involved In The Loop.

At The End Of The Loop, Execution Is Synchronized, Only One Processor Continues, And The Others Wait.

The Current Standard Interface For Shared Memory Multiprocessing Is Openmp. It Is Usually Implemented By

Lightweight Processes, Called Threads.

Combination Of Levels Of Parallelism
Current Computers Allow Exploiting Of Many Parallel Modes At The Same Time For Maximum Combined

Effect. A Distributed Memory Program Using MPI May Run On A Collection Of Nodes. Each Node May Be A

Shared Memory Computer And Execute In Parallel On Multiple Cpus Using Openmp. Within Each CPU, SIMD

Vector Instructions (Usually Generated Automatically By The Compiler) And Superscalar Instruction Execution

(Usually Handled Transparently By The CPU Itself), Such As Pipelining And The Use Of Multiple Parallel

Functional Units, Are Used For Maximum Single CPU Speed.

SPMD History
SPMD Was Proposed First In 1983 By Michel Auguin (University Of Nice Sophia-Antipolis) And François

Larbey (Thomson/Sintra) In The OPSILA Parallel Computer[2] And Next In 1984 By Frederica Darema At

IBM For Highly Parallel Machines Like The RP3 (The IBM Research Parallel Processor Prototype), In An

Unpublished IBM Memo.[3] By The Late 1980s, There Were Many Distributed Computers With Proprietary

Message Passing Libraries. The First SPMD Standard Was PVM. The Current De Facto Standard Is MPI.

Parallel & Distributed Architecture

Distributed Computing Is Method Of Computer Processing In Which Different Parts Of A Program Run

Simultaneously On Two Or More Computers That Are Communicating With Each Other Over A Network.

Distributed Computing Is A Type Of Parallel Computing.[7] But The Latter Term Is Most Commonly Used To

Refer To Processing In Which Different Parts Of A Program Run Simultaneously On Two Or More Processor

That Are Part Of The Same Computer. While Both Types Of Processing Require That A Program Be

Parallelized - Divided Into Sections That Can Run Simultaneously, Distributed Computing Also Requires That

The Division Of The Program Take Into Account The Different Environments On Which The Different Sections

Of The Program Will Be Running. For Example, Two Computers Are Likely To Have Different File Systems

And Different Hardware Components.[3]

Distributed Computing Is A Natural Result Of The Use Of Network To Allow Computers To Efficiently

Communicate. But Distributed Computing Is Distinct From Networking. The Latter Refers To Two Or More

Computers Interacting With Each Other, But Not, Typically, Sharing The Processing Of A Single Program. The

World Wide Web Is An Example Of A Network, But Not An Example Of Distributed Computing.[14]

There Are Numerous Technologies And Standards Used To Construct Distributed Computations, Including

Some Which Are Specially Designed And Optimize For That Purpose, Such As Remote Procedure Calls (RPC),

Remote Method Invocation (RMI) Or Net Remoting.[5]

The Parallel Architecture Approach, Single Program Multiple Data(SPMD) Implementation On..

www.ijceronline.com Open Access Journal Page 18

Organizing The Interaction Between Each Computer Is Of Prime Importance. In Order To Be Able To Use The

Widest Possible Range And Types Of Computers, The Protocol Or Communication Channel Should Not

Contain Or Use Any Information That May Not Be Understood By Certain Machines. Special Care Must Also

Be Taken That Messages Are Indeed Delivered Correctly And That Invalid Messages Are Rejected Which

Would Otherwise Bring Down The System And Perhaps The Rest Of The Network.

Various Hardware And Software Architectures Are Used For Distributed Computing. At A Lower Level, It Is

Necessary To Interconnect Multiple Cpus With Some Sort Of Network, Regardless Of Whether That Network

Is Printed Onto A Circuit Board Of Made Up Of Loosely -Coupled Devices And Cables. At A Higher Level, It

Is Necessary To Interconnect Processes Running On Those Cpus With Some Sort Of Communication System.

Distributed Programming Typically Falls Into One Of Several Basic Architecture Or Categories:

 Client-Server

 3-Tier Architecture

 N-Tier Architecture

 Distributed Objects

 Loose Coupling Or Tight Coupling.

1) Client-Server-- Smart Client Code The Server For Data, Then Formats And Displays It To The User. Input At

The Client Is Committed Back To The Server When It Represents A Permanent Change.

2) 3-Tier Architecture:- Three Tier Systems Move The Client Intelligence To A Middle Tier So That Stateless

Clients Can Be Used. This Simplifies Application Deployment. Most Web Applications Are 3-Tier.

3)N-Tier Architecture:- N-Tier Refers Typically To Web Application Which Further Forward Their Request To

Other Enterprise Services. This Type Of Application Is The One Most Responsible For The Success Of

Application Servers.

1. Tightly Coupled (Clustered):- Refers Typically To A Set Of Highly Integrated Machines That Run The

Same Process In Parallel, Subdividing The Task In Part That Are Made Individually By Each One, And Then

Put Back Together To Make The Final Result.

2. Peer-To-Peer:- Architecture Where There Is No Special Machine Of Machines That Provide A Service Or

Manage The Network Resources. Instead All Responsibilities Are Uniformly Divided Among All Machines,

Known As Peers.

A Multi Computer System Is A System Made Up Of Several Independent Computers Interconnected By A

Telecommunication Network. Multi Computer System Can Be Homogeneous Or Heterogeneous: A

Homogeneous Distributed System Is One Where All Cpus Are Similar And Are Connected By A Single Type

Of Network. They Are Often Used For Parallel Computing.[11][12]. A Heterogeneous Distributed

System Is Made Up Of Different Kind Of Computers, Possibly With Vastly Differing Memory Sizes,

Processing Power And Even Basic Underlying Architecture. They Are In Widespread Use Today, With Many

Companies Adopting This Architecture Owing To The Speed With Which Hardware Goes Obsolete And The

Cost Of Upgrading A Whole System Simultaneous.

The Types Of Distributed Systems Are Based On Flynn's Taxonomy Of Systems: -

 Single Instruction Single Data (SISD)

 Single Instruction Multiple Data (SIMD)

 Multiple Instruction Single Data (MISD)

 Multiple Instruction Multiple Data (MIMD)

 Single Program Multiple Data (SPMD)

We Are Implementing Client-Server Architecture And Single Program Multiple Date (SPMD) Taxonomy.

Remote Method Invocation(RMI)
Remote Method Invocation (RMI) Allows A Java Object That Executes On One Machine To Invoke A Method

Of A Java Object That Executes On Another Machine. This Is An Important Feature, Because It Allows You To

Build Distributed Application. While A Complete Discussion Of RMI Is Outside The Scope Of This Paper, The

Following Paper Describes The Basic Principles Of Java RMI.[22]. The RMI Implementation Is Essentially

Built From Three Abstraction Layers

A. The Stub/Skeleton Layer

This Layer Intercepts Method Calls Made By The Client To The Interface Reference And Redirects These Calls

To A Remote Object. Stubs Are Specific To The Client Side, Whereas Skeletons Are Found On The Server

Side. To Achieve Location Transparency, RMI Introduces Two Special Kinds Of Objects Known As Stubs And

Skeletons That Serve As An Interface Between An Application And Rest Of The RMI System. This Layer’s

Purpose Is To Transfer Data To The Remote Reference Layer Via Marshalling And Unmarshalling. Marshalling

Refers To The Process Of Converting The Data Or Object Being Transferred Into A Byte Stream And

The Parallel Architecture Approach, Single Program Multiple Data(SPMD) Implementation On..

www.ijceronline.com Open Access Journal Page 19

Unmarshalling Is The Reverse – Converting The Stream Into An Object Or Data. This Conversion Is Achieved

Via Object Serialization.

The Stub/ Skeleton Layer Of The RMI Lies Just Below The Actual Application And Is Based On The Proxy

Design Pattern. In The RMI Use Of The Proxy Pattern, The Stub Class Plays The Role Of The Proxy For The

Remote Service Implementation. The Skeleton Is A Helper Class That Is Generated By RMI To Help The

Object Communicate With TheStub; It Reads The Parameters For The Method Call From The Link, Makes The

Call To The Remote ServiceImplementation Object, Accepts The Return Value And Then Writes The Return

Value Back To The Stub.In Short, The Proxy Pattern Forces Method Calls To Occur Through A Proxy That

Acts As A Surrogate, Delegating AllCalls To The Actual Object In A Manner Transparent To The Original

Caller.

Stub

The Stub Is A Client-Side Object That Represents (Or Acts As A Proxy For) The Remote Object. The Stub Has

The SameInterface, Or List Of Methods, As The Remote Object. However When The Client Calls A Stub

Method, The StubForwards The Request Via The RMI Infrastructure To The Remote Object (Via The

Skeleton), Which Actually ExecutesIt.

Sequence Of Events Performed By The Stub:

Step 1. Initiates A Connection With The Remote VM Containing The Remote Object.

Step2. Marshals (Writes And Transmits) The Parameters To The Remote.

Step3 VM Waits For The Result Of The Method Invocation.

Step4 Unmarshals (Reads) The Return Value Or Exception Returned.

Step5 Return The Value To The Caller.

In The Remote VM, Each Remote Object May Have A Corresponding Skeleton[16].

Skeleton

On The Server Side, The Skeleton Object Takes Care Of All The Details Of “Remoteness” So That The Actual

Remote Object Does Not Need To Worry About Them. In Other Words We Can Pretty Much Code A Remote

Object The Same Way As If It Were Local; The Skeleton Insulates The Remote Object From The RMI

Infrastructure.

Sequence Of Events Performed By The Skeleton

 Unmarshals (Reads) The Parameters For The Remote Method (Remember That These Were Marshaled By

The Stub On The Client Side)

 Invokes The Method On The Actual Remote Object Implementation.

 Marshals (Writes And Transmits) The Result (Return Value Or Exception) To The Caller (Which Is Then

 Unmarshalled By The Stub)

The Diagram Shows The RMI Architecture (Fig 3 & 4)

Fig.3 : RMI Architecture Fig 4: RMI Architecture

B. The Remote Reference Layer : The Remote Reference Layer Defines And Supports The Invocation

Semantics Of The RMI Connection. This Layer Maintains The Session During The Method Call.

The Parallel Architecture Approach, Single Program Multiple Data(SPMD) Implementation On..

www.ijceronline.com Open Access Journal Page 20

C. The Transport Layer

The Transport Layer Makes The Stream-Based Network Connections Over TCP/IP Between The Jvms, And

Responsible For Setting And Managing Those Connections. Even If Two Jvms Are Running On The Same

Physical Computer, They Connect Through Their Host Computers TCP/IP Network Protocol Stack. RMI Uses

A ProtocolCalled JRMP (Java Remote Method Protocol) On Top Of TCP/IP (An Analogy Is HTTP Over

TCP/IP).

Single Program Multiple Data(SPMD) Algorithm
We Are Implementing Remote Method Invocation From JAVA Language As Platform To Apply Parallel

Processing Concept Single Program Stream Multiple Data Stream(SIMD) In Distributed Network; Here We Are

Using Client /Server Architecture. Server Is The Class Where The Distribution Process Occurs. We Are Having

A Set Of Randomly Generated Numbers. Here As We Have Single Client We Retrieve Three Numbers From

Client And Give Them To Server For Factorial Calculation And Summation. Client Has Job Of Distribution Of

Numbers. There Can Be Many Servers And They Can Have Different Methods, Which Can Be Applied

Concurrently, Result Will Be Returned To Client For Further Operations.

As Many Server Are Present In This Application. So, We Have To Implement Thread To Bring Access Of

Server To One Server At One Time. This Will Not Cause Corruption Of Data And Thus The Work Produce

Satisfactorily Results.

RMI Is A Simple Method Used For Developing And Deploying Distributed Object Application In A Java

Environment. Creating Distributed Object Application Using RMI Is A Simple As Writing A Stand-Alone Java

Application.

RMI Enables A Programmer To Create Distributed Java Application, In Which The Methods Of Remote Java

Object Can Be Called From Other Java Virtual Machines Running Either On The Same Host Or On Different

Hosts Scattered Across A Network.

A Call To Remote Object Using RMI Is Identical To A Call Made To A Local Object With The Following

Exceptions:

1. An Object Passed As A Parameter To A Remote Method Or Returned From The Method Must Be

Serialization Or Be Another Remote Object.

2. An Object Passed As A Parameter To A Remote Method Or Returned From The Method Called Is Passed

By Value And Not By Reference.

3. A Client Always Refers To A Remote Object Through One Of The Remote Interface Those Implements. A

Remote Object Can Be Typecast To Any Of The Interfaces That A Client Implements.

When A Client Application Makes A Remote Call, The Call Passes To The Stub And Then On To The Remote

Reference Layer, If Then Passes It Via The Network Layer From The Client To The Server, Where The Remote

Reference Layer, On The Sever Side, Unpacks The Arguments And Passes Them To The Skeleton And Then

To The Server. Class File. The Return Value Of The Method Call Then Takes The Reverse Trip Back To The

Client Side.

When A Client Makes A Call To A Remote Method, That Client Receives A Reference To The Remote Object,

Which Implements The Remote Method. All Interactions By The Client Are Performed With The Stub Is

Responsible For Data Transfer Between The Local System And The Remote System.

Stub Object On The Client Does Not Interact Direct Directly With The Remote Object On The Server. There

Exists A Sever Side Proxy Object Called The Skeleton, Which Is Responsible For Transferring Data Between A

Stub And The Actual Object Being Reference On The Server.

In Any Distributed Application, For The Client Side Of The Application To Make The Call To Remote Object,

That Client Object Would First Be Able To Locate The Remote Object RMI Provide The Registry Services N

Or The Name Services To Make This Possible.

We Register Any Remote Object That It Is Exporting With A Name Server Called A Registry. We Can

Maintain A Registry Server That Is Running On A Well-Known Pre Defined Port Number. An Application Can

Register With The Registry If It Is On Same Physical Machine.

Steps For Creating RMI Applications: -

 Define An Interface Of The Remote Classes.

 Implement The Interface In Server-Side Application.

 Bind Objects To Registry Service.

 Create Stubs And Skeleton Classes.

 Create And Compile Client Program To Access The Remote Objects.

 Install Files On Client And Server Machines.

 Start The RMI Registry

The Parallel Architecture Approach, Single Program Multiple Data(SPMD) Implementation On..

www.ijceronline.com Open Access Journal Page 21

Steps Involved In Running The RMI Application:

In case The Server Application And Client Application Is Run In The Same Machine: -

 Run The RMI Registry At Specified Port, If Not Specified, It Runs At The Default Port 1099.

 Run The Server Application In Another DOS Window.

 Run The Client Application From The Same Machine.

In case The Server Application And Client Application Is Run On The Separate Machine: -

 Run The RMI Registry At Specified Port, If Not Specified, It Runs At The Default Port 1099.

 Run The Server Application In Another DOS Window.

 Run The Client Application From A Separate Machine.

Following These Steps RMI Application Can Be Implemented.

Algorithm for Developing and Running the RMI Application for Distributed System.

Step 1: Enter And Compile The Source Code

Enter The Source Code For Addserverintf.Java, Addserverimpl.Java, Addserver.Java, Addclient.Java Then

Compile All Above Java Files.

Step 2: Generate Stubs And Skeletons

Compile The Remote Method Invocation (Rmic) From Addserverimpl Java File. The Rmic Addserverimpl

Generates Two New Files: Addserverimpl_ Skel.Class(Skeleton) And Addserverimpl_Stub.Class (Stub). When

Using Rmic ,Be Sure That CLASSPATH Is Set To Include The Current Directory.

Step 3: Install Files On The Client And Server Machines.

Copy Addclient.Class, Addserverimpl_Stub, And Addserverintf. Class To A Directory On The Client Machine.

Copy Addserverintf.Class, Addserverimpl.Class, Addserverimpl_ Skel.Class, Addserverimpl_Stub.Class And

Addserver.Class To A Directory On The Server Machines.

Step 4: Start The RMI Registry On The Server Machine.Start Rmiregistry

Step 5: Start The Server

Java Addserver

Step 6: Start The Client

For Calculating Serially (Run At Each And Individual Machine). The Addclient Software Requires Four

Arguments: The Name Or IP Address Of The Servermachine And The Three Numbers That Are To Be Summed

Together Of First Two Number And Factorial Of Third Number. You May Invoke It From The Command Line

By Using One Of The Two Formats Shown Here. (Ex: Java Addclient 172.16.16.14 458 475 5 Or Java

Addclient Server1 485 475 5) For Calculating Parallel (Run All At Same Time) The Addclient Software

Requires Arguments: Three Numbers That Are To Be Summed Together Of First Two Number And Factorial

Of Third Number. In This Process We Never Use The IP Address Because We Already Use All IP Address In

Addclient.Java. You May Invoke It From The Command Line By Using One Of The Two Formats Shown Here

Ex: Java Addclient 458 475 5).

II. Results and Conclusion
We Successes In Implementing Remote Method Invocation From JAVA Language As A Platform To Apply

Single Program Stream Multiple Data Stream(SPMD) On Clusters Of Terminal’s (COT’s). Here We Are Using

Client/Server Architecture. Server Is The Class Where The Distribution Process Occurs. We Are Having A

Set Of Randomly Generated Numbers. Here As We Have Single Client We Retrieve Nth Tasks And Give Them

To Nth Server For Various Complex Calculations. Client Has Job Of Distribution Of Numbers. There Can Be

Many Nodes As A Servers And They Can Have Different Methods, Which Can Be Applied Concurrently,

Result Will Be Returned To Client For Further Operations.

To Estimate The Performance Of The Distributed System The Time For The Computation Of The Task Solved

By Different Servers Has To Be Measured In The Sequential And Parallel Case. The Result Was Examined

Only Within The Area 1 To 20 Terminal’s (See Table1)

Table I: Serial And Parallel Time In Seconds On Number Of Terminal

No Of Terminals Serial Time(Sec.) Parallel Time(Sec.)

2 3.856 2.382

4 5.785 2.437

6 7.754 2.492

8 9.723 2.579

10 11.842 2.592

12 13.142 2.719

14 15.752 2.827

16 17.625 2.843

18 19.679 2.906

The Parallel Architecture Approach, Single Program Multiple Data(SPMD) Implementation On..

www.ijceronline.com Open Access Journal Page 22

 Following Charts Are Representing The Graphically Performance Of Serial And Parallel Distribution And

Compare Between Both Process (See Fig 3,4,5 And 6)

III. Conclusion
An Advantage Of Using Parallel Processing Instead Of Serial Processing Is Low Cost, High Efficiency

Resulting From Use Of Multiprocessing Technique. Using Parallel Processing With Distributed Network

Provides Additional Advantage Of Flexibility And Speed Up In Complex Calculations. Using RMI We Can

Further Enhance The Application By Performing File Transfer Remotely. We Can Also Use The Output Given

By The Server To Client For Further Calculations

1 2 3 4 5 6 7 8 9

0

5

10

15

20

25

Serial Time(Sec.)

Parallel Time(Sec.)

Fig 5: - Comparison Chart Of Parallel And Serial Time Using MIMD

1 2 3 4 5 6 7 8 9

0

5

10

15

20

25

Serial Time(Sec.)

Parallel Time(Sec.)

Fig 6: - Comparison Chart Of Parallel And Serial Time Using MIMD

IV. Acknowledgement
My Express Thanks And Gratitude To All The Departments’ Personals And Sponsors Who Give Me A

Opportunity To Present And Express My Paper On This Level. I Wish To Place On My Record My Deep Sense

Of Gratitude To All Reference Papers Authors For Them Valuable Help Through Their Papers, Books,

Websites Etc.

Author's Profile
Sudhir Kumar Meesala Has Received His Master Of Technology Degree In Computer Technology From

National Institute Of Technology, Raipur(CG) The Year 2007. At Present He Is Pursuing Ph.D.. With The

Specialization Of Computier Science And Engineering College. His Area Of Interest Parallel Processing,

Distributed Technology, Compiler Design, Image Processing, Operating Stytem, Network Programming And

Structured Computer Engineering Ec.

Dr. Pabitra Mohan Khilar Has Received His Ph.D. In Computer Science And Engineering From IIT

Kharagpur(WB) India In The Year 2009. At Present He Is Working As An Associate Professor At Department

Of Computer Science And Engineering, National Institute Of Technology, Rourkela(Orissa). His Areas Of

Interests Are Parallel And Distributed Computing, Cloud And Grid Computing, Distributed Wireless Network,

Distributed Embedded Network Etc.

The Parallel Architecture Approach, Single Program Multiple Data(SPMD) Implementation On..

www.ijceronline.com Open Access Journal Page 23

Dr. A. K. Shrivastava Has Received His Ph.D. In Physics(Microwave Propagation) From B. R. Ambedkar

Bihar University, Muzafferpur(Bihar) In The Year 2003. At Present He Is Working As An Professor And Head

At Dr. C. V. Raman University, Kota, Bilaspur(CG) In The Department Of Physics. His Areas Of Interests Are

Power Electronics, Electrical Drives, Power Systems, Renewable Energy Sources And Custom Power Devices, .

References
[1] Algorithms And Theory Of Computation Handbook, CRC Press LLC, 1999, "Single Program Multiple Data", In Dictionary Of

Algorithms And Data Structures [Online], Vreda Pieterse And Paul E. Black, Eds. 17 December 2004. (Accessed TODAY)

Available From: Http://Www.Nist.Gov/Dads/HTML/Singleprogrm.Html

[2] M. Auguin, F. Larbey, OPSILA : An Advanced SIMD For Numerical Analysis And Signal Processing, In Microcomputers :
Developments In Industry, Business, And Education / Ninth EUROMICRO Symposium On Microprocessing And

Microprogramming, Pp 311-318 Madrid, September 13–16, 1983

[3] F. Darema, SPMD Model: Past, Present And Future, Recent Advances In Parallel Virtual Machine And Message Passing
Interface: 8th European PVM/MPI Users' Group Meeting, Santorini/Thera, Greece, September 23–26, 2001. Lecture Notes In

Computer Science 2131, P. 1, 2001.

[4] Batcher, K. E., "Sorting Networks And Their Applications", Proc~ AFIPS 1968 SJCC, Vol. 32, Montvale, NJ: AFIPS Press, Pp.
307-314.

[5] Dina Bitton , David J. Dewitt , David K. Hsaio , Jaishankar Menon,”A Taxonomy Of Parallel Sorting, ACM Computing

Surveys (CSUR)”, V.16 N.3, P.287-318, Sept. 1984 [Doi>10.1145/2514.2516]
[6] Dongarr; J. J.; And Eisenstat; "Squeezing The Most Out Of Algorithms In Cray Fortran", Argone National Laboratory, May

1983.

[7] Dongarra, J. J.; And Hiromoo, Robert E.; "A Collection Of Parallel Linear Equation Routines For The Denelcor HEP", Parallel
Computing, Vol. 1, No. 2, December 1984.

[8] “A Resource Estimation And Call Admission Algorithm For Wirelessmultimedia Networks Using The Shadow … - All 7
Versions “»DA Levine, IF Akyildiz, M Naghshineh - Networking, IEEE/ACM Transactions On, 1997- Ieeexplore.Ieee.Org.

[9] Spinodal-Type Dynamics In Fractal Aggregation Of Colloidal Clusters- All 4 Versions »M Carpineti, M Giglio - Physical

Review Letters, 1992.
[10] Uimplementing Global Memory Management In A Workstation Cluster - All 7 Versions »MJ Feeley, WE Morgan, EP Pighin,

AR Karlin, HM … - ACM SIGOPS Operating Systems Review, 1995 - Cs.Ubc.Ca

[11] Supporting Parallel Applications On Clusters Of Workstations: The Virtual Communication Machine- …-All 6 Versions »MC
Rosu, K Schwan, R Fujimoto - Cluster Computing, 1998

[12] Supporting Parallel Applications On Clusters Of Workstations: Theintelligent Network Interface … - All 3 Versions » M Rosu,

K Schwan, R Fujimoto - High Performance Distributed Computing, 1997. Proceedings. …, 1997 - Ieeexplore.Ieee.Org
[13] [PS] Iterative Solution Of General Sparse Linear Systems On Clusters Of Workstations - All 16 Versions »GC Lo, Y Saad -

Report Umsi-96-117, Minnesota Supercomputer Institute, …, 1996 - Cs.Umn.Edu

[14] Javaparty– Transparent Remote Objects In Java - All 21 Versions »

M Philippsen, M Zenger - Concurrency Practice And Experience, 1997 - Doi.Wiley.Com

[15] Gosling, J.; Joy, B.; Steele, G.; Bracha, G.: “The Java Language Specification”, Second Edition. Addison-Wesley Publishing

Company,1999.
[16] Lindholm, T.; Yellin, F.: “The Java Virtual Machine Specification”, Second Edition. Addison-Wesley Publishing Company,

1999.

[17] Downing, T.: “Java RMI: Remote Method Invocation”. IDG Books Worldwide, 1998.
[18] Herbert Schildt : “Java 2: The Complete Reference”’ Fifth Edition 2002 . Tata Mcgraw-Hill Publishing Company Limited New

Delhi.

[19] Lea, D.: “Concurrent Programming In Java-Design Principles And Patterns”. Addison-Wesley Publishing Company, 1998.
[20] Liang, S.: The Java Native Interface: Programmer's Guide And Specification. Addison-Wesley Publishing Company, 1999.

[21] "A Survey Of Parallel Computer Architectures", Duncan, Ralph, IEEE Computer, Feb 1990, Pp 5-16

[22] Http://Www.Geekmantra.Com/Subsection.Php?Section= MI&Subsection = RMI+Architecture.

https://en.wikipedia.org/wiki/Lecture_Notes_in_Computer_Science
https://en.wikipedia.org/wiki/Lecture_Notes_in_Computer_Science
https://en.wikipedia.org/wiki/Lecture_Notes_in_Computer_Science
http://www.geekmantra.com/subsection.php?section=%20MI&subSection%20=%20RMI+Architecture

