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I. Introduction 
Fish schooling can promote the efficiency and benefit swimming [1]. The coupling of the fishes and flow 

environment is complex. The hydrodynamic interactions of fish schooling have been investigated by 

experiments and simulations. Flexible object like plate or filament is used as the model of fish body [2, 3] in 

previous researches. Two different interaction modes of double tandem flexible plates are observed in [4]: 

constructive mode and destructive mode, which will lead to an increase or decrease of drag on the downstream 

plate. Reference [5] investigates the flutter modes of two side-by-side flags. Six coupling modes of three parallel 

filaments are demonstrated in [6], the mode shift mainly depends on the distance between the filaments. The fish 

schooling has more complex arrangement than tandem or side-by-side, inspired by these two arrangements, 

three flexible plates arrange in triangular in a viscous flow is studied numerically in this paper. The 

hydrodynamic of the plates and flow in triangular arrangement should be more complicated compared with the 

tandem or side-by-side arrangement. The simulation is implemented by the immersed boundary-lattice 

Boltzmann method [7]. 

 

II. COMPUTATIONAL MODEL 
Here we use three flexible plates as the model of fish bodies, a schematic diagram of three coupling flexible 

plates in triangular arrangement is shown in Fig. 1, the three plates is marked as P1, P2 and P3 as the figure 

shows. The three plate is immersed in a viscous flow with a uniform incoming velocity U∞, which is parallel 

with the x-axis. All the lengths of the three plates are L. The leading edges of the plates are fixed and the trailing 

edges are in free motion. The leading edge of the P1 is placed at the center line of the fluid domain, the leading 

edges of the second and P3 are placed symmetrically about the center line. The interval distance Dp is defined as 

the distance between the leading edges of P1 and P3 along the x-axis. The dimensionless interval distance D is 

defined as D = Dp / L. The expansion angle θ is defined as the angle between the x-axis and the line which 

connecting the leading edges of P1 and P2.  

The flow dynamics is governed by the Navier–Stokes and continuity equations: 
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ABSTRACT 
The hydrodynamicinteractions in fish schooling is a complex problem and still not well 

understood.  In this work we use three flexible plates arranged in triangular as the model to study 

hydrodynamics interactions in fish schooling.The immersed boundary-lattice Boltzmann method 

(IB-LBM) is used to implement the simulation. By varying the interval distance and the expansion 

angle of the three plats, the drag, lift and flapping pattern of them are analyzed. The simulation 

results show that all the plates could flap passively in stable period in our simulation conditions. 

The dominated flapping frequencies of the three plates are always equal. The two downstream 

plates will flap synchronously and have the same amplitude in most cases. The upstream plate has 

a strong influence on the downstream two. We demonstrate four typical flapping patterns of the 

three plates at different interval distances and the expansion angles. When the plates are close to 

each other enough, the dynamics of them are like a single plate. Drag decrease can be obtained at 

certain distance. When the distance is big enough, the interactions between the three plates can be 

ignored, the dynamic of each plate is the same with that of the single plate. This work may offer 

inspiration for understanding the hydrodynamic interactions of fish schooling and the underwater 

robots designing. 
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Where v is the velocity vector of the flow, t is the computational time defined as /t L U


 , p denotes the 

pressure, /R e U L 


 represents the Reynolds number.  
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Fig.1Schematic diagram of three coupling flexible plates in triangular arrangement. 

 

μ is the dynamic viscosity of the flow, ρ is the flow density. fib is the interaction force added by the immersed 

boundary method. In IB-LBM, the fluid is divided into a regular Cartesian lattice and the fluid particles are on 

the nodes of the lattice, the moving plate is represented by a set of Lagrangian coordinate points. The lattice 

Boltzmann equation (LBE) [8] is used to simulate the dynamics of the flow instead of (1) and (2), which reads: 
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Where x is the coordinate of the flow's Cartesian lattice, fi (x, t) is the distribution function for the flow particles 

at time t, position x. t is the time increment, τ is the relaxation time defined as 3 0.5   . As shown in Fig. 2, 

ei is the discrete velocity direction of the flow particles defined as: 
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f tx is the equilibrium function which defined as: 
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Where ωi is the weight coefficient, cs is the velocity of sound. Fi is the discretised force defined as: 
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The flow density ρ and velocity v can are obtained by: 
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The dynamics of the plate is governed by: 
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Fig. 2 Discrete velocity directions of the flow particles. 
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ρs is the plate's linear density. X is the coordinate of the plate's Lagrangian coordinate points, s denotes the 

parametric coordinate along the plate. 2 3
/ ( )K E I U L


 is the bending stiffness, EI represents the plate's bending 

rigidity. Fib denotes the force exerted by the plate's Lagrangian coordinate points on the flow particles. T is the 

tension inside the plate, which defined as 
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Where Eh is the plate's stretching rigidity. As shown in Fig.3, (9) can be transformed into a staggered fashion by 

putting the tension points between each Lagrangian coordinate points: 
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Ds is the standard second-order center finite difference with respect to s, n represents the number of the time 

steps. The flapping frequency of the plate's trailing edge is f. The flapping amplitude of the plate's trailing edge 

along the Y-axis is defined as Ap, the dimensionless flapping amplitude A is defined as A = Ap / L. The 

dimensionless mass ratio is defined as / ( )
s

M L  , the plate's drag coefficient and lift coefficient 

are 2
2 /

D D
C F U L


 and 2

2 /
L L

C F U L


 , FD and FL  denote the drag and lift force on the plate respectively. 

The distances between each adjacent Lagrangian coordinate points and flow's Cartesian lattice nodes are set to 

0.01. The plate' length is L, the flow domain is chosen as 40L × 40L. The lending edge of the P1 is fixed at (10L, 

20L). The other governing parameters in all the simulations of this paper are: Re = 100, M = 0.3, K = 10
-4

, D = 

1.0 - 3.0, θ = 10
°
 - 60

°
. In such parameters, the plate's flapping motion can reach a stable state, the simulation 

results used for analysis are chosen from the stable periods. 

 

III. RESULT AND DISCUSSION 
Fig.4 shows the average CD and the amplitude of CL versus expansion angle θ at four different interval distance 

D = 1.0, 1.6, 2.2 and 3.0. The average CD and the amplitude of CL of P2 and P3 are always equal to each other, 

this result agrees with that of the two side-by-side plates [6]. At D = 1.0, the minimum CD of the three plates 

occurs at θ = 10
°
, this is also the minimum interval distance between each of them, all the three plates 

experience a significant drag decrease compare with that of the single plate. Drag and lift of all the three plates 

increase with the expansion angle.  
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Fig. 3 Arrangement of the tension points and Lagrangian coordinate points on the plate. 

 

 
Fig. 4 The plates' average drag coefficient CD and the amplitude of the lift coefficient CL versus the expansion 

angle θ with (a), (e) D = 1.0, (b) (f) D = 1.6, (c) (g) D = 2.2, (d) (h) D = 3.0. 
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The drag and amplitude of lift is always smaller than that of P2 or P3, except at θ = 10
°
. At θ = 10

°
 - 40

°
, P1 

experiences a drag reduction and the amplitude of lift decreases too. 

For D = 1.6, 2.2 and 3.0, although drag on P1 is smaller compares with the single plate case, it is not so obvious 

as D = 1.0. With a larger D, the drag reduction is more unconspicuous. The amplitude of lift of P1 is almost 

equal to the single plate. Drag on P2 and P3 is larger than the single plate at most expansion angle and so is the 

amplitude of lift. At θ = 10°, the maximum CL of P2 and P3 appears, then it decline sharply with the increase of 

the expansion angle. At θ = 40° - 50°, both the CD and CL of all the three plates approach to that of the single 

plate. 

We can infer that when the interval distance D is small enough, P1 can enjoy a significant drag reduction. The 

downstream plates can work as a barrier [9], which can restrain the upstream plate's lateral flow, which lead to a 

drag reduction of the upstream plate. Smaller the distance is, the effect is more obvious, which conforms to the 

result shown in Fig. 4. Drag on P2 and P3 increase at the most cases because of the interactions of their 

upstream neighbor. When the distance between each plates is large enough, the interactions of them can be 

ignored, the CD and CL of them is almost equal to that of the single one. 

Fig. 5 shows the plates' flapping amplitude A and flapping frequency f versus the expansion angle θ at D = 1.0, 

1.6, 2.2 and 3.0. The flapping amplitude of P1 and P2 is almost equal. The three plates share the identical 

flapping frequency, so the frequency curves in Fig. 5 are represented by one plate. At D = 1.0, the flapping 

amplitude of P1 is obviously restrained at θ = 20
°
 - 40

°
 and the amplitude of P2 and P3 are much larger. The 

minimum flapping frequency appears at θ = 10
°
, which also corresponds to the maximum amplitude. This is 

quite like the situation when two side-by-side plates are very close to each other.At D = 1.6, 2.2 and 3.0, the 

amplitude of P1 is always smaller than P2 and P3. At θ =10
°
 - 30

°
, the amplitude of P2 and P3 is larger than the 

single plate case. With the increase of the expansion angle, the amplitudes of the three plates come close to the 

amplitude of single plate gradually. At θ =10
°
 - 30

°
, the small flapping frequency always appears with large 

flapping amplitude. At θ =40
°
 - 50

°
, both the amplitude and frequency of the three plate are very close to single 

plate.We can see from Fig. 5, the amplitude curves are similar with the lift coefficient curves. The amplitudes of 

P2 and P3 are always larger than that of P1 and single plate. The flapping frequency of the three plates is small 

when they are close to each other. 

 

 
Fig.5 The plates' flapping amplitude A and flapping frequency f versus the expansion angle θ with (a), (e) D = 

1.0, (b) (f) D = 1.6, (c) (g) D = 2.2, (d) (h) D = 3.0. 

 

Based on the phase difference of the flapping motion and vorticity contours, we select several typical flapping 

patterns, as shown in Fig .6 to Fig .9. 

 
Fig. 6 Pattern I at D = 1.0, θ = 10° with (a) time history of plate's trailing edge Y-position, (b) FFT results of 

plate's flapping motion, (c) drag coefficient CD (d) vorticity contours at time point A, (e) vorticity contours at 

time point B. 
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Fig. 7 Pattern II at D = 1.0, θ = 30° with (a) time history of plate's trailing edge Y-position, (b) FFT results of 

plate's flapping motion, (c) drag coefficient CD (d) vorticity contours at time point A, (e) vorticity contours at 

time point B. 

 

The first pattern at D = 1.0, θ = 10
°
 is shown in Fig. 6. The three plates’ interval distances in pattern I are 

smallest, in such small distance, the vortexes shedding by them merge together, which make the vorticity 

contours look like the these shedding by a single plate, the positive and negative vortexes arrange in a stagger 

form. In this pattern, the smallest drag is achieved. Because of the small distance, the flapping phase difference 

between P1 and P2 or P3 is not obvious. Pattern II at D = 1.0, θ = 30
°
 is shown in Fig. 7. In this pattern, the 

flapping motion of P1 is restrained by the interactions of the two downstream plates, which leads to a significant 

drag reduction for P1. From the vorticity contours, we can see the vortexes shedding by P1 encounter with the 

opposite vortex generated by P2 and P3, which almost neutralizes the vortexes shedding by P1, the decrease of 

the vorticity leads to the small amplitude of P1. The collision of opposite vortexes also neutralizes the vortexes 

at the inner side of P2 and P3, as a result, only the vortexes at one side of P2 and P3 retained and move 

downstream with the flow as shown in Fig. 7 (d) and (e). 

 

 
Fig. 8 Pattern III at D = 1.6, θ = 40° with (a) time history of plate's trailing edge Y-position, (b) FFT results of 

plate's flapping motion, (c) drag coefficient CD (d) vorticity contours at time point A, (d) vorticity contours at 

time point B. 
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Fig. 9 Pattern IV at D = 3.0, θ = 50° with (a) time history of plate's trailing edge Y-position, (b) FFT results of 

plate's flapping motion, (c) drag coefficient CD (d) vorticity contours at time point A, (d) vorticity contours at 

time point B. 

 

Pattern III at D = 1.6, θ = 40
°
 is shown in Fig. 8. Compared with the pattern I and II, the distances between each 

plates is larger and the interactions are not that obvious. All the three plates have similar flapping motions and 

the dynamics of them are close to the single plate. But the phase differences of Y-position of the tail and CD still 

exist and the vortex of the three plates will merge at downstream, finally four lines of vortexes exist. 

Pattern IV at D = 3.0, θ = 50
°
 is shown in Fig. 9. In this pattern, the interval distances between each plates are 

big enough that the interactions can be almost ignored except the phase different still exist. The flapping 

motions of the two downstream plates in the former three patterns are all synchronous, but in pattern IV, there is 

a phase different between p2 and P3.We can see from the vorticity contours that the vortex shedding pattern by 

P1 have a strong influence on P2 and P3 in pattern I and II, which can induce their flapping motion to 

synchronize with the vortex they encountered. So the phase difference between P1 and P2 or P3 is decided by 

the interval distance D. This is like the case of two plates arranged in tandem. 

 

IV. CONCLUSION 

The hydrodynamic interactions of three flexible plates arrange in triangular in a viscous flow is studied 

numerically by IB-LBM. The dynamic characteristics of the plates are investigated by varying the interval 

distance D and expansion angle θ. We demonstrate four typical flapping patterns of the plates. For three plates 

arrange in triangular, the dominating flapping frequencies of them are always identical. In most cases the 

downstream two plates flap synchronously, the phase difference between the leading plate and the downstream 

ones is decided by the interval distance D. The minimum drag exists at the smallest interval distance and 

expansion angle, in this case the dynamics of them are similar with that of the single plate. With the increasing 

of the interval distance and expansion angle, the second pattern exists. The motion of the leading plate is 

restrained because of the interactions of the two downstream plates and drag on it obviously decreases. When 

the interval distance and expansion angle are big enough, the interactions of the three plates can be ignored, the 

hydrodynamic dynamics of each plate is the same with that of the single plate. The drag decrease can be 

achieved by placing the three plates in certain range of interval distance and expansion angle. This work could 

help understanding the dynamics of fish schooling and developing the underwater robots. 

 

ACKNOWLEDGMENT 

We would like to acknowledge sincerely the grant from National Natural Science Foundation of China (No. 

50905040) and the Fundamental Research Funds for the Central Universities. 

 

REFERENCES 
[1] C. Hemelrijk, D. Reid, H. Hildenbrandt, and J. Padding. “The increased efficiency of fish swimming in a school,” Fish and 

Fisheries, January 2014. 

[2] W. Zhao, et al, “Theoretical and experimental investigations of the dynamics of cantilevered flexible plates subjected to axial flow,” 
Journal of Sound and Vibration, vol. 331, no. 3, pp. 575-587, January 2012. 

[3] H. Yuan, X. Niu, S. Shu, and M. Li, “A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a 

flexible filament in an incompressible flow,” Computers & Mathematics with Applications, vol. 67, no.5, pp. 1039-1056, January 
2014. 



Flow Control of Elastic Plates in Triangular Arrangement 

www.ijceronline.com                                        Open Access Journal                                          Page 48 

[4] S. Kim, W. Huang and H. Sung, “Constructive and destructive interaction modes between two tandem flexible flags in viscous 

flow,” J. Fluid Mech, vol. 661, pp. 511–521, October 2010. 

[5] S. Wang, W. Duan, and X. Yin, “Transition mode of two parallel flags in uniform flow,” Chinese Physics Letters, vol. 30, no.11, p. 
110502, May 2013. 

[6] F. Tian, H. Luo, L. Zhu and X. Liu, “Coupling modes of three filaments in side-by-side arrangement,” Physics of Fluids, vol. 23, 

no. 11, p. 111903, November 2011. 
[7] J. Favier, A. Revell and A. Pinelli, “A Lattice Boltzmann–Immersed Boundary method to simulate the fluid interaction with moving 

and slender flexible objects,” Journal of Computational Physics, vol. 261, pp. 145–161, March 2014. 

[8] H. Yuan, X. Niu, S. Shu, and M. Li, “A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a 
flexible filament in an incompressible flow,” Computers & Mathematics with Applications, vol. 67, no.5, pp. 1039-1056, January 

2014. 

[9] L. Ristroph and J. Zhang, “Anomalous hydrodynamic drafting of interacting flapping flags,” Physical Review Letters, vol. 101, no. 
19, p. 194502, November 2008. 

 


