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Abstract : In this article we have discussed the equilibrium points in the photogravitational magnetic binaries 

problem when the bigger primary is a oblate spheroid and source of radiation and the small primary is a oblate 

body and have investigated the stability of motion around these points. 
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I. Introduction 
 In (1950) Radzievskii have studied the Sun-planet-particle as photogravitational restricted problem, 

which arise from the classical restricted three body problem when one of the primary  is an intense emitter of 

radiation. In (1970) Chernikov and in (1980) Schuerman have studied the existence of equilibrium points of the 

third particle under the influence of gravitation and the radiation forces. The stability of these points was studied 

in the solar problem by Perezhogin in (1982). The lagrangian point and there stability in the case of  

photogravitational restricted problem have been studied by K.B.Bhatnagar and J. M. Chawla in (1979). 

Mavraganis. A. (1979) have studied the stationary solutions and their stability in the magnetic-binary problem 

when the primaries are oblate spheroids. Khasan (1996) studied libration solution to the photogravitational 

restricted three body problem by considering both of the primaries are radiating. He also investigated the 

stability of collinear and triangular points. In (2011) Shankaran, J.P.Sharma and B.Ishwar have been generalized 

the photogravitational non-planar restricted three body problem by considering the smaller primary as an oblate 

spheroid. The existence and stability of collinear equilibrium points in, the planar elliptical restricted three body 

problem under the effect of the photogravitational and oblateness primaries have been discussed by C. Ramesh 

kumar and A. Narayan in (2012). In (2015) Arif. Mohd. have discussed the equilibrium points and there stability 

in the magnetic binaries problem when the bigger primary is a source of radiation. In this article we have 

discussed the equilibrium points and there stability in the photogravitational magnetic binaries problem when 

the bigger primary is a oblate spheroid and source of radiation and the small primary is a oblate body. 

 

II. Equation of motion 
Two oblate bodies (the primaries), in which the bigger primary is a source of radiation with magnetic fields 

move under the influence of gravitational force and a charged particle P of charge q and mass m moves in the 

vicinity of these bodies. The equation of motion and the integral of relative energy in the rotating coordinate 

system including the effect of the gravitational forces of the primaries on the charged particle P fig(1) written as: 

 

 
 
 
 

 

                                                               
   
 

 

𝑥 − 𝑦  ƒ= 𝑈𝑥                                                                                                                                           (1)                                                                       
𝑦 + 𝑥  ƒ= 𝑈𝑦                                                                                                                                           (2)                                                            

𝑥 2 + 𝑦 2 = 2U − C                                                                                                                              (3) 
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𝐼𝑖 , (𝑖 = 1,2)  The moments of inertia of the primaries given as the difference of the axial and  equatorial 
moments of inertia. 
𝑞1  is the source of radiation of bigger primary. 

𝜔 = 1 +
3𝐼1

2(1 − µ)
+

3𝐼2

2µ
 

Here we assumed  

1.    Primaries participate in the circular motion around their centre of mass  

2.  Position vector of P at any time t be 𝑟 = (𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘) referred to a rotating frame of reference 

      O(𝑥, 𝑦, 𝑧) which is rotating with the same angular velocity  𝜔 = (0, 0, 𝜔) as those the primaries. 

3.   Initially the primaries lie on the 𝑥-axis. 

4. The distance between the primaries as the unit of distance and the coordinate of one primary is (µ, 0, 0) 

     then the other is (µ−1, 0, 0).  

5. The sum of their masses as the unit of mass. If mass of the one primaries µ then the mass of the other is 

     (1−µ). 

6. The unit of time in such a way that the gravitational constant G has the value unity and q= mc  where c     is 

the velocity of light. 

𝑟1
2= (𝑥 − µ)2+𝑦2,  𝑟2

2 = (𝑥 + 1 − µ)2+ 𝑦2 ,  𝜆 =
𝑀2

𝑀1
 (𝑀1, 𝑀2 are the magnetic moments of the primaries 

which lies perpendicular to the plane of the motion). 

𝑞1 is the source of radiation of bigger primary. 

Therefore, instead of dealing with the full equations of planar magnetic-binaries problem, it makes more sense 

to work with a system of equations that describe the motion of the charged particle in the vicinity of the 

secondary mass, this type of system was derived by Hill in 1878. By making some assumptions and transferring 

the origin of the coordinate system to the second mass fig(2) the equations of motion (1) and (2), become 

 

𝜁 − 𝜈 𝑓1= 𝑈𝜁                                                                                                                                    (5)                                                                       

𝜈 + 𝜁 𝑓1= 𝑈𝜈                                                                                                                                    (6)                                                            
Where   
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𝑟1
2= (𝜁 − 1)2+𝜈2, 𝑟2

2 = 𝜁2+ 𝜈2 

And new Jacobi constant, Cn , is given by 

𝜁 2 + 𝜈 2 = 2U − Cn                                                                                                                         (8) 
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III. Equilibrium points 
The location of equilibrium points in general is given by 

𝑈𝜁 = 0                                                                                                                                           (9) 

𝑈𝜈 = 0                                                                                                                                         (10) 
The solution of equations (9) and (10) results the equilibrium points on the 𝑥-axis (𝜈 = 0), called the collinear 

equilibrium points and other are on 𝑥𝑦-plane (𝜈 ≠ 0) called the non-collinear equilibrium points(ncep). Here we 

have solved these equations numerically by use the software mathematica. The tables (1----12) shows that for 

𝜆 > 0 and for different values of 𝑞1 there exist four collinear equilibrium points which we denoted by 𝐿1, 𝐿2 , 𝐿3 

and 𝐿4  but in some values of 𝑞1there exist only two equilibrium points 𝐿1 and 𝐿4. In fig 3 and fig 4 we give the 

position of the points 𝐿1 and 𝐿4 respectively for various values of µ. In these figs the curve 𝑞1 = 1 correspond to 

the case when radiation pressure is not taken into consideration and other curves corresponds to 𝑞1 = .3, 𝑞1 = .5 

and 𝑞1 = .9 . Here we observed that due to the radiation pressure the both points 𝐿1and 𝐿4 shifted towards the 

origin. It may be also observed that the deviation of the location of the point 𝐿4 from 𝑞1 = 1 decreases as µ 

increases and this becomes zero when µ ≈ .35 and again this deviation increases. 

 

 

Table (1) 

µ = 3.37608 × 10−4 

𝑞1 = .5 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.13876 - - −1.78185 

𝜆 = 3 2.49977   −2.86665 

𝜆 = 5 2.94143   −3.59742 

𝜆 = 7 3.40119   −4.18691 

Table(2) 

µ = 3.37608 × 10−4 

𝑞1 = .9 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.34821 - - −1.75494 

𝜆 = 3 2.67596   −2.84931 

𝜆 = 5 3.07147   −3.580426 

𝜆 = 7 3.49348   −4.17611 

Table(3) 

µ = .132679 

𝑞1 = 1 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.45144 .662328 .870220 −1.78160 

𝜆 = 3 2.72307 .715733 .869666 −2.87033 

𝜆 = 5 3.06977 .742964 .868395 −3.60486 

𝜆 = 7 3.46219 .7617777 .866981 −4.14701 

Table(4) 

µ = .132679 

𝑞1 = .5 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.19628 .69686 .870099 −1.80221 

𝜆 = 3 2.49117 .753724 .867533 −2.88535 

𝜆 = 5 2.88831 .783278 .864287 −3.61684 

𝜆 = 7 3.33211 .805181 .851632 −4.20709 

Table(5) 

 

 

 

 

µ = 3.37608 × 10−4 

𝑞1 = 1 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.39051 - - −1.74821 

𝜆 = 3 2.71276   −2.84499 

𝜆 = 5 3.10013   −3.58096 

𝜆 = 7 3.51476   −4.17329 
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µ = .132679 

𝑞1 = .9 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.40893 .667415 .790781 −1.78571 

𝜆 = 3 2.68390 .721353 .869445 −2.87334 

𝜆 = 5 3.03785 .748851 .867999 −3.60726 

𝜆 = 7 3.43826 .767909 .866363 −4.19903 

Table(6) 

 

µ = .230437 

𝑞1 = 1 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.49180 .562939 .779097 −1.80690 

𝜆 = 3 2.73493 .649373 .772205 −2.88902 

𝜆 = 5 3.05355 .697523 .760817 −3.62218 

𝜆 = 7 3.42741 - - −4.213880 

Table(7) 

 

µ = .230437 

𝑞1 = .5 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.23395 .618412 .775622 −1.81767 

𝜆 = 3 2.49202 .726268 .745650 −2.89914 

𝜆 = 5 2.85571 - - −3.63080 

𝜆 = 7 3.71960 - - −4.22138 

Table(8) 

 

µ = .230437 

𝑞1 = .9 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.44904 .571296 .778739 −1.80904 

𝜆 = 3 2.69438 .658573 .770714 −2.89104 

𝜆 = 5 3.01936 .710819 .755144 −3.6239 

𝜆 = 7 3.40138 - - −4.21538 

Table(9) 

 

µ = .458505 

𝑞1 = 1 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.57508 .438243 .585582 −1.86992 

𝜆 = 3 2.77151 - - −2.93591 

𝜆 = 5 3.03536 - - −3.66579 

𝜆 = 7 3.36433 - - −4.25648 

Table(10) 

 

µ = .458505 

𝑞1 = .5 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.31037 .533495 .552828 −1.85712 

𝜆 = 3 2.50977 - - −2.93435 

𝜆 = 5 2.80384 - - −3.66641 

𝜆 = 7 3.18660 - - −4.25784 

Table(11) 

 

µ = .458505 

𝑞1 = .9 

𝐿1 𝐿2 𝐿3 𝐿4 

𝜆 = 1 2.53151 .449693 .583822 −1.86739 

𝜆 = 3 2.72855 - - −2.9356 

𝜆 = 5 2.99667 - - −3.66591 

𝜆 = 7 3.33327 - - −4.25675 

Table(12) 
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           Fig(3)                                                                           Fig(4) 

 

 In Figs (5) , (6) and (7) we give the position of the non collinear equilibrium points 𝐿5 and 𝐿6 for µ =
3.37608 × 10−4, µ = .132679 and µ = .230437 respectively. In these figs black dots denote the position of  

𝐿5 and 𝐿6  when  𝑞1 = 1 (no radiation) and blue, orange and purple dots denote the position when 𝑞1 = .9, 

𝑞1 = .5 and 𝑞1 = .3 respectively  Here we observed that both 𝐿5 and 𝐿6 moves towards the small primary from 

left to right when µ = 3.37608 × 10−4 and come up to down when µ = .132679 but when µ = .230437 this 

shifting is deferent .  

                                             
                                   Fig(5)                                                     Fig(6)                                                      Fig(7) 

 
 

IV. Stability of motion near equilibrium points 
Let (𝑥0 , 𝑦0) be the coordinate of any one of the equilibrium point and let 𝜉, 𝜂 denote small displacement from 

the equilibrium  point. Therefore we have 

𝜉 = 𝜁 − 𝑥0  , 
𝜂 = 𝜈 − 𝑦0, 

Put this value of  𝜁 and 𝜈 in equation (5) and (6), we have the variation equation as: 

𝜉 − 𝜂 𝑓0= 𝜉 𝑈𝜁𝜁  
0

+ 𝜂 𝑈𝜁𝜈  
0
                                                                                                             (11) 

𝜂 + 𝜉 𝑓0= 𝜉 𝑈𝜁𝜈  
0

+ 𝜂 𝑈𝜈𝜈  
0                                                                                                             (12) 

Retaining only linear terms in  𝜉 and 𝜂. Here superscript indicates that these partial derivative of 𝑈are to be 

evaluated at the equilibrium point (𝑥0 , 𝑦0) . So the characteristic equation at the equilibrium points are 

𝜆1
4 + 𝜆1

2  𝑓2 −  𝑈𝜁𝜁  
0
−  𝑈𝜁𝜈  

0
 +  𝑈𝜁𝜁  

0
 𝑈𝜈𝜈  

0 −  𝑈𝜁𝜈  
02

= 0                                      (13) 

The equilibrium point (𝑥0 , 𝑦0) is said to be stable if all the four roots of equation (13) are either negative real 

numbers or pure imaginary. In tables 13 to 22 we have given these roots for the collinear equilibrium points and 

in 23 to 25  for non-collinear equilibrium points. 

 

 

q11 q1.3 q1.5 q1.9 q11 q1.3 q1.5 q1.9

2.1 2.2 2.3 2.4 2.5
L1

0.1

0.2

0.3

0.4



1.86 1.84 1.82 1.80 1.78 1.76
L4

0.1

0.2

0.3

0.4


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µ = 3.37608 × 10−4 

𝑞1 = 1 

𝐿1  𝜆1 1,2  𝜆1 3,4 

𝜆 = 1 2.39051 ±0.240282 ±1.66982𝑖 
𝜆 = 3 2.71276 −0.75647 ± 0.75567ⅈ 

 
0.75647 ± 0.75567ⅈ 

𝜆 = 5 3.10013 −1.22735 ± 0.602771ⅈ 
 

1.22735 ± 0.60277ⅈ 
 

µ = .132679 

𝑞1 = 1 
   

𝜆 = 1 2.45144 ±0.0172224 ±1.51261𝑖 
𝜆 = 3 2.72307 −0.88978 ± 0.692155ⅈ 

 

0.88978 ± 0.692155ⅈ 

𝜆 = 5 3.06977 −1.34709 ± 0.43637ⅈ 1.34709 ± 0.43637ⅈ 
        Table(13) 

 

µ = 3.37608 × 10−4 

𝑞1 = .5 

𝐿1  𝜆1 1,2  𝜆1 3,4 

𝜆 = 1 2.13876 ±0.454719 ±1.75661𝑖 
𝜆 = 3 2.49977 −0.374651 ± 0.756143ⅈ 

 

0.374651 ± 0.756143ⅈ 

𝜆 = 5 2.94143 −0.890746 ± 0.78258ⅈ 0.890746 ± 0.78258ⅈ 
µ = .132679 

𝑞1 = .5 
   

𝜆 = 1 2.19628 ±0.436948 ±1.82384𝑖 
𝜆 = 3 2.49117 −0.350631 ± 0.752211ⅈ 

 

0.350631 ± 0.752211ⅈ 

𝜆 = 5 2.88831 −0.914426 ± 0.791328ⅈ 0.914426 ± 0.791328ⅈ 
    Table(14) 

 

µ = 3.37608 × 10−4 

𝑞1 = .9 

𝐿1  𝜆1 1,2  𝜆1 3,4 

𝜆 = 1 2.34820 ±0.290048 ±1.7208𝑖 
𝜆 = 3 2.67596 −0.68180 ± 0.771888ⅈ 

 

0.68180 ± 0.771888ⅈ 
 

𝜆 = 5 3.07147 −1.16170 ± 0.656217ⅈ 
 

1.16170 ± 0.656217ⅈ 

µ = .132679 

𝑞1 = .9 
   

𝜆 = 1 2.40893 ±0.218523 ±1.62633𝑖 
𝜆 = 3 2.68390 −0.800298 ± 0.727709ⅈ 

 

0.800298 ± 0.727709ⅈ 

𝜆 = 5 3.03785 −1.27069 ± 0.535704ⅈ 1.27069 ± 0.535704ⅈ 
                Table(15) 

 

µ = 3.37608 × 10−4 

𝑞1 = 1 

𝐿4  𝜆1 1,2  𝜆1 3,4 

𝜆 = 1 −1.74821 ±2.39908 ±0.791718 

𝜆 = 3 −2.84499 ±3.54145 
 

±0.94908 

𝜆 = 5 −3.58096 ±4.3150 

 

±0.967011 

 

µ = .132679 

𝑞1 = 1 
   

𝜆 = 1 −1.78160 ±2.49069 ±0.84689 

𝜆 = 3 −2.87033 ±3.72008 ±0.95589 

𝜆 = 5 −3.60486 ±4.54733 ±0.96894 

Table(16) 



Existence and Stability of the Equilibrium Points in the… 

www.ijceronline.com                                         Open Access Journal                                         Page 7 

µ = 3.37608 × 10−4 

𝑞1 = .5 

𝐿4  𝜆1 1,2  𝜆1 3,4 

𝜆 = 1 −1.78185 −1.24438 ± 0.30131ⅈ 
 

−1.24438 ± 0.30131ⅈ 
 

𝜆 = 3 −2.86665 ±2.20970 ±1.14979 

𝜆 = 5 −3.59792 ±2.82656 ±1.08871 

µ = .132679 

𝑞1 = .5 
   

𝜆 = 1 −1.80221 −1.28605 ± 0.293247ⅈ 
 

1.28605 ± 0.293247ⅈ 

𝜆 = 3 −2.88535 ±2.35634 ±1.13038 

𝜆 = 5 −1.78160 ±2.94064 ±1.14106 

Table(17) 

 

µ = 3.37608 × 10−4 

𝑞1 = .9 

𝐿4  𝜆1 1,2  𝜆1 3,4 

𝜆 = 1 −1.75494 ±2.23837 ±0.83362 

𝜆 = 3 −2.84931 ±3.32748 ±0.96769 

𝜆 = 5 −3.58426 ±4.06590 ±0.979341 

µ = .132679 

𝑞1 = .9 
   

𝜆 = 1 −1.78571 ±2.32260 ±0.88322 

𝜆 = 3 −2.87733 ±3.49758 ±0.97246𝑖 
𝜆 = 5 −3.60726 ±4.28720 ±0.97991𝑖 

Fig(18) 

 

µ = .132679 

𝑞1 = 1 

𝐿2  𝜆1 1,2  𝜆1 3,4 

𝜆 = 1 0.662328 ±1.71992 ±23.4554𝑖 
𝜆 = 3 0.715735 ±0.55122𝑖 ±44.8950𝑖 
𝜆 = 5 0.742964 ±1.45132𝑖 ±63.7128𝑖 

µ = .132679 

𝑞1 = .5 
   

𝜆 = 1 0.69686 ±0.470315 ±34.5159𝑖 
𝜆 = 3 0.753724 ±0.917093𝑖 ±69.0878𝑖 
𝜆 = 5 0.783278 ±1.02355𝑖 ±99.1660𝑖 

µ = .132679 

𝑞1 = .9 
   

𝜆 = 1 .667415 ±1.46455 ±24.8856𝑖 
𝜆 = 3 .721353 ±0.73834𝑖 ±47.7345𝑖 
𝜆 = 5 .748851 ±1.45377𝑖 ±68.0377𝑖 

Fig(19) 

 
µ = .230427 

𝑞1 = 1 

𝐿2  𝜆1 1,2  𝜆1 3,4 

𝜆 = 1 .562939 ±2.51635𝑖 ±12.4741𝑖 
𝜆 = 3 .649373 ±2.96704𝑖 ±27.999𝑖 
𝜆 = 5 .697523 ±3.42845𝑖 ±43.6595𝑖 

µ = .230427 

𝑞1 = .5 
   

𝜆 = 1 .618412 ±1.6177𝑖 ±18.0079𝑖 
𝜆 = 3 .726268 ±2.1378𝑖 ±51.1495𝑖 

µ = .230427 

𝑞1 = .9 
   

𝜆 = 1 .571296 ±2.36742𝑖 ±13.0801𝑖 
𝜆 = 3 .658573 ±2.81635𝑖 ±29.6179𝑖 
𝜆 = 5 .710819 ±3.32662𝑖 ±48.0887𝑖 

Table(20) 
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µ = .132679 

𝑞1 = 1 

𝐿3  𝜆1 1,2  𝜆1 3,4 

𝜆 = 1 .870822 ±5.99808𝑖 ±457.911𝑖 
𝜆 = 3 .869666 ±5.90060𝑖 ±448.533𝑖 
𝜆 = 5 .868395 ±5.79689𝑖 ±438.453𝑖 

µ = .132679 

𝑞1 = .5 
   

𝜆 = 1 .870099 ±2.93265𝑖 ±457.573𝑖 
𝜆 = 3 .867533 ±2.84998𝑖 ±433.943𝑖 
𝜆 = 5 .864287 ±2.73754𝑖 ±403.094𝑖 

µ = .132679 

𝑞1 = .9 
   

𝜆 = 1 .790781 ±1.07964𝑖 ±101.901𝑖 
𝜆 = 3 .869445 ±5.28311𝑖 ±447.697𝑖 
𝜆 = 5 .867999 ±5.18223𝑖 ±435.918𝑖 

Table(21) 

 

µ = .230427 

𝑞1 = 1 

𝐿3  𝜆1 1,2  𝜆1 3,4 

𝜆 = 1 .779097 ±5.62696𝑖 ±82.8032𝑖 
𝜆 = 3 .772205 ±5.25535𝑖 ±79.8394𝑖 
𝜆 = 5 .760817 ±4.77456𝑖 ±74.2119𝑖 

µ = .230427 

𝑞1 = .5 
   

𝜆 = 1 .775622 ±2.63302𝑖 ±84.0107𝑖 
𝜆 = 3 .745650 ±2.29635𝑖 ±62.1799𝑖 

µ = .230427 

𝑞1 = .9 
   

𝜆 = 1 .778739 ±4.9964𝑖 ±83.4792𝑖 
𝜆 = 3 .770714 ±4.6565𝑖 ±79.3113𝑖 
𝜆 = 5 .755144 ±4.15761𝑖 ±70.649𝑖 

Table(22) 

 

µ = 3.37608 × 10−4 

𝜆 = 1 

𝐿5,    𝐿6 

𝜉                    𝜂     
 𝜆1 1,2  𝜆1 3,4 

𝑞1 = 1 . 435766 ,    ± .680940 ±3.5603 ±3.53295ⅈ 

𝑞1 = .3 . 953254 ,    ± .722112 ±2.60299 

 

±1.396864ⅈ 

𝑞1 = .5 . 704880,    ± .748658 ±3.26453 

 

±2.295976ⅈ 
 

𝑞1 = .9 . 46976,    ± .695638 ±3.69993 

 

±4.721654ⅈ 
 

Table(23) 

 

µ = .132679 

𝜆 = 1 

𝐿5,    𝐿6 

𝜉                    𝜂     
 𝜆1 1,2  𝜆1 3,4 

𝑞1 = 1 1.13455 ,    ±1.23929 ±2.33559 ±0.78432ⅈ 

𝑞1 = .3 1.06213 ,    ± .780120 ±2.62362 

 

±1.3502ⅈ 

𝑞1 = .5 1.11706,    ± .958210 ±2.52099 
 

±1.18674ⅈ 
 

𝑞1 = .9 1.14413,    ± 1.19237 ±2.34015 

 

±0.88217𝑖 
 

Table(24) 
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µ = .230437 

𝜆 = 1 

𝐿5,    𝐿6 

𝜉                    𝜂     
 𝜆1 1,2  𝜆1 3,4 

𝑞1 = 1 0. 820584 ,    ±1.22540 ±2.76584 ±1.49003ⅈ 

𝑞1 = .3 0.922591 ,    ± .770110 ±3.02968 
 

±1.97359ⅈ 

𝑞1 = .5 0.868804,    ± .930507 ±2.52099 

 

±1.18674ⅈ 
 

𝑞1 = .9 0.840901,    ± 1.80790 ±2.34015 

 

±0.88217𝑖 
 

Table(25) 

 

V.    Conclusion 
In this article we have seen that for 𝜆 > 0 and for different values of 𝑞1 and mass parameter µ = 3.37608 ×
10−4 (mars-Jupiter), µ = .132679 (Saturn-Uranus), µ = .230437 (Jupiter-Saturn), µ = .458505 (Uranus-

Neptune),  there exists four or two collinear equilibrium points. Here we observed that due to the radiation 

pressure the points 𝐿1and 𝐿4 shifted towards the origin. It may be also observed that the deviation of the location 

of the point 𝐿4 from 𝑞1 = 1 decreases as µ increases and this becomes zero when µ ≈ .35 and again this 

deviation increases. We have also seen that the points 𝐿1, 𝐿2 and 𝐿3 move away from the centre of mass and 𝐿4 

moves toward the centre of mass as 𝜆 increases. Here we have also observed that the non-collinear equilibrium 

points  𝐿5 and 𝐿6 moves towards the small primary from left to right when µ = 3.37608 × 10−4 and come up to 

down when µ = .132679 but when µ = .230437 this shifting is deferent. We have observed that the points 𝐿1, 

𝐿4, 𝐿5 and 𝐿6 are unstable while the point 𝐿3 are stable for the given values of µ, 𝑞1 and 𝜆. We have also seen 

that the point 𝐿2 is unstable for µ = .132679  and for  𝑞1 = 1, 𝑞1 = .5 , 𝑞1 = .9 when 𝜆 = 1 and for other given 

values this point 𝐿2 is stable. 
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