

Quantum Anharmonic Oscillator, A Computational Approach

¹Shreti Garg (B Sc III), ²Sarmistha Sahu

Department of Physics, Maharani lakshmi Ammanni College for Women, Bangalore 560012

Abstract

What is anharmonicity?

What happens to the energy levels of an anharmonic oscillator?

What is *dissociation energy*?

Many such questions can be answered by the computational method. The computational methods

used for solving the second degree differential equation (Schroedinger's equation) is by Runge-

Kutta fourth order method using Microsoft-Excel.

For anharmonic oscillator, the accuracy of the results is fairly good.

*The computation and animation will be sent along this for publication/ online view

I. INTRODUCTION

For anharmonic oscillator [1],[2], the potential is given by

$$V = \frac{1}{2}kx^2 + bx^4$$

where b is a constant.

as shown in Fig. 1

Fig. 1 Anharmonic Potential (darker brown) with b = 0.5

II. THEORY

When Eq. 1 is used in the Schroedinger's equation, the allowed vibrational energy levels [3] is found to be

$$E_{an} = (n + \frac{1}{2}) - \frac{3}{2}b(n^{2} + n + \frac{1}{2}) + \frac{b^{2}}{8}(34n^{3} + 51n^{2} + 59n + 21)$$
(2)
where $n = 0, 1, 2, ...$

(1)

Thus, the anharmonic oscillator behaves like the harmonic oscillator but with an oscillation frequency that decreases steadily with increasing n.

For the ground state (n = 0) we have

$$E_{0an} = 0.5 - 1.5b * 0.5 + 0.125b^2 * 21 \tag{3}$$

The energy difference between consecutive levels decreases successively. Finally, when the energy difference is zero, the corresponding potential energy is a measure of the *dissociation energy* of the molecule.

III. METHODOLOGY

The computational output is obtained using **Microsoft Excel**.**Runge Kutta Fourth Order** is used for solving the Schroedinger's second degree ordinary differential equation. Of course, animation is done using **graphics**.

IV. RESULT

• The energy is lesser than the harmonic oscillator [4] given by

$$\Delta E = \frac{3}{2}b(n^2 + n + \frac{1}{2}) - \frac{b^2}{8}(34n^3 + 51n^2 + 59n + 21)$$
⁽⁴⁾

The energy difference decreases with the increase of the quantum number n as shown below. On the other hand, the energy difference remains a constant for a harmonic oscillator.

Table 1. Comparison of energy in Anharmonic (Ean) and Harmonic Oscillators (Ehar)

		For b=	0.001
		ΔEan=En+1-	
n	Ean	En	Ehar
0	0.499		0.5
1	1.496	0.997	1.5
2	2.490	0.994	2.5
3	3.481	0.991	3.5
4	4.469	0.988	4.5
5	5.454	0.985	5.5
6	6.435	0.982	6.5
7	7.413	0.978	7.5
8	8.389	0.975	8.5
9	9.361	0.972	9.5
100	81.035		100.5
101	81.602	0.567	101.5
150	102.036		150.5
151	102.292	0.256	151.5

••			
175	106.325		175.5
176	106.402	0.077	176.5
:			
185	106.755		185.5
186	106.756	0.001	186.5
187	106.749	-0.007	187.5

• The *dissociation energy* is ~ 106.756 units [5].

ACKNOWLEDGEMENT

I am grateful to my teacher, Prof. Sarmistha Sahu who has taught me numerical methods and Microsoft Excel. She has helped me complete this project successfully.

REFERENCES

- [1] RC Verma, PK Ahluwalia, KC Sharma, Computational Physics An introduction, New Age International Publishers pp (1999)
- [2] Eyvind Wichman, "Quantum Physics", Berkeley Physics Course, Vol 4 McGraw Hill Companies Inc.(2011)
- [3] Sarmistha Sahu, "Concise Physics", Vol 5 Statistical Physics and Quantum Mechanics, Subhas Stores (2013)
- [4] Sarmistha Sahu, Quantum Harmonic Oscillator, European Journal of Physics, (Submitted)
- [5] C N Banwell, Fundamentals of Molecular Spectroscopy Tata McGraw-Hill Publishing Company Limited , 3rd ed (1983)