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I. Introduction 
The problems of flow and heat transfer in the boundary layers of a continuous stretching/shrinking 

surface have attracted considerable attention of researchers due to their numerous applications in industrial 

manufacturing processes. Some of the applications are extraction of polymer sheets, paper production, hot 

rolling and glass-fiber production. Eringen [1] formulated the micropolar fluid theory as an extension of the 

Navier- Stokes model of classical hydrodynamics to facilitate the description of the fluids with complex 

molecules .The micropolar fluids are generally defined as isotropic, polar fluids in which deformation of 

molecules is neglected. Physically, a micropolar model can represent fluids whose molecules can rotate 

independently of the fluid stream flow and its local vortices. Micro polar fluids have important applications in 

colloidal fluids flow, blood flows, liquid crystals, lubricants and flow in capillaries, heat and mass exchangers 

etc. 

         Stagnation point flows have also applications in blood flow problems, the aerodynamics extrusion of 

plastic sheets, boundary-layer along material handling conveyers, the cooling of an infinite metallic plate in a 

cooling bath, and textile and paper industries.  Flows over the tips of  rockets, aircrafts, submarines and oil ships 

are some instances of stagnation flow applications[2]. Hiemenz [3] started the study of stagnation flow problem 

and reduced the Navier-Stokes equations for the forced convection problem to an ordinary differential equation 

of third order by using similarity transformation. Chamkha [4] solved the problem of the laminar steady viscous 

flows near a stagnation point with heat generation/absorbing. The steady two dimensional point flow of a power 

law fluid over a stretched surface was studied by Mahapatra and Gupta [5]. The numerical solution of unsteady 

boundary-layer flow of an incompressible viscous fluid in the stagnation point region over a stretching sheet 

was presented by Nazaret.al [6] (using Keller box method). The problem of steady two dimensional laminar 

MHD mixed convection stagnation point flow with mass transfer over a heated permeable surface was examined 

by Abdelkhalek [7]. Two dimensional steady incompressible mixed convection non orthogonal stagnation flow 

towards a heated or cooled stretching vertical plate was considered by Yian et.al [8]. The solution of hydro 

magnetic steady laminar two dimensional stagnation flow of a viscous incompressible electrically conducting 

fluid of variable thermal conductivity over a stretching sheet was obtained by Sharma and Shing [9] using 

shooting method. Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady 

stretching sheet was investigated by Chen [10]. Heat transfer over a stretching surface with uniform or variable 

heat flux in micropolar fluids was studied by Ishak et. Al [11].  
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Mahanta et .al.[12] discussed the effects of radiation of flow of second grade fluid over a stretching 

sheet through porous medium with temperature dependent viscosity and thermal conductivity. A numerical 

study of steady incompressible micro polar fluid in a two dimensional stagnation point flow towards a stretching 

sheet was investigated by Nazar et.al [13]. Chang [14] presented the solution of flow and heat transfer 

characteristic of mixed convection in a micropolar fluid along a vertical flat plate with conduction effects. Ishak 

et.al [15] studied steady stagnation flow towards a vertical surface immersed in a micropolar fluid. Rashidi et.al 

[16] investigated the mixed convection boundary-layer flow of a micropolar fluid towards a heated shrinking 

sheet. 

      In the above literatures, in most of the studies, the viscosity and the thermal conductivity of the ambient 

fluid were assumed to be constant. When the effects of temperature dependent viscosity and thermal 

conductivity are taken into account, the flow characteristics are significantly changed compared to the constant 

property case. In this paper, an attempt has been made in this study to find the effects of temperature dependent 

viscosity and thermal conductivity on a mixed convection two dimensional stagnation point flow and heat 

transfer of a steady viscous incompressible micropolar fluid towards a heated shrinking sheet in presence of 

magnetic field with viscous dissipation. Viscosity and thermal conductivity are assumed to be inverse linear 

functions of temperature.  

 

II. Formulation of the Problem: 
We consider two dimensional stagnation point flow of a micro polar fluid impinging normally on a 

heated shrinking sheet at a fixed flat plat coinciding with the plane 0 .y   The flow is assumed to be laminar, 

steady, viscous and incompressible and except the fluid viscosity and thermal conductivity all the fluid 

properties are assumed to be constant. Also a magnetic field of constant intensity is assumed to be applied 

normal to the surface and the electrical conductivity of the fluid is assumed to be small so that the induced 

magnetic field can be neglected in comparison to the applied magnetic field. Under these assumptions the 

governing equations of the problem are as below:  

CONTINUITY EQUATION: 
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                                                                 (4) 

Where   u , v  are velocity components in the directions of x  and y  along and perpendicular to the surface 

respectively . N  is the component of micro -rotation vector normal to the xy  -plane,   is the density ,  is 

the vortex  viscosity, g  is the acceleration due to gravity,   is the coefficient of thermal expansion ,   is the 
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spin gradient  viscosity , j  is the micro-inertia density , p  is the pressure of the fluid , T  is the temperature , 

  and     are the viscosity and thermal conductivity respectively which are the functions of x  and y . 
p

c  is 

the specific heat capacity at constant pressure of the fluid , B  is the magnetic intensity and   is the electrical 

conductivity . The term ( )g T T


   of equation (2) indicates the buoyancy force, where “+” sign refers 

buoyancy assisting and “-’’sign corresponds to the buoyancy opposing the flow regions. 

The boundary conditions for the problem are: 

( , 0 ) ,u x b x

     

( , 0 ) 0 ,v x 

     

( , 0 ) 0 ,N x 

          

( , 0 )T x T




                                                         (5)

 

( , ) ,u x U a x  

         

( , ) 0 ,N x  

         

( , )T x T


 

  
 

Where b < 0 for the shrinking sheet,    is temperature on the surface,    is temperature of the fluid at infinity 

and U  is the free stream velocity of the fluid. 

Following Lai and Kulacki [17] let us assume that, 
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where    is the viscosity at infinity,   and T


 are constants , 
r

T  is transformed reference temperature ,  δ is a 

constant based on thermal property of the fluid and  < 0 for gas ,  > 0 for liquid. Similarly,   and 
c

T  are 

constants and their values depend on the reference state and thermal properties of the fluid i.e., ξ. 

To solve equations (1) - (4) subject to the boundary conditions given in equation (5) we use the following 

similarity transformations, 
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Where   is the similarity parameter, 
0

p  is the stagnation pressure.  Also from equations (6) and (7), we have,   

,
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                                                                                          (8) 

Equation of continuity in equation (1) is identically satisfied using equation (6) and therefore the velocity field is 

compatible with continuity equation and represents the possible fluid motion. Using equations (7) and (8) in 

equations (2)-(4) we get the following differential equations: 
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Where    

K





  is the coupling constant parameter , C
j






   is the spin gradient viscosity parameter,    

P r
p

c 







  is the Prandtl number,   

2

2 B
M

a




  is the magnetic parameter, 

2

x

x

r

e

G
R

R
    (‘+’ in assisting flow and ‘-‘ in opposing flow) is the buoyancy parameter ,       

 

2 2

( )
c

p w

a x
E

C T T





is the  Eckert number and A
ja






  is the micro inertia density parameter 

Here 

3

2

( )
w

x

g T T x
G r

x










  is the local Grashoff number and R e

x

U x




  is the local Reynolds number.  

r
  and  

c
  are the dimensionless parameters characterizing the influence of viscosity and thermal conductivity 
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The transformed boundary conditions are, 

     ( ) 0 ,f       ( ) ,f b a      ( ) 0 ,g  
     

( ) 1  
            at              

0   

     
( ) 1,f     ( ) 0 ,g     ( ) 0    as       0                                (13)             

Here the case 0   stands for Hiemenz flow towards a solid plate and the case ∝ > 0 is for the stagnation 

point over a stretching sheet. In our case of stagnation flow towards a shrinking sheet, hence we take ∝ < 0. 

                               The two important physical quantities of our interest in the problem are skin friction 

coefficient (  ) and Nusselt number (Nu) which are defined as,   
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III. Results  and  Discussion: 
       The system of differential equations (9 - 11) together with the boundary conditions (13) is solved 

numerically by using the fourth order of Runge-Kutta integration accompanied with the shooting iteration 

scheme. The purpose of this study is to bring out the effects of the variable viscosity and variable thermal 

conductivity on the governing flow with the combinations of the other flow parameters.  

     The numerical computations have been carried out for various values of magnetic parameter (M), Prandtl 

number ( P r ), Eckert number (
c

E ), buoyancy parameter ( R ), coupling constant parameter ( K ), the variable 

viscosity parameter (
r

 ), variable thermal conductivity parameter  c
  and micro inertia density parameter

 A . In order to illustrate the results graphically, the numerical values of dimensionless velocity distribution

 f  , dimensionless micro-rotation distribution  g   and temperature distribution    with variation of 

different parameters have been plotted in Figures 1 – 12. 

                           

Figure 1. Variation of  f   for different values of  
r

  
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Figure 2. Variation of  f   for different values of  K  

                   

  Figure 3. Variation of  f   for different values of M 

     

       

  Figure 4. Variation of  f   for different values of  R  
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                              Figure 5. Variation of  g   for different values of  
r

   

 

                        

                               Figure 6. Variation of  g   for different values of  K  

                        

                               Figure 7. Variation of  g   for different values of M 
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  Figure 9. Variation of  g   for different values of R  

                    

                              Figure 10. Variation of     for different values of 
c

  

                      

                               Figure 11. Variation of     for different values of M  

                      

                                  Figure 12. Variation of     for different values of  
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     The Figures 1- 4 represent the velocity distribution with the variation of viscosity parameter 
r

 .coupling 

constant parameter  K  , magnetic parameter M , Buoyancy parameter R  respectively. It is seen that velocity 

increases with the increasing values of 
r

 and R  where as it decreases with the increasing values of M  and

K . It has been observed that with the variations of thermal conductivity parameter
c

 , micro-inertia density 

parameter A , Eckert number 
c

E  and Prandtl number Pr the variation of velocity is not significant.                                                                                                          

      Figures 5 – 9 represents the variation in micro-rotation distribution with the variation of viscosity parameter

r
 , coupling constant parameter  K  , magnetic parameter M , micro-inertia density parameter A  and 

Buoyancy parameter R  respectively. It is observed that micro-rotation decreases with the increasing values of

r
 and R  respectively. It is evident from the Figures 6, 7 and 8, the micro-rotation distribution increases with 

the increasing values of K , M and A  respectively. In this case also variation of micro-rotation is not so much 

significant with the variations of thermal conductivity parameter
c

 , Eckert number 
c

E and Prandtl number P r . 

The Figures (10-12) represents variation of temperature distribution with the variation of thermal conductivity 

parameter
c

 , Magnetic parameter M  and Eckert number
c

E . It is observed that temperature decreases as 
c



increases whereas it increases with the increasing values of M  and
c

E . In several practical applications, the 

surface characteristics such as friction factor and Nusselt number play important roles and hence, the missing 

values of ( 0 )f  , (0 )g   and (0 )    for various values of
r

 ,
c

 , M , P r , K  and 
c

E have been derived in 

Table 1. 

Table- 1. 

r
  

c
  M  P r  K  

c
E  0 .20              0 .40R              1 .00C      

0 .40A   

 0f    0g    0   

- 9 - 5 0.40 0.71 0.40 0.05 1.35553 0.106175 - 0.496973 

- 7 1.371888 0.106582 - 0.498339 

- 5 1.400093 0.107281 - 0.50069 

- 8 - 9 0.40 0.71 0.40 0.05 1.364403 0.106458 - 0.478009 

- 6 1.363355 0.106393 - 0.490354 

- 5 1.362749 0.106355 - 0.497576 

- 8 - 5 0.40 0.71 0.40 0.05 1.362749 0.106355 - 0.497576 

0.80 1.245599 0.098189 - 0.484796 

1.20 1.111045 0.087574 - 0.466789 

- 8 - 5 0.25 0.71 0.40 0.05 1.390798 0.10821 - 0.500322 

1.71 1.375764 0.107211 - 0.589739 

2.21 1.370622 0.10688 - 0.619417 

- 8 - 5 0.25 0.71 0.40 0.05 1.390798 0.10821 - 0.500322 

0.60 1.284479 0.153271 - 0.489207 

0.70 1.238793 0.173933 - 0.484205 

- 8 - 5 0.25 0.71 0.40 0.02 1.389789 0.108154 - 0.525639 

0.05 1.390798 0.10821 - 0.500322 

0.08 1.391807 0.108266 - 0.474946 

 



Effects of Temperature Dependent Viscosity… 

www.ijceronline.com                                         Open Access Journal                                         Page 43 

From the Table-1, it is observed that with the increasing values of 
r

 and
c

E , the values of (0 )f   and (0 )g   

are increasing and the values of (0 )   are decreasing for the increasing values of 
r

 when all other parameters 

are fixed. It is seen that with the increasing values of 
c

 and P r , the values of ( 0 )f  , (0 )g   and (0 )    are 

decreasing. It is also indicated that when the magnetic parameter M  and coupling constant parameter K  

increases, the values of 
 

(0 )  increases but the reversal trend is observed for (0 )f   and (0 )g 
. 

IV Conclusions 

 
In this study , the effects of temperature dependent viscosity and thermal conductivity in a mixed 

convection boundary layer flow of a micropolar  fluid towards a heated shrinking sheet in presence of magnetic 

field is examined. Numerical solutions are presented for the fluid flow and heat transfer characteristics for 

different values of parameters involved in the problem. The effects of temperature dependent viscosity and 

thermal conductivity on velocity, micro-rotation and temperature distribution are quite significant. Thus, the 

present study will serve as a scientific tool for understanding more complex flow problems concerning with the 

various physical parameters. 
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