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I. INTRODUCTION 
 In normal subjects, oral glucose enhances insulin secretion more than does intravenous glucose 

infusion [3], [18], [15], [16].  This augmentation of insulin secretion is due to the secretion and action of gut 

hormones with insulinotropic activity, namely glucose-dependent insulinotropic hormone; [6], [17] from the 

upper gut [2].  In type-2 diabetic patients, the incretin effect is reduced or lost [16], [20].  This does not seem to 

be a consequence of deficient release of GIP, in that most studies found a normal or even enhanced secretion of 

this incretin hormone in type-2 diabetic patients [11], [4].  By using GIP of the porcine aminoacid sequence, 

several studies have uniformly described reduced insulinotropic effectiveness in type-2 diabetic patients as 

compared to normal subjects [9], [12].  Human GIP differs by two amino acids [9], [7] from porcine GIP [10], 

[14].  GIP responses after oral glucose tended to be lower in the type-2 diabetic patients.  

 In this paper the problem is investigated by valuation of the characteristic equation obtained by 

applying Laplace transform to the second order delay differential equation. The jump part in our model is 

represented by a general version of compound Poisson process. We incorporate a jump part in the stochastic 

model with delay [1].  We find some analytical closed forms for the expectation of the realized continuously 

sampled variance. The jump part in our model is represented by a general version of compound Poisson 

processes, and the expectation and the covariance of the jump sizes are assumed to be deterministic function. 

Notations: 

 β       Scale parameter for model. 

λ        Mean rate 

K(t)    Brownian Motion 

I(t)      Martingale 

E
*
(y)   Expected value of realized variance 

Ψ(q)    Characteristic function 

 

 

 

ABSTRACT: 

 The purpose of the Study was to evaluate the comparison of insulinotropic actions of 

exogenous incretin hormones GIP(Glucose-dependent Insulinotropic Hormone) in Nine type-2 

diabetic patients and in Nine age- and weight-matched normal subjects. An oral glucose challenge 

(75g/300ml) was performed in the morning after an overnight fast between the two distinct groups. 

The GIP response after oral glucose tended to be lower in the type-2 diabetic patients than normal 

subjects. In this paper, the problem is investigated by valuation of the characteristic equation 

obtained by applying Laplace transform to the second order delay differential equation represented 

by a general version of compound Poisson process. 
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II. STOCHASTIC MODEL 

2.1.  Compound Poisson Process case 

         Let us consider the jumps represented by a compound Poisson Process, and it seems to allow the jump size 

to be a random number but not always one in Poisson Process, the model is more realistic.   

          

      The stochastic model can be defined as follows: 
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where )(
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tK  is a Brownian motion, M(t) is a Poisson Process with intensity µ , and xt is the jump size at time t 

which is identically independent normally distributed random variable.  We assume that the mean of  xt  is σ and 

the variance of  xt is δ.  The Poisson intensity µ and the jump size xt do not change since they are independent of 

the Brownian motion.   

   

 The Brownian motion and the compound Poisson process are independent.  Letting 
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From this equation, if 1  and ,0 , the compound Poisson process is just a Poisson process,  

and then (2) becomes 
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Equation (2) has a stationary solution 
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The expectation of the realized variance for compound Poisson jump in stationary regime under risk neutral 

measure P* is equal to  
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In general case, we substitute 
t

CeZty
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)(   in (2) where X is defined in (4).  

 

Then the characteristic equation for   is 
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Therefore, the only solution to this equation is     ,and by the same method, we have, 



Stochastic Model To Find The Characteristic… 

www.ijceronline.com                                         Open Access Journal                                         Page 8  

     ,)(
tt

CeDUCeZty
 

                                                                              ------ (7) 

       .
2

0
DUC                                                                                                          ------- (8) 

 

Hence, the expectation of the realized variance under risk-neutral measure P* is equal to 

 t

e
CDUdtty

W
yEF

tW






 
1

)(
1

][

0

*

var

  
,                                                          ------- (9) 

  Where C is given by (8) 

 Of course, (9) can also be written as 
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Where Z is given by (4) 

Remark: It is interesting to see that when 0s , which means there is no delay in the model, we have that  
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2.2. General Case 

 In the previous section, we assume that the mean value and variance of the jump size xt, in the 

compound Poisson process are constants. Now we consider a more general case in which they are deterministic 

functions. The approach used in this section is different from the previous ones, which is a more general method 

and can be applied to derive the same formulae in the previous simple cases. 

 

  The stochastic model can be defined by 
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Where K*(t) is a Brownian motion, M(t) is a Poisson process with intensity µ, and xt is the jump size at time t. 

We assume that E[xt] = A(t), E[xq,xt] = C(q,t), q < t, and E[xt
2
] = B(t) = C(t,t), where A(t), B(t) and C(q, t) are all 

deterministic functions. Note that the change of measure does not change the Poisson intensity µ and the 

distribution of jump size xt, since they are independent of the Brownian motion. 

 

Let )],([)(
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t
QtEty  and take the expectation under risk-neutral probability P* on both sides of (12). 

Noting that the Brownian motion and the Poisson process are independent, we obtain the following equation: 
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Now take the expectation under risk-neutral probability, we have that 
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To get the expectation of the realized variance in the risk-neutral world ],[
*

yE  we have to find a solution to 

(18) a nonhomogeneous integrodifferential equation with delay. 

After taking the first derivative of this equation, we obtain 

  ),,()()()]()([)(
'''

sthtystyty
s

ty  


                                                           ------- (19) 

Where   .))()()((2),())()((),(
'2

stAtArsstFstBtB
s

sth 







 


 . 

This is a second – order delay differential equation with constant coefficients, and so Laplace transform can be 

applied to find its solution with initial condition ],0,[),,()( stQtty
t

  , which is already known [8], 

[19]. 

Let us denote the Laplace transform of a function f (t)as 

               






0

)()( dtetftfL
tq

                                                                                        ------ (20) 

  and do the Laplace transform for (19) 

          ),()()()()()(
'''

sthLtyLstyLtyL
s

tyL  


                                     ----- (21) 

By change of variable and the property of Laplace transform, 19 yields 

 )()1()(
2

tyLe
s

qq
sq













   .),()()0()()0(

0

'
sthLdtetye

s
yqy

tq

s

sq











                                                                                

                                                                                                                                        ------ (22) 

The characteristic function of 17 is 

qqe
s

qqqC
sq




 
 22

)1()()(  .                                                             ------- (23) 

Therefore, 

   

















 ),()()0()()0()()(

0

'1
sthLdtetye

s
yqyqCtyL

tq

s

sq
   .                -------- (24) 

                                                                                            

Applying the inverse transform 19, we have that 
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By the initial condition, 
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Hence, the expectation of the realized variance for compound Poisson jump under risk-neutral measure P* can 

be obtained by 
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III. EXAMPLE 
                 The Fig. (1) shows the GIP responses after oral glucose tended to be lower in the type-2 diabetic 

patients as defined in [13].  With high rate of GIP infusion, a greater insulin secretary response was elicited in 

normal subjects, but in type-2 diabetic even the pharmacological concentrations of GIP reached only marginally 

stimulated insulin secretion.  Whereas in normal subjects the glucose infusion had to be increased owing to GIP-

stimulated insulin release, the glucose infusion rate hardly had to be increased in type-2 diabetic patients.   
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                                                                                 Fig. (1) 

 

 
                                                                                   Fig. (2) 

 

IV. CONCLUSION 
 Evaluation of the GIP response after oral glucose tended to be lower in the type-2 diabetic patients than 

normal subjects fitted with the characteristic equation obtained by applying Laplace transform to the second 

order delay differential equation with jump represented by compound Poisson process is  graphically shown in 

Fig(2). The result coincides with the mathematical and medical report.  
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