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I. INTRODUCTION 
The extreme learning machine (ELM) is a fast machine learning algorithm utilized for the training of 

single-hidden-layer feed forward neural networks (SLFNs) [1–3]. It was developed as an alternative to gradient-

based learning algorithms, e.g., back-propagation, in order to accelerate the training of the network, provide 

good generalization performance by obtaining the smallest norm of the connection weights, and also obviate the 

need for timeconsuming algorithmic parameter tuning [1]. Various ELM-based algorithms have been proposed 

over the last few years [4,5] in an attempt to reduce the typically high number of hidden nodes required by the 

ELM due to the random determination of the connection weights between input and hidden layer. Furthermore, 

the ELM has been combined with evolutionary algorithms [6] in order to evolve the network parameters in 

tandem with the connection weights. 

Radial basis function (RBF) networks [7, 8] are a particular type of SLFNs, which has been used 

extensively for function approximation and time series prediction. RBF networks are universal approximators 

[8], i.e., given a sufficiently large number of hidden layer nodes they can be trained to approximate any real 

multivariate continuous function on a finite data set. An RBF network utilizes a radial basis kernel in each 

hidden node in order to obtain accurate local, relative to the kernel center, approximations of the unknown 

function. The Gaussian and the inverse multiquadric kernels, which are radially symmetric and bounded, are 

frequently used as basis functions in RBF networks. The output of the network is obtained through a linear 

combination of the hidden nodes’ output. 

A comparison between the performance of an ELM-based RBF network and a support vector 

regression (SVR) algorithm in a very small number of regression problems is presented in [9]. The two methods 

have comparable performance in terms of approximation accuracy, but the ELM-based RBF network requires a 

significantly shorter time for training. Given that the kernel centers and basis widths are selected randomly in 

the aforementioned ELM-based methodology, the algorithmic performance would most likely improve via a less 

random selection scheme; however, such a scheme should not mitigate the major advantage of ELMs, i.e., the 

fast training of the network. Furthermore, as shown in [10], the performance of an RBF network in a number of 

time series prediction problems strongly depends on the choice of kernel function, number of hidden nodes, and 

basis width values. 
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The training of artificial neural networks (ANNs), including RBF networks, using evolutionary 

algorithms has been an active area of research during the last fifteen years. Evolutionary algorithms have been 

employed in order to evolve the network connection weights [11,12], the location of the kernel centers of an 

RBF network [13], and also to evolve basis width values, location of kernel centers, and connection weights 

simultaneously [14]. The determination of the values of the network connection weights in tandem with the 

network architecture has also been investigated in [15-17]. Finally, evolutionary multi-objective optimization 

algorithms have been employed in order to generate ensembles of neural networks and/or learning machines 

[18-21]. 

The main advantage of using stochastic evolutionary algorithms for the network training over 

traditional, gradient-based algorithms is the inherent capability of the former to minimize the risk of getting 

trapped in locally optimal values during the search/training process. Furthermore, most evolutionary algorithms 

are population-based, i.e., perform multiple parallel searches during a single run; this enables them to explore 

different regions of the decision variable space simultaneously and through the utilization of appropriate 

mechanisms to transmit search-related information across the population. In this work, PSO and the ELM are 

combined in order to develop an algorithm that generates ensembles of RBF networks. The generalization error 

of an ensemble of networks/learners is equal to the weighted average of the generalization error of the individual 

networks minus the ensemble ambiguity [22]; the later quantifies the diversity within the ensemble. Therefore, 

the objective when generating such an ensemble is that it comprises a diverse set of accurate learners. The 

global best (gbest) PSO search mechanism [23] attempts to direct each population member towards the global 

optimal solution vector that has been found up to the current iteration, but also towards the personal best 

position (solution vector) that has been found by the corresponding population member thus far. In this article, it 

is shown that these two features of the (gbest) search and network training mechanism provide the desirable 

diverse ensemble of accurate learners. Diversity is preserved via the attraction of each population member 

towards its current personal best solution and improved prediction accuracy is achieved via its attraction towards 

the solution with the current minimum validation error. When the stopping criterion of the training process has 

been met, the current set of personal best solution vectors comprises the ensemble of RBF networks that is 

utilized to compute the network output. 

The rest of the article is organized as follows: The proposed methodology for training, pruning, and 

ensembling of RBF networks is presented in Sect. 2. The results of its application to regression and time series 

prediction benchmark problems and comparisons with other SLFN learners are presented in Sect. 3. 

Conclusions are provided in Sect. 4. 

 

II. TRAINING, PRUNING, AND ENSEMBLING OF RBF NETWORKS USING PSO AND 

THE ELM 

2.1 ELM-based RBF network 
An RBF network is an SLFN with a radial basis function assigned to each hidden node. Therefore, the 

function to be approximated is represented as an expansion in basis functions, which are modeled using kernel 

functions. Even though, there are no connection weights between input and hidden layer, the coordinates of the 

kernel centers need to be determined and, thus, are considered parameters of the network. In this work, the 

inverse multiquadric kernel is utilized in the following form, 

 

                                (1) 
 

where  is the kernel center coordinate vector,   is the input vector, and   is the basis width, or smoothing 

parameter, which also needs to be determined for each kernel. The RBF network output is computed as the 

weighted average of the output of the hidden nodes, including the contribution of a bias node. Assuming a 

network with N hidden layer nodes and a single output node, the value of the approximated function at x is 

computed as follows, 

 

              
               (2) 

 

where  is the weight of the n
th

 radial basis function in the corresponding hidden node and    is the bias node 

weight. These N + 1 weights are obtained through a supervised learning approach, i.e., the network is trained by 

adjusting its parameters so that the overall output error is minimized when it is evaluated on a training dataset. 

 

The training objective is typically formulated as a minimization of the sum-of-squares problem. 

 

              
               

 
 
          (3) 
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whereP is the number of instances in the training dataset. The optimization problem defined in eq. (3) is 

nonconvex with multiple local minima [25]. Gradient descent can be utilized to obtain a solution for the network 

weights, the kernel centers, and the basis widths [8]. Given the local-approximator nature of bounded radial 

basis functions, a clustering algorithm, e.g., K-means, can also be employed at the initial phase of the training 

process to determine the positions of the kernel centers [26]. The ELM algorithm adapted for RBF networks 

[10] provides a much faster approach: The kernel centers and basis widths are initialized with random values 

from within a specific range and the problem of determining the weights is then formulated as follows, 

 

        
 
                                      (4) 

 

This corresponds to a linear system of P equations, which can be written in a compact matrix form as 

follows. 

 

           (5) 

 

The training of the network can then be accomplished by finding a least-squares solution    of eq. 

(5):          . In most practical applications, the number of hidden nodes is much smaller than the size of 

the training dataset. In this case, eq. (5) corresponds to an over determined system of equations and the unique 

smallest-norm least squares solution is as follows. 

     
                 (6) 
 

where   is the Moore-Penrose generalized inverse matrix [27]. This can be computed using a number of 

methods; in this work this is done using the singular value decomposition (SVD) approach. As is pointed out in 

[10, 28], in general, the smaller the network weights, the better the generalization performance; using the    

matrix, the smallest hidden-to-output layer weights are obtained. 

 

2.2Particle swarm optimization 
The utilization of the ELM for the training of SLFNs results in a significant reduction in the training 

time compared to gradient-based tuning algorithms. However, as is reported in [6], when the ELM is employed 

for the training of ANNs, the random selection of the values of the input weights tends to favor networks with a 

larger number of hidden nodes compared to gradient-based network tuning. In order to address this issue, an 

evolutionary algorithm can be utilized to evolve the network parameters, as is done in [6] where a differential 

evolution algorithm is combined with the ELM to train ANNs. In addition to a shorter training time, a more 

compact network architecture could also result in better generalization performance. These observations are 

expected to be applicable to other types of SLFNs like RBF networks. In this work, PSO is utilized to evolve 

both the position of each kernel and the corresponding basis width.  

Thegbest PSO model [29] uses a population of swarm particles (solution vectors) that search for the optimal 

solution simultaneously and in a cooperative manner. The position vector of eachparticle      is updated at 

each iteration t + 1 using the following scheme for every              : 
 

                                (7) 

 

                                                                            (8) 

 

where     ,     ,        , and         are the particle’s j
th

 position coordinate and velocity over a single 

time increment at iteration t and t + 1, respectively.   and   are coefficients that adjust the attraction of the 

particle towards the global best solution that has been found by the swarm thus far,      , and towards the best 

solution that has been found by the particle up to iteration t,     , respectively.       is a uniformly distributed 

random number in (0, 1) sampled anew for each j and particle. 

In order to prevent the velocity of each particle from increasing uncontrollably when using eq. (7), 

various methods have been proposed over the years; here the concept of the constriction coefficient [30] is 

adopted. The constriction coefficient,  , is computed using the following scheme as shown. 

 

   
  

            
          (9) 

 

where          ,    ,         . 
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In this work, k is set equal to one in order to promote a high degree of exploration of the search space,  

is set equal to 4.1, as is suggested in [31], and   is set equal to  . The condition  > 4 is a necessary condition 

for the convergence of the particle’s trajectory to a position inside the search space. This is proven in [30], 

where the equations of motion are modeled as a discrete-time dynamic system and a stability analysis is 

performed in order to derive conditions for its convergence to an equilibrium point. Using the gbest model, the 

particle attractor (equilibrium point) corresponds to a weighted average between its personal best and global best 

positions. In the current application, when the network training has been completed, it is anticipated that the set 

of personal best positions contains solution vectors close to the global best solution, depending on the size of the 

attraction basin, which are also distinct enough to satisfy the diversity requirement for the ensemble members. 

The positions of the particles are initialized randomly within the range of each coordinate (input 

variable):        
      

                The velocities are initialized with zero values. During the iterative 

search process, when a particle moves to a position outside of the allowable range in coordinate j, its position 

coordinate j is set equal to the closest boundary value and the corresponding velocity component is set equal to 

zero. At the end of each iteration, the performance of the swarm particles is assessed by computing the root 

mean squared error (RMSE) on a validation set, which contains data that are not included in the training dataset. 

This is done in order to update, if applicable, the global best and personal best solution vectors. The RBF 

network parameters that are optimized are the kernel center coordinates and basis widths. 

In this research, the PSO algorithm is modified as follows: The particle with the worst (highest) RMSE 

value at the end of each iteration is replaced by a mutated (perturbed) copy of the global best solution vector. 

The mutation is performed using the following scheme              
 

                              
             

       
                   

              
    (10) 

 

wheremsf is the mutation scaling factor and mrt is the mutation rate. In this way, the optimizer is able to perform 

a local search in the vicinity of the global best solution found thus far through small perturbations of the 

corresponding solution vector. During the initialization of the PSO parameters’ values for each swarm particle, 

the input layer of each corresponding RBF network, i, is pruned by randomly selecting the input variables that 

will be included in the network as shown below, 

 

                                                     
                           

                         
     (11) 

 

whereprr is the pruning rate and                         . 

The main reason for pruning the input layer is to remove variables that do not contribute towards a 

better understanding of the underlying process that produced the dataset and, thus, their inclusion does not cause 

a substantial increase in the accuracy of the approximation/prediction model. In the proposed approach, the 

importance of the input variables is not estimated explicitly; the determination of the optimal input layer 

architecture is done gradually through the aforementioned particle replacement operation as, at each iteration, 

the network with the worst performance is discarded and replaced by a network with the optimal input layer 

architecture that has been found thus far. 

 

2.3 Implementation of the proposed algorithm for training and ensembling of RBF networks 
The PSO algorithm described in the previous section is utilized for the training of the ELM-based RBF 

networks. The training of the ELM-based RBF networks is stopped if either the global optimal solution has not 

changed after Ich iterations or the algorithm has reached the maximum allowable number of iterations Imax. Two 

distinct sets of data points are used during the training process; the first corresponds to the training data set, 

which is used to compute the network weights via Singular Value Decomposition (SVD). The particles (solution 

vectors) are then evaluated on a validation set in order to find global and personal best positions. In this way, the 

risk of overtraining the network is reduced. The global best position corresponds to the network with the 

smallest prediction error on the validation set. The prediction error is quantified by computing the root mean 

squared error (RMSE). The training and validation data sets, both input and output values, are normalized in the 

range [-1.0, 1.0].The ensembling process commences immediately after the training of the RBF networks has 

been finalized. The output of the ensemble is obtained by averaging the output of its members, i.e., the personal 

best solutions of the swarm particles. Prior to the evaluation of the generalization performance of the ensemble 

on a testing dataset, the existence of outliers among the ensemble members is investigated by applying 

Chauvenet’s criterion [32]. This criterion specifies that all points that fall within a band around the mean that 

corresponds to a probability of           should be retained.  
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E is the original size of the ensemble and, thus, is equal to the swarm population size. The criterion is 

applied only once for each point of the testing dataset. Using Gaussian probabilities, the ratio of maximum 

acceptable deviation to sample standard deviation is computed and utilized for the detection of outliers [33]. The 

algorithm has been developed in FORTRAN 95. The training and testing processes of the PSO-trained ELM-

based RBF network ensemble are outlined in Fig. 1. 

 

 
Figure 1. Pseudo-code of the PSO-trained ELM-based RBFnetwork ensemble. 

 

2.4 Experimental investigation 
The generalization performance of the RBF networks trained using the proposed methodology is 

investigated and the results are presented in this section. In all the experiments, the swarm population size I is 

set equal to 20 and Ich and Imax are set equal to 8 and 50, respectively. In the first part of this investigation, the 

number of hidden nodes is set equal to 10 in order to observe the algorithmic effectiveness and efficiency using 

a small-sized network. The coordinates of the kernel centers are allowed to vary within the range [-1.0, 1.0], 

while the basis width values within the range [1.0, 60.0]. The mutation parameters, msf and mrt, are set equal to 

0.2 and 0.5, respectively, and the pruning rate prr is set equal to 0.2. The training and validation datasets are 

normalized in the range [-1.0, 1.0]. 

Ten widely-utilized benchmark problems are considered: Eight regression and two time series 

prediction problems. The datasets of the majority of these problems have been obtained from the UCI machine 

learning repository [34]. The problem features and additional references are provided in Table 1. 

 

Table 1. Features of regression and time series prediction benchmark problems. 
ID Problem description Number of 

data points 

Number of 

inputs 

Input types 

BNK Bank queues simulation 8192 8 integer, real 

FF Forest fires [36] 517 4 real 

BH Housing values in Boston 506 13 categorical, integer, 

real 

CCS Concrete compressive strength [37] 1030 8 real 

SRV Servomechanism 167 4 categorical, integer 

CS Concrete slump test [38] 103 7 real 

CH Computer hardware performance 209 7 integer 

WBP Breast Cancer Wisconsin (Prognostic) 198 32 real 

BJ Box-Jenkins time series [39] 290 10 real 

MG Mackey-Glass time series [40] 4898 11 real 

 

The dataset of each problem is first randomized and then split into three groups: 40% of the data are 

used for training, 10% for validation, and 50% for testing. Fifty independent runs are performed for each 

problem. The RMSE and the mean absolute error (MAE) of the predictions on the testing set are computed 

using the network output, after it has been transformed back to its original scale, and recorded for the ensemble 

and for the RBF network with the lowest RMSE value on the validation set. The same 10 problems are used in 

all phases of this investigation. The computational cost of obtaining the ensemble predictions is negligible 

compared to the corresponding cost of the training process; on average, the time used to compute the ensemble 

predictions is equal to 0.7% of the time required for the training process on a machine with 16 GB of RAM and 

a quad-core 2.80 GHz processor running on a 64-bit Linux operating system. 
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III. EFFECTIVENESS OF THE PROPOSED ENSEMBLINGMETHODOLOGY 
In the first part, the effectiveness of the proposed methodology is tested, and in particular the utilization 

of the mutation operator combined with the pruning of the input layer. The RMSE and the mean absolute error 

(MAE) of the predictions are computed on the testing dataset using the network output, after the latter has been 

transformed back to its original scale, and recorded for the ensemble (ENS) and for the global best RBF network 

(GB), i.e., the network with the lowest RMSE value on the validation set at the end of each run. The 

corresponding versions without mutation and pruning are denoted by ENS_NMP and GB_NMP, respectively. 

The lower the RMSE and the MAE values, the better the algorithmic performance.The results are shown in 

Table 2. 

In all cases, a single hidden layer with 10 nodes is utilized and the maximum number of training 

iterations per run is set equal to 1000. A pairwise comparison between ENS and ENS_NMP to determine the 

statistical significance of the results is also performed using the two-tailed p-values, which have been computed 

using the t-test for unequal variances. In the problems where an algorithm has statistically better performance 

than the other at the 0.05 significance level, the mean value of its RMSE is highlighted in bold font.  

The results reported in Table 2demonstrate the effectiveness of mutation and input-layer pruning on the 

algorithmic performance: ENS outperforms ENS_NMP in all 10 problems and in both metrics; the difference in 

the mean values is statistically significant at the 0.05 level in seven problems using either metric. Furthermore, 

the generalization performance of the ensemble (ENS) is clearly better than the performance of the global best 

network (GB) in both metrics when mutation and input-layer pruning are incorporated into the algorithm; the 

same conclusion cannot be drawn from a generalization performance comparison between GB_NMP and 

ENS_NMP, which further corroborates the claim that mutation and pruning enhance the PSO-training and 

ensembling effectiveness. 

 

Table 2. RMSE and MAE results for ENS, GB, ENS_NMP and GB_NMP. 
ID RMSE & MAE ENS GB ENS_NMP GB_NMP 

BNK RMSE 7.209∙10-2 7.254∙10-2 8.721∙10-2 8.725∙10-2 

MAE 5.457∙10-2 5.497∙10-2 6.797∙10-2 6.793∙10-2 

FF RMSE 1.338 1.340 13.341 1.340 

MAE 1.067 1.069 1.096 1.092 

BH RMSE 4.436 4.601 4.986 4.893 

MAE 3.411 3.545 3.897 3.820 

CCS RMSE 1.281∙101 1.368∙101 1.531∙101 1.536∙101 

MAE 1.006∙101 1.055∙101 1.258∙101 1.247∙101 

SRV RMSE 9.675∙10-1 1.038 9.973∙10-1 1.002 

MAE 5.442∙10-1 5.941∙10-1 6.200∙10-1 6.156∙10-1 

CS RMSE 8.133 9.139 8.295 9.764 

MAE 6.612 7.253 6.728 7.781 

CH RMSE 1.265∙101 1.474∙101 1.311∙101 1.617∙101 

MAE 5.581 6.338 5.801 6.967 

WBP RMSE 3.546∙101 3.832∙101 4.160∙101 4.237∙101 

MAE 2.953∙101 3.198∙101 3.497∙101 3.546∙101 

BJ RMSE 4.324∙10-1 4.437∙10-1 4.414∙10-1 4.559∙10-1 

MAE 3.095∙10-1 3.171∙10-1 3.128∙10-1 3.225∙10-1 

MG RMSE 1.187∙10-2 1.276∙10-2 2.165∙10-2 2.144∙10-2 

MAE 1.027∙10-2 1.034∙10-2 1.783∙10-2 1.759∙10-2 

 

The performance of the ensemble (ENS) and of the global best (GB) of the PSO-ELM-trained RBF 

networks is compared with the performance of two other SLFN learners: An artificial neural network (ANN) 

that uses the back propagation algorithm for training and an RBF network that uses K-means clustering 

(RBF_K) to obtain the kernel parameters and linear regression to compute the net-work weights. Both 

algorithms are available in the open source data mining software WEKA [42]. The ANN uses a momentum term 

with value set equal to 0.2 and a learning rate with value set equal to 0.3. Both SLFN learners use a single 

hidden layer with 10 nodes; the number of training iterations is set equal to 1000. 
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Table 3. Mean and standard deviation values of RMSE for RBF_K, ANN, GB and ENS.  
ID Mean & 

Deviation 

RBF_K ANN GB ENS 

BNK Mean 1.420∙10-1* 8.130∙10-2* 7.254∙10-2 7.209∙10-2 

Deviation 1.484∙10-4 1.276∙10-2 2.640∙10-4 3.545∙10-4 

FF Mean 1.359* 1.461* 1.340 1.338 

Deviation 1.391∙10-2 1.326∙10-1 2.500∙10-2 2.562∙10-2 

BH Mean 7.505* 5.455* 4.601 4.436 

Deviation 2.919∙10-1 1.089 4.694∙10-1 2.954∙10-1 

CCS Mean 1.844∙101* 1.727∙101* 1.368∙101 1.281∙101 

Deviation 1.870 3.071 2.052 1.969 

SRV Mean 1.524* 1.014 1.038 9.675∙10-1 

Deviation 7.097∙10-2 2.278∙10-1 6.677∙10-2 4.355∙10-2 

CS Mean 1.169∙101* 8.715* 9.139 8.133 

Deviation 9.547 1.381 1.085 9.001∙10-1 

CH Mean 1.261∙102* 1.380∙101 1.474∙101 1.265∙101 

Deviation 3.996∙101 1.271∙101 6.197 3.342 

WBP Mean 3.835∙101* 4.172∙101* 3.832∙101 3.546∙101 

Deviation 1.222 9.467 2.114 5.716∙10-1 

BJ Mean 1.364* 5.893∙10-1* 4.437∙10-1 4.324∙10-1 

Deviation 1.102∙10-1 1.913∙10-1 2.878∙10-2 2.236∙10-2 

MG Mean 8.180∙10-2* 1.068∙10-2 1.276∙10-2 1.187∙10-2 

Deviation 5.506∙10-3 3.257∙10-3 3.624∙10-3 2.809∙10-3 
 

The computed mean (Mean) and standard deviation (Deviation) values of RMSE are listed in Table 3. 

Pairwise comparisons between ENS, RBF_K, and ANN are performed in order to determine the statistical 

significance of the results. If the performance of ENS in a problem is statistically better than the performance of 

another algorithm, then there is an asterisk (*) next to the other algorithm’s corresponding mean RMSE value. If 

the difference in performance between ENS and GB is statistically significant at the 0.05 level, the mean value 

of the more accurate algorithm is highlighted in bold font.  

The RMSE results displayed in Table 3 reveal that the PSO-ELM-trained RBF network ensemble has 

better generalization performance than the RBF_K learner in ten problems, a result that is statistically 

significant in all ten problems, and in nine problems compared to the ANN, a result that is statistically 

significant in seven problems. Furthermore, the variance in the ENS results is very small compared to the other 

two SLFN learners. In none among the ten problems the performance of either ANN or RBF_K is statistically 

better than the performance of ENS. A comparison between the results of GB and ENS shows that the latter 

performs better in all ten problems, a result that is statistically significant in eight problems. Overall, these 

results demonstrate that the PSO-trained ELM-based RBF network ensembling methodology has very good 

generalization performance even when applied to a small-sized network. The proposed PSO-ELM-based 

training methodology without the ensembling is also successful as GB has a lower mean RMSE value than the 

RBF_K and the ANN in ten and six problems, respectively.  
 

3.1 RBF Networks with Optimal Number of Hidden Layer Nodes 
In the final part, the number of hidden layer nodes is varied in an attempt to optimize the network size. 

Starting with two hidden nodes, the number is increased manually in steps of one node to a maximum number of 

twenty nodes. The network size of the ensemble (ENS_OPT) that produces the lowest mean RMSE value in 

each problem is (following the sequence used in Table 1): {20, 11, 5, 12, 20, 12, 20, 18, 20, 20}. The 

corresponding mean RMSE values are shown in Table 4. 
 

The results obtained using the IB5 k-nearest neighbor algorithm [43], a Gaussian process (GP) learner, 

and M5P [44], a tree-based method with pruning, are also listed in Table 4. GP uses the Gaussian kernel 

function with a basis width that is varied manually from within the following set of discrete values: {0.25, 0.5, 

1.0, 1.5, 2.0, 3.0, 5.0, 10.0}. The results that correspond to the basis width value that produces the lowest mean 

RMSE in each problem are shown in Table 4. The corresponding basis width values are: {1.0, 1.0, 1.5, 1.0, 0.5, 

5.0, 1.5, 3.0, 2.0, 10.0}. The data mining software WEKA is utilized to generate the results for IB5, GP, and 

M5P. The lowest mean RMSE and MAE values in each problem are highlighted in bold font. 

The generalization performance of the proposed methodology is significantly improved by using an 

optimal-sized hidden layer as is observed through a comparison between the results of ENS listed in Tables 2 

and the results of ENS_OPT listed in Table 4 (next page). A comparison between the results of the GP and the 

IB5 learners and the results of ENS_OPT reveals that the latter outperforms both learners in all ten problems 

using either metric. It also outperforms M5P in nine problems using the RMSE metric and in eight problems 

using the MAE metric. 
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Table 4. RMSE and MAE results for GP, IB5, M5P and ENS_OPT. 
ID RMSE & MAE GP IB5 M5P ENS_OPT 

BNK RMSE 7.251∙10-2 1.155∙10-1 7.090∙10-2 7.085∙10-2 

MAE 5.491∙10-2 8.940∙10-2 5.322∙10-2 5.331∙10-2 

FF RMSE 1.345 1.443 1.352 1.336 

MAE 1.060 1.095 1.124 1.058 

BH RMSE 4.715 6.615 3.776 4.139 

MAE 3.180 4.602 2.797 3.152 

CCS RMSE 1.317∙101 1.743∙101 1.308∙101 1.264∙101 

MAE 1.094∙101 1.410∙101 1.036∙101 9.972 

SRV RMSE 1.061 1.098 9.261∙10-1 9.030∙10-1 

MAE 5.514∙10-1 5.644∙10-1 4.611∙10-1 4.350∙10-1 

CS RMSE 8.218 8.519 8.194 8.073 

MAE 6.401 6.625 6.409 6.395 

CH RMSE 4.328∙101 5.904∙101 3.189∙101 9.121 

MAE 1.678∙101 1.953∙101 1.476∙101 4.385 

WBP RMSE 3.664∙101 3.965∙101 3.549∙101 3.404∙101 

MAE 3.116∙101 3.291∙101 2.877∙101 2.770∙101 

BJ RMSE 1.003 1.074 4.521∙10-1 3.915∙10-1 

MAE 7.001∙10-1 7.899∙10-1 3.213∙10-1 2.867∙10-1 

MG RMSE 1.540∙10-2 1.071∙10-2 3.612∙10-2 7.238∙10-3 

MAE 1.180∙10-2 8.700∙10-3 2.860∙10-2 5.758∙10-3 

 

IV. CONCLUSIONS AND FUTURE RESEARCH 
The development of a new methodology that combines PSO and ELM to train and generate ensembles 

of RBF networks is described in this article. PSO, supplemented with the proposed mutation operator and 

pruning of the input layer, is utilized in or-der to optimize the kernel parameters; this results in RBF networks 

with a compact architecture and very good generalization performance. Combining the networks that correspond 

to the personal best positions of the swarm particles to form an ensemble increases the robustness of the 

algorithm and further enhances its generalization performance. Optimizing the size of the hidden layer results in 

further improvement in the ensemble’s generalization performance. These conclusions are drawn from 

comparisons between the ensemble’s performance and the performance of other SLFNs on eight regression and 

two time series prediction benchmark problems. 

The optimization of the RBF network’s architecture without a substantial increase in the required 

training time is currently being investigated. Furthermore, the development of a PSO model tailored for 

ensembling purposes, e.g., having more control over the particles’ trajectories, is also being considered. 
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