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I.  INTRODUCTION 

Bioacoustic approach involving evaluation of the production and perception of biological sounds, 

including in this case lung sounds (LS) and heart sounds (HS) [2] can be used as a useful diagnostic indicator. 

The environmental conditions and including air pollution are among critical factors contributing to the increase 

of respiratory and cardiovascular diseases. Thus, as a part of screening and classification of diagnostic indicators 

during assisted auscultation  one can diagnose the existence of abnormalities of cardiopulmonary origin; for 

example for the heart,  the sounds could make evident the possible presence of Stenosis and Ventricular Septal 

Defect (VSD) as considered in this project, and for example for the lung’s ventilation limitations. Invariably, 

these sounds and their detection via auscultation, using a traditional stethoscope or other devices including an 

electronic stethoscope has been a standard practice in medicine. However, the use of a traditional acoustic-

mechanical stethoscope is hindered by the degree of the physician’s or nurse’s experience and their sensory 

abilities. A description of acoustic indicators by its qualitative nature is frequently used in a subjective way 

fashion, especially when being evaluated by different medical personnel.  

ABSTRACT: 
A Merged Hidden Markov Model and Gaussian Mixed Models (HMM-GMM) can serve as 

a very usefultool in classification of dominant characteristics in biological data. In particular, the 

aimof this approach was to enhance classifications of lung sounds (LS) and heart sounds (HS). In 

order to achieve these objectives, the LS and HS signals were expressed in terms of Mel-frequency 

cepstral coefficients (MFCCs) and Quantile acoustic vectors. Once the signals were vectorized, a 

clusters’ quantity analysis for the LS and HS signals was executed for both classes, representing 

normal abnormal sounds, in such a way that a criterion for the model’s size was obtained.  The 

clusters’ quantity analysis was carried out applying dendrograms, silhouettes and the Bayesian 

Information Criterion (BIC). Starting from these computations, the HMM-GMM model 

architecture for the normal and abnormal classes were conceptualized.The models for the LS 

signals using Quantile vectors, specifically Quartile, yielded excellent results, while for HS signals, 

the best results for the HMM-GMM models were obtained with MFCC vectors. In both cases, i.e., 

LS and HS signals, a close to 100% classification efficiency was achieved for studied cases. 

Furthermore, the evaluations were assessed in terms of sensitivity and specificity defined as a true 

positive rate and a true negative rate respectively; LS signals achieved a 100% in sensitivity and 

specificity, while HS signals also reached a 100%,excludingthe normal vs stenosis case, which 

obtained a 85% in specificity. The importance of this approach lies is the possibility of 

implementing automated assessment diagnostics for patients with respiratory and cardiac 

disorders, and essentially the ability to bring this diagnostic capability to remote and limited 

medical resource areas utilizing low cost technologies.  
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To overcome the drawbacks previously mentioned, one can utilize quantitative methods based among 

others on pattern recognition. Within the existing methodologies considered were Support Vector Machines 

(SVM), Linear Discriminant Analysis, Gaussian Mixed Models (GMM) and Hidden Markov Models (HMM). 

The most important difference is in their way to process data. The HMM processes data or as time series as of 

state sequences associated to the signal’s events, while the other techniques are focused on clusters regardless of 

the sequences in which they are produced.  In other application areas [5], it has been observed that HMM 

modeling is more susceptible to information loss than to noise, while cluster modeling is more susceptible to 

noise than to information loss [11, 12]. In this sense, HMM models have advantage in noisy environments, even 

though it could be computationally costly. 

Another attribute about the methodologies mentioned above is the feasibility of their implementation on  

a simple laptop computer, and could be available in almost all socio-economic scenarios and in remote locations. 

This is relevant because the world’s prevailing socio-economic level is low, for example, in Latin America 70% 

of the population is lives below the average poverty rate [6]. Moreover, many applications are not necessarily 

oriented to a traditional third world but to patient’s evaluation settings in general [7-9]. In this context, often 

patient’s evaluation settings are located in areas with environmental noise, which interferes with the recordings 

of LS or HS signals and may negatively impact diagnostic procedures.  

An intelligent system (either for voice, cardiopulmonary or other sound signals) simulates the 

recognition process that the human hearing mechanism performs on the acoustic signal, or in our case an acoustic 

peculiar event [10]. Most approaches used in intelligent systems for the LS or HS signal classification are based 

in clusters, classic filtering and other approximations susceptible to noise and to signal degradation during the 

filtering process. Specifically, the LS signals share a significant frequency range with the HS signals, which 

suggests that HMM could be a good alternative in this domain [14], since they are oriented to detect event 

sequences. This project deals with the application of HMM models to LS and HS signals assessment. Besides, 

two modalities are used as a feature extractor, MFCC already successful in voice and another feature extractor 

inspired on classifying pathologies based on lung function testing [13]. The HMM models need feature vectors to 

train the models, which are a state sequences and these states are modeled by Gaussian Mixed Models. 

 
II.  MFCC AND QUANTILE FEATURE VECTORS 

The feature vectors highlight relevant characteristics of a class by means of values, in such a way that 

the classification is improved. In this section, the approximations used in the experiments are described and they 

include MFCC and quantiles. 

 

2.1 Mel-frequency cepstral coefficients (MFCCs) vectors 

The MFCC vectors reflect a successful methodology in acoustic featuring, based on 

cepstraldeconvolution. The cepstrum represents a method based on the Fourier transform, which allows the 

extraction of the acoustic signal’s fundamental frequencies. The MFCC vectors are an extension of the cepstral 

principles, and their transformation to a nonlinear frequency space is related to human hearing [15-18]. 

In MFCC, the sounds are parameterized by doing a pre-emphasis with FIR filters, followed by a 

Hamming window applied to each analysis frame. In this paper, the experiments were carried out using 30 ms 

Hamming windows with a 15 ms shift for HS signals, to which the Fast Fourier Transform (FFT) was applied; 

subsequently, the module is obtained and then multiplied by a filter bank whose frequency range and central 

frequencies are distributed according to the Mel or Bark scale. This is followed by calculating a log stage of the 

values previously obtained from each filter and subsequently the Inverse Fourier Transform. The outcome is a 

feature vector called MFCC [15, 19]. 

 

2.2Quantile Vectors 

Another acoustic vector is the quantile, which is based on the cumulative distribution function (CDF). A 

random variable’squantile  is defined as the smallest value q in such a way that the cumulative distribution 

function is greater than or equal to a probabilityp, where p is . This can be calculated from a 

continuous density probability function f(x) through the Eq.1:       

      (1) 

 

For acoustic featuring purposes, it is needed to find the quantile coefficients , and for that reason one 

must start with the CDF inverse function. In the case of acoustic signals such as LS and HS, it isimportant to 
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perform the calculations within the limit of stationarity; this limit is determined by the time in which the events 

are stably generated. Considering a rate of 15 breaths per minute (the usual range for healthy adult subjects is 

from 12 to 20 breaths per minute and much higher for toddlers), the stationarity is related to the duration of the 

inhalation, exhalation and the silences in between, which were experimentally determined, obtaining 400 ms 

(considering about 3 seconds including inhalation, silence and exhalation) [20,21]. A similar analysis was 

applied to HS signals. In this process, the first stage consists in reading the signal, starting from a *.wav archive; 

subsequently, the FFT is applied. Fulfilling a basic principle for a probability distribution function, the spectral 

distribution is normalized (Eq. 2). 

 

     (2) 

 

The Eq.  2 guarantees that the sum of the distribution of the frequency values obtained from the FFT 

will be equal to Eq. 1, therefore N implies a normalization process. A particular quantile example is the use of 

quartiles, calculated by Eq 3, where each frequency value  corresponds to its respective quartil 

coefficient. The calculation of the last quartil is not important because it always equals 1, hence a 3 three 

dimensional vector is obtained. 

 

    (3) 

 

Algorithmically, , is calculated by an iterative sum to obtain the area and detect the frequency values 

in which the obtained area is . The same principle applies to Octile and any other quartil 

type. For a more extensive description, the paper [21] should be reviewed. 

 

III. CLUSTERS’ QUANTITY ANALYSIS FOR THE MODEL DEVELOPMENT 

The clusters’ quantity used for the model calculation can be defined by means of various techniques. 

Specifically, the agglomerated data visualization represents an important criterion for the clusters’ quantity 

definition. In this section, some techniques to optimize the results are assessed through an analytical approach. 

The techniques discussed include the analysis with dendrograms, silhouettes, and the Bayesian Information 

Criterion (BIC). 

A dendrogram is basically a tree diagram based on the distance from each datum point against the 

others, which associates those closer together (considering a distance metric, e.g., Euclidean). Here, it is meant 

that the closer the data points are, the greater the probability of belonging to the same cluster. With this, the data 

points are linked one to one until all data is related to one cluster, as shown in Figure 1 [33]. 

The silhouettes represent the number of existing clusters in a time series. Firstly, the quantity of clusters 

is chosen. Subsequently, the silhouettes divide the data in the quantity of clusters specified, showing the 

probability of belonging to a cluster (Figure 2, right side), and the uncertainty of not  belonging to such cluster 

(Figure 2, left side) [34, 35]. 

Another alternative to analyze the quantity of clusters in a time series is applying the Bayesian 

Information Criterion (BIC), as shown in Figure 3. The model with the highest BIC value is considered the 

“best” model [36]. The BIC is useful to estimate how well the model is adjusted to the data, considering the 

number of parameters in the GMM model, namely: weights, covariance matrices and means [36]  

 

    (4) 

 

In our study case, it is important to determine the clusters’ quantity of HS and LS signals. For BIC 

curves, the best model is influenced by the covariance type applied.  
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Figure 1.Dendrogramfor normal LS signal 

 

 
Figure 2.Silhouttefor normal LS signal 

 

 
Figure 3. Bestmodelaccording BIC curve for LS normal signal 

IV. MODELLING 

4.1 Gaussian Mixed Models (GMM) and Hidden Markov Model (HMM) 

In this project, the GMM was applied as an emission function for the HMM states. Since the GMM 

models have been successful in other areas related to analysis of acoustic signals, they are used in thisproject as a 

representation of the states in the HMM models for the LS and HS signals. 

 

4.1.1 GMM Models 

A GMM model represents a triplet composed by the means, covariances and weights; generally, each 

class is represented by a GMM  model (in our case the model’s states). A model  is trained with the acoustic 

vectors obtained from the signals’ sampled data. The GMM modeling uses the expectation–maximization (EM) 
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algorithm to train the models . This calculation is performed with the acoustic vectors extracted 

from the different recordings (LS or HS). The mean  represents the average over all the vectors, while the 

covariance matrix models the characteristics variability on the acoustic class [16, 22]. 

 

     (5) 

 

Where  is a random D-dimensional vector (MFCC, Octile or Quartile acoustic vectors), 

 are the component densities and  are the mixtures weight [5, 23-25].Here, 

represents a mean vector and  is the covariance matrix. Besides, the weights for the mixtures must satisfy the 

constraint . The GMM models are parameterized by mean vectors, covariance matrices and Gaussian 

mixture weights constituting each state of the HMM model. Then, each Gaussian density contains the parameters 

represented by the following expression [5, 23-25]: 

 

    (6) 

4.1.2 HMM Models 

The cardiac cycle is sequential and acoustically primarily consists of two main events known as the first 

heart sound, “S1” and the second heart sound “S2”, as shown in Figure 4. The S1 refers to the mitral and 

tricuspid valves closure, while “S2” is generated by the aortic and pulmonary valves operation. The lung sounds 

(LS) occurrence is also a cyclical process formed by two main events, inhalation and exhalation.  

In both cases, HS and LS signals, there are silences in between the main events, which are different 

depending on the event taking place before and after. Therefore, both cases are sequences of events that may vary 

depending on the circumstances, health conditions, and even the person’s mood.  

In HS analysis, S1 and S2 as well as the silences, could be the stages of the signal to model, while for 

the LS, the inhalation, exhalation and the silences could be the signal’s stages to model (Figure 4). Then, these 

are modeled through Hidden Markov Models (HMM), which represents a finite state automaton. 

In this project, the experiments were carried out with HS and LS signals separately; however, the main 

purpose is to utilize a HMM-GMM architecture as a combined HS-LS diagnostic assessment tool. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Normal signals in time domain, LS (upper), HS (lower) 
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A HMM can be considered as a state-based model, in which each state is not directly observed, in fact, 

each one is characterized by a GMM that models the observations (acoustic vectors) corresponding to the state. 

Formally, a HMM is defined by the following components [26]: 

  is the finite set of posible states (hidden); 

 The transition matrix , corresponding to the probability to transit from a state  

to a state . with the constraint , 

where  denotes an occupied state at a time . 

 The emission function of a state  (in our case a GMM) , denotes the emission 

probability for an observation  when the system is at the state ;  corresponds to continuous 

observations, for this project experiments, MFFC or Quantile acoustic vectors were applied, hence 

 is a GMM model. 

 , the probabilities of initially being in a state ,  Con  

and . 

As in the case of GMM models, the HMM are conventionally expressed as triplets . An example 

of an acoustic signal HMM model is shown on theFigure 5. 

 

 

 

 

 

 

 

 

 

The training for the HMM parameters, given a set of observation sequence , is normally done by 

applying the Baum-Welch algorithm [26], which resolves the parameters by maximizing the likelihood or 

probability . For the evaluation stage, it is required to calculate , given the model  and a sequence 

 of observations; here the forward-backward algorithm was applied [26]. 

 

4.2 Confusion Matrix (or Contingency Table) 

In a classification problem it is possible to evaluate the efficiency of the system by confusion matrices, 

also known as contingency tables, where formally, an instance is mapped to a set labeled as positive class (Y) or 

negative class (N), and the system’s hypothesis can yield a positive class (p) or negative class (n). Considering a 

binary classifier and an instance, there are four possible outcomes [32, 33, 37]: 

 True positive: positive instance classified as positive. 

 False negative: positive instance classified as negative. 

 True negative: negative instance classified as negative. 

 False positive: negative instance classified as positive.   

This process is illustrated on the Table1: 

 
Table1. ConfusionMatrix 

 

 

 

 

 
 

The importance of the contingency tables is to express the results in terms of sensitivity, specificity and 

accuracy because these terms are fairly standard in the medical domain.   

ConfusionMatrix Input 

Y N 

Prediction p TP FP 

n FN TN 

 Figure 5.HMM model as triplet 
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 Sensitivity (TPR, true positive rate) 

     (6) 

 

 Specificity (TNR, true negative rate) 

                 (7) 

 Accuracy (ACC): 

     (8) 

 

V. DATABASES 

The set of HS signals used for these experiments came from databases available for academic and 

scientific purposes [27, 28]. Specifically, for this project this included, a set of HS recordings comprising of 21 

HS signals recorded at the sampling frequency of 11025 Hz, and a 9 to 12 seconds duration, “.wav” format and 

mono channel. The original signals were captured with a 44 kHz and 22 kHz rate, but were sub-sampled at 11 

kHz.  

These signals include seven Normal, sevenStenosis and seven Ventricular Septal Defect (VSD). In order 

to train and evaluate the HMM models, these signals had to be partitioned. The evaluation and the modeling were 

performed by applying cross-validation and contingency tables.  

For the LS signals experiments, two databases (RALE and BDITM) were used. The first database is RALE 

and consists of a set of normal and adventitious LS sounds as .wav format recordings, which was developed in 

Winnipeg, Canada. The signals from RALE were filtered with a 7.5 Hz band-pass to suppress any DC offset by 

means of a first order Butterworth filter. Besides, an eight-order Butterworth low-band filter was applied at 2.5 

kHz to avoid overlapping. The signals from the database were sampled at 11025 Hz. For this project, the 

adventitious signals used were crackles and wheezes.  

The other database used was BDITM, which comprises of only normal lung sounds recordings from 

students in the age range of 18 to 25 years. In the LS case, the evaluation was performed by means of cross-

validation, leaving a signal to evaluate, and using the remaining signals to calculate the model and changing the 

settings until all possibilities were exhausted. The signals used were seven normal from BDITM, seven Crackles 

and seven Wheeze sounds sequences from RALE. 

 

VI. RESULTS 

The Table 2 and Table 3 show the best value for Bayesian Information Criterion (BIC), where quartile 

vectors with a 400 ms frame, 300 ms shift and a full covariance were used. The BIC calculus gives us the idea 

about the possible size of the models, since it gives the best model in order to adapt it to the data. Furthermore, 

an acceptable quantity of clusters spans from 3 to 4 for LS signals, and 3 to 8 for HS signals. 

 

Table 2. Best models for LS signals using BIC and Quartiles 

Signal Covariance type Number of Gaussians 

Normal full 10 (tentative) 

Crackles full 3 

Wheeze full 4 

 

Table 3. Best models for HS signals using BIC and Quartiles 

Signal Covariance type Number of Gaussians 

Normal full 6 

Stenosis full 8 

VSD full 3 

 

To evaluate the efficiency of the HMM models for the LS and HS signals (shown in Table 4 and Table 

5), the octile and quartile vectors were calculated with 400 ms frames and 300 ms shifts (i.e. 100 ms overlap). As 

far as it regards MFCC vectors, these were calculated with 30 ms frames, 15ms shifts and 12 cepstral 

coefficients. For these experiments, dimensionality reduction was not applied because in previous trials it did not 

provide a significant improvement [10, 38].  

The values obtained from the Table 4, are values considering three classes: Normal, Crackles, and 

Wheeze. The signals were partitioned in three sets for the HMM calculation of each class; a signal was extracted 
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to test the models, i.e., of all three classes, one class contained only six signals to train the model while the rest 

contained seven. For this process, the test signal was alternated until all the possibilities were exhausted and 21 

evaluations were performed. 

 

Table 4. Best results of LS signals with HMM models using 3 Gaussians, 3 states and 3 
iterations 

 

 

 

 

 

 
Table 5. Best results of HS signals with HMM models using 3 Gaussians, 3 states and 3 

iterations 

 

 

 

 

 

 

 

The HMM models for the LS were calculated using three states ( , three Gaussians   and 

three iterations . The HMM architecture used was left-to-right (Bakis), and the states were represented 

with GMM models, as shown by Figure 5. The proposed architecture concept came from the experiments with 

BIC, Silhouettes, Dendrograms and previous works (as mentioned before).  

Here, the vector  denotes the initial probabilities (a priori) of being in some state , and the values  

are the transition probabilities between states, while  are the emission functions of an observation in some 

state (in this case a GMM). It is important to note that the transition probabilities and their initial state were 

initialized randomly.  

Moreover, Table 5 shows the best results for the experiments using HS signals. For this case, three 

classes were also used: Normal, Stenosis and VSD, each class having seven signals, so, a database with 21 

signals was obtained. The procedure for the partition and evaluation of the model was the same used for the LS 

signals previously mentioned. Namely, 21 evaluations were performed, wherein the HMM model (left-to-right 

type) were calculated using three states ( , three Gaussians and three iterations . It can be 

observed inTable 4 that a 100% efficiency was obtained using quartiles for LS signals.On the other hand, as 

shown in  Table 5 a 100% efficiency was obtained using MFCC vectors for HS signals. 

The covariance is important when one wants to model the clusters’ shape, volume and orientation for 

each class; the full covariance involves more calculations, more iterations, more data and convergence is not 

always achieved for the models, hence, it is necessary to analyze the models before proposing a final HMM-

GMM architecture. However, to validate the previous remark, it is useful to have a larger number of signals per 

class since the full covariance is more versatile. 

In order to carry out evaluations in terms of sensitivity and specificity, two classes were considered 

experimentally, one including the normal class, and another corresponding to an adventitious class (Crackles or 

Wheeze for LS; Stenosis or VSD for HS signals). Here, 14 signals were used for each experiment, seven in each 

class. To calculate the HMM model the configuration used was , , while the evaluation was 

implemented by means of cross-validation and contingency tables. 

The best results obtained for LS signals are shown on Table 6 and Table 7, where a 100% efficiency 

was achieved applying quartile vectors and a full or spherical covariance. However, for HS signals, the results 

were not 100% considering Stenosis as an adventitious signal, as for the VSD case, as shown by Table 8 and 

Table 9, both using a spherical covariance. The fact that the MFCC vectors allowed a better classification must 

be highlighted.  

 

Table 6.Results of HMM model evaluation using 3 Gaussians, 3 states and 3 iterations for LS 
signals and Quartiles. 

Covariance 

type 

Vector type Efficiency 

Complete Quartile 95.2381 

Diagonal Quartile 100 

Spherical Octile 95.2381 

Covariance 

type 

Vector type Efficiency 

Complete Octile 47.6190 

Diagonal MFCC 76.1905 

Spherical MFCC 100 
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Normal 

vs. 

Crackles 

Input  

Sensitivity 

 

Specificity p n 

Output P 7 0 1 1 

N 0 7 

 

Table 7.Results of HMM model evaluation using 3 Gaussians, 3 states and 3 iterations for LS 
signals and Quartiles. 

Normal 

vs. 

Wheeze 

Input  

Sensitivity 

 

Specificity p n 

Output P 7 0 1 1 

N 0 7 

 

Table 8. Results of HMM model evaluation using 3 Gaussians, 3 states and 3 iterations for HS 
signals and MFCC 

Normal 

vs. 

VSD 

Input  

Sensitivity 

 

Specificity p n 

Output P 7 0 1 1 

N 0 7 

 

Table 9. Results of HMM model evaluation using 3 Gaussians, 3 states and 3 iterations for HS 
signals and MFCC 

Normal 

vs. 

Stenosis 

Input  

Sensitivity 

 

Specificity p n 

Output P 7 1 1 0.8571 

N 0 6 

 

For the contingency tables, the input signals are denoted by p and n, and the hypothetical recognition 

given by the system’s output is P and N. From the tables, one can observe an excellent efficiency of the system to 

detect true positives (normal sounds) and true negatives (pathologies). Based on the results, it may be concluded 

that the quartile vectors are more suitable for LS while the MFCC vectors are better for HS signals.  Considering 

the MFCC background for voice processing, the HS sounds are closer to phonetic acoustic signals so the MFCC 

are capable to reveal fine details for these signals. On the other hand, the LS signals seem more like noise and 

have a broader spectrum, with less defined formants compared to the phonetic acoustic signals. Hence, the 

quartile vectors are efficient for the LS signals, but the MFCC are better for the HS case.  Another aspect to 

highlight is the HMM model robustness to noise, which suggests that in events’ sequences during noise presence, 

a HMM combined with a GMM is superior to a GMM modeling alone. The results obtained here are similar but 

superior to the ones obtained previously by applying linear discriminants [10]. 

 

VII. CONCLUSIONS 

The experimental data shows remarkable capacity of the HMM-GMM twofold technique to classify LS 

and HS signals with different vector modalities: Octiles, Quartiles and MFCC.  In both cases of LS and HS 

signals, a 100% classification efficiency was achieved. In an evaluation of LS and HS, the HMM-GMM concept 

made it possible to differentiate normal signals from pathologies. The size model analysis with the Bayesian 

Information Criterion (BIC) was not decisive since convergence was not always achieved; the best cases included 

three clusters. Besides, these sets of three clusters were consistent with the HMM models and their efficiency 

results, which reached up to 100% in terms of sensitivity and specificity. 

Another important consideration to note, as demonstrated in the Table 4 and Table 5, is that the covariance 

type combined with a certain kind of vector influences the results. In this case, the diagonal and spherical 

covariances were the most consistent. As previously discussed in other papers [30, 31], the event sequence 

modeling for LS and HS with HMM, seems to be superior to the GMM modeling alone. Besides, HMM turned 

out to be less sensitive to noise, in spite of the HS interference with the LS signal’s sequence of events.  

This is advantageous for the quantitative screening and use in medical facilities with inadequate 

resources, as well as medical personnel with limited training levels, so the classification can be performed 

automatically.In the future, it would be useful to extend this classification to other pathologies and to specific 
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sectors of the population to assess the effects of localized pollution.  In addition, the implementation of inclusive 

architecture to classify LS and HS signals with indexed events will represent beneficial diagnostic tool.  
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