On The Derivatives and Partial Derivatives of A Certain Generalized Hyper geometric Function

1Yashwant Singh, 2Nandavasanthnadiger Kulkarni

1Department of Mathematics, Government College, Kaladera, Jaipur, Rajasthan, India
2Department of Mathematics, Dayananda Sagar college of arts, science and commerce, Kumaraswamy layout, Bangalore, Karnataka, India

ABSTRACT
In this paper, methods involving derivatives and the Mellin transformation are employed in obtaining finite summations for the H-function of two variables and certain special partial derivatives for the H-function of two variables with respect to parameters.

KEY WORDS: Derivatives, Partial derivatives, H-function of two variables, Mellin transformation.
(2000 Mathematics Subject Classification: 33C99)

I. INTRODUCTION

The H-function of two variables defined and represented by Singh and Mandia [12] in the following manner:

\[
H [x, y] = H \left[y, x \right] = H \left[a_1, a_2, \ldots, a_n; b_1, b_2, \ldots, b_m; c_1, c_2, \ldots, c_p; d_1, d_2, \ldots, d_q; e_1, e_2, \ldots, e_r; f_1, f_2, \ldots, f_s; x, y; \xi, \eta \right]
\]

\[
= \frac{1}{4\pi} \int_{\xi_1}^{\xi_2} \int_{\eta_1}^{\eta_2} \phi_1 (\xi, \eta) \phi_2 (\xi, \eta) x^\xi y^\eta d\xi d\eta
\]

(1.1)

Where

\[
\phi_1 (\xi, \eta) = \prod_{j=1}^{n_1} \Gamma \left(1 - a_j + \alpha_j \xi + A \eta \right) \prod_{j=n_1 + 1}^{n_2} \Gamma \left(a_j - \alpha_j \xi - A \eta \right) \prod_{j=1}^{q_1} \Gamma \left(1 - b_j + \beta_j \xi + B \eta \right) \prod_{j=q_1 + 1}^{q_2} \Gamma \left(b_j - \beta_j \xi - B \eta \right)
\]

(1.2)

\[
\phi_2 (\xi) = \prod_{j=1}^{n_1} \Gamma \left(1 - c_j + \gamma_j \xi \right) \prod_{j=n_1 + 1}^{n_2} \Gamma \left(c_j - \gamma_j \xi \right) \prod_{j=1}^{q_1} \Gamma \left(1 - d_j + \delta_j \xi \right) \prod_{j=q_1 + 1}^{q_2} \Gamma \left(d_j - \delta_j \xi \right)
\]

(1.3)

\[
\phi_3 (\eta) = \prod_{j=1}^{n_1} \Gamma \left(1 - e_j + E \eta \right) \prod_{j=n_1 + 1}^{n_2} \Gamma \left(e_j - E \eta \right) \prod_{j=1}^{q_1} \Gamma \left(1 - f_j + F \eta \right) \prod_{j=q_1 + 1}^{q_2} \Gamma \left(f_j - F \eta \right)
\]

(1.4)
Where \(x \) and \(y \) are not equal to zero (real or complex), and an empty product is interpreted as unity
\[p_i, q_i, n_i, m_j \] are non-negative integers such that \(0 \leq n_i \leq p_i, 0 \leq m_j \leq q_j \) \((i = 1, 2, 3; j = 2, 3)\). All the
\[a_j (j = 1, 2, ..., p_i), b_j (j = 1, 2, ..., q_k), c_j (j = 1, 2, ..., p_j), d_j (j = 1, 2, ..., q_k), e_j (j = 1, 2, ..., p_k) \]
parameters, \(\gamma_j \geq 0 (j = 1, 2, ..., p_j), \delta_j \geq 0 (j = 1, 2, ..., q_k) \) (not all zero simultaneously), similarly
\(E_j \geq 0 (j = 1, 2, ..., p_k), F_j \geq 0 (j = 1, 2, ..., q_k) \) (not all zero simultaneously). The exponents
\(K_j (j = 1, 2, ..., n_j), L_j (j = m_j + 1, ..., q_k), R_j (j = 1, 2, ..., n_j), S_j (j = m_j + 1, ..., q_k) \) can take on non-negative values.

The contour \(L_1 \) is in \(\zeta \) -plane and runs from \(-i\infty \) to \(+i\infty \). The poles of \(\Gamma \left(d_j - \delta_j \xi \right) \) \((j = 1, 2, ..., m_j) \) lie to
the right and the poles of \(\Gamma \left(\left(1 - c_j + \gamma_j \xi \right) ^k_j \right) \) \((j = 1, 2, ..., n_j) \) \((\text{not all zero simultaneously})\) to
the left of the contour. For \(K_j (j = 1, 2, ..., n_j) \) not an integer, the poles of gamma functions of the numerator
in (1.3) are converted to the branch points.

The contour \(L_2 \) is in \(\eta \) -plane and runs from \(-i\infty \) to \(+i\infty \). The poles of \(\Gamma \left(f_j - F_j \eta \right) \) \((j = 1, 2, ..., m_j) \) lie to
the right and the poles of \(\Gamma \left(\left(1 - e_j + E_j \eta \right) ^k_j \right) \) \((j = 1, 2, ..., n_j) \) \((\text{not all zero simultaneously})\) to
the left of the contour. For \(R_j (j = 1, 2, ..., n_j) \) not an integer, the poles of gamma functions of the numerator
in (1.4) are converted to the branch points.

The functions defined in (1.1) is an analytic function of \(x \) and \(y \), if
\[
U = \sum_{j=1}^{p_i} a_j + \sum_{j=1}^{p_k} \gamma_j - \sum_{j=1}^{q_k} \beta_j - \sum_{j=1}^{q_k} \delta_j < 0 \tag{1.5}
\]
\[
V = \sum_{j=1}^{p_i} A_j + \sum_{j=1}^{p_k} E_j - \sum_{j=1}^{q_k} B_j - \sum_{j=1}^{q_k} F_j < 0 \tag{1.6}
\]

The integral in (1.1) converges under the following set of conditions:
\[
\Omega = \sum_{j=1}^{n_i} a_j - \sum_{j=n_i+1}^{n_i} \alpha_j + \sum_{j=1}^{n_k} \delta_j - \sum_{j=n_k+1}^{n_k} \beta_j + \sum_{j=1}^{n_k} K_j - \sum_{j=n_k+1}^{n_k} \gamma_j - \sum_{j=1}^{n_k} \beta_j > 0 \tag{1.7}
\]
\[
\Lambda = \sum_{j=1}^{n_i} A_j - \sum_{j=n_i+1}^{n_i} A_j + \sum_{j=1}^{n_k} F_j - \sum_{j=n_k+1}^{n_k} F_j - \sum_{j=1}^{n_k} E_j - \sum_{j=n_k+1}^{n_k} B_j > 0 \tag{1.8}
\]
\[
|\arg x| < \frac{1}{2} \Omega \pi, |\arg y| < \frac{1}{2} \Lambda \pi \tag{1.9}
\]

The behavior of the \(\overline{H} \) -function of two variables for small values of \(|z|\) follows as:
\[H(x, y) = 0 \left(|x|^2 \right), \max \{ |x|, |y| \} \rightarrow 0 \quad (1.10) \]

Where

\[\alpha = \min_{1 \leq j \leq m} \left[\text{Re} \left(\frac{d_j}{\beta_j} \right) \right], \quad \beta = \min_{1 \leq j \leq m} \left[\text{Re} \left(\frac{f_j}{E_j} \right) \right] \quad (1.11) \]

For large value of \(|z|\),

\[H(x, y) = 0 \left(|x|^2, |y|^2 \right), \min \{ |x|, |y| \} \rightarrow 0 \quad (1.12) \]

where

\[\alpha^* = \max_{1 \leq j \leq m} \text{Re} \left(\frac{c_j - 1}{y_j} \right), \quad \beta^* = \max_{1 \leq j \leq m} \text{Re} \left(\frac{e_j - 1}{E_j} \right) \quad (1.13) \]

Provided that \(U < 0 \) and \(V < 0 \).

If we take \(K_j = 1(j = 1, 2, \ldots, n_2), L_j = 1(j = m_2 + 1, \ldots, q_2) \), \(R_j = 1(j = 1, 2, \ldots, m_2) \), \(S_j = 1(j = m_2 + 1, \ldots, q_2) \) in (2.1), the \(H \)-function of two variables reduces to \(H \)-function of two variables due to [9].

If we set \(n_1 = p_1 = q_1 = 0 \), the \(H \)-function of two variables breaks up into a product of two \(H \)-function of one variable namely

\[H_{p_2, q_2} = \prod_{j=1}^{n_2} \frac{c_j - 1}{y_j} \left(\frac{\beta_j}{\alpha_j} \right) \quad (1.14) \]

If \(\lambda > 0 \), we then obtain

\[\lambda^2 H_{p_2, q_2} = \prod_{j=1}^{n_2} \frac{c_j - 1}{y_j} \left(\frac{\beta_j}{\alpha_j} \right) \quad (1.15) \]

\[\lambda^2 H_{p_2, q_2} = \prod_{j=1}^{n_2} \frac{c_j - 1}{y_j} \left(\frac{\beta_j}{\alpha_j} \right) \quad (1.16) \]
II. MAIN RESULTS

If \(t \) be an arbitrary parameter and \(\alpha, \alpha' \) be positive real numbers, then it can be verified that

\[
D^\prime \frac{H}{t^\alpha} \left[z^{t^\alpha}, z^{t^{\alpha'}} \right] = t^{-1-\alpha} H \left[z^{t^\alpha} + z^{t^{\alpha'}} \right] \quad (2.1)
\]

And

\[
t^{-1-\alpha} H \left[z^{t^{\alpha}} + z^{t^{\alpha'}} \right] \bigg| \bigg| \begin{pmatrix} \alpha \\ \alpha' \end{pmatrix} = t^{-1-\alpha} H \left[z^{t^{\alpha}} \right] + t^{-1-\alpha} H \left[z^{t^{\alpha'}} \right] = 0
\]

Differentiating (2.2) two times w.r.t. \(t \) and simplifying, it follows by induction that

\[
H \left[z^{t^{\alpha}} + z^{t^{\alpha'}} \right] \bigg| \bigg| \begin{pmatrix} \alpha \\ \alpha' \end{pmatrix} = \sum_{n_1, n_2 = 0}^{\infty} \binom{n_1 + n_2}{n_1} \binom{n_1 + n_2 + 1}{n_1 + 1} H \left[z^{t^{\alpha}} \right] + \binom{n_1 + n_2 + 1}{n_1 + 1} H \left[z^{t^{\alpha'}} \right] \quad (2.3)
\]

(2.3) readily admits an extension and we have

\[
= \sum_{n_1, n_2 = 0}^{\infty} \binom{n_1 + n_2}{n_1} \binom{n_1 + n_2 + 1}{n_1 + 1} H \left[z^{t^{\alpha}} \right] + \binom{n_1 + n_2 + 1}{n_1 + 1} H \left[z^{t^{\alpha'}} \right] \quad (2.4)
\]

Considering various other forms that (2.1) admits, similar other results can be obtained.

In the next place, in view of (2.1) we note that the 2-dimensional Mellin-transformation \((6),11.2\) \(M^\prime \) of the \(H \) -function of two variables is given by

\[
M^\prime (H) = Q (-\xi, -\eta)
\]

Provided

\[
-\min_{1 \leq j \leq n} \Re \left(\frac{d_j}{\delta_j} \right) < \xi < \max_{1 \leq j \leq n} \Re \left(\frac{c_j - 1}{\gamma_j} \right)
\]
\[- \min_{1 \leq j < m} \Re \left(\frac{f_j}{F_j} \right) < \eta < \max_{1 \leq j < m} \Re \left(R_j \cdot \frac{e_j - 1}{E_j} \right) \]

We also note that, since (1.7 (30) of Erdelyi [7]) for a positive integer \(N \),

\[\psi (a + N) - \psi (a) = \sum_{k=1}^{N} \frac{(-1)^{k-1} N!}{k (N-k)!} \psi (a + k) \]

\[\psi (a + k) = \frac{\Gamma (a + k)}{\Gamma (a)} \]

Partial differentiation of the gamma product \(\Gamma \left(1 - \frac{e}{2} + \alpha \cdot \xi + \alpha \cdot \eta \right) \Gamma \left(1 + \frac{e}{2} + \alpha \cdot \xi + \alpha \cdot \eta \right) \) w.r.t. the arbitrary parameter \(e \) at \(e = N \) can be expressed as a finite sum

\[\frac{\partial}{\partial e} \left\{ \Gamma \left(1 - \frac{e}{2} + \alpha \cdot \xi + \alpha \cdot \eta \right) \Gamma \left(1 + \frac{e}{2} + \alpha \cdot \xi + \alpha \cdot \eta \right) \right\} \bigg|_{e=N} \]

\[= \frac{1}{2} \Gamma \left(1 - \frac{N}{2} + \alpha \cdot \xi + \alpha \cdot \eta \right) \sum_{k=1}^{N} \frac{(-1)^{k-1} N!}{k (N-k)!} \Gamma \left(1 + \frac{N}{2} + \alpha \cdot \xi + \alpha \cdot \eta \right) \]

Where \(\alpha \cdot \xi, \alpha \cdot \eta \) are positive real numbers.

Thus for \(n > 0, N > 0 \), we have

\[M^{\alpha} \{ \frac{N!}{2} \sum_{k=1}^{N} \frac{(-1)^{k-1} N!}{k (N-k)!} \} \]

\[\times Q (-\xi, -\eta) \]

\[M^{\alpha} \left\{ \frac{N!}{2} \sum_{k=1}^{N} \frac{(-1)^{k-1} N!}{k (N-k)!} H_{p_1+1, q_1, r_1}^{\alpha, \beta, \gamma, \delta, \epsilon} \right\} \]

\[= \frac{N!}{2} \sum_{k=1}^{N} \frac{(-1)^{k-1} N!}{k (N-k)!} \]

\[\times Q (-\xi, -\eta) \]

\[\frac{N!}{2} \sum_{k=1}^{N} \frac{(-1)^{k-1} N!}{k (N-k)!} \]

\[\times Q (-\xi, -\eta) \]

(2.5)

But for \(z(t) = u^{-z(t)} \), \(i = 1, 2 \), (2.5) can be written as
\[
\frac{\partial}{\partial e} \left[H_{p_1 + q_1 + r_1 + s_1} \right]_{\alpha_1} = \sum_{\sigma \in \Sigma} \left(\frac{1}{2} \sum_{i} \left[\left(\frac{e^{2 \sigma \cdot \omega \cdot r}}{e^{2 \sigma \cdot \omega \cdot r}} \right) \left(\frac{e^{2 \sigma \cdot \omega \cdot r}}{e^{2 \sigma \cdot \omega \cdot r}} \right) \right]_{\alpha_i} \right)
\]
\[
= \frac{N!}{2} \sum_{k=1}^{N} \frac{(-1)^{N} N}{u^{N/2}} \left[H_{p_1 + q_1 + r_1 + s_1} \right]_{\alpha_1}
\]
\[
D_u^{N-k} \left[\frac{u^{N/2}}{H_{p_1 + q_1 + r_1 + s_1}} \right]_{\alpha_1}
\]

If we express the derivative into a sum, carry out the differentiations, interchange the order of summation and simplify, we obtain

\[
\frac{\partial}{\partial e} \left[H_{p_1 + q_1 + r_1 + s_1} \right]_{\alpha_1}
\]
\[
= \frac{N!}{2} \sum_{p=0}^{N} \frac{(-1)^{p}}{p!(N-p)!} \left[H_{p_1 + q_1 + r_1 + s_1} \right]_{\alpha_1}
\]

Similar other results can be obtained by considering products or quotients of such gamma functions whose partial derivatives w.r.t. the arbitrary parameter involved can be expressed as a finite sum.

For example, for the quotient

\[
\frac{\Gamma(1-e-N+\alpha \cdot \zeta + \alpha \cdot \eta)}{\Gamma(1-e + \alpha \cdot \zeta + \alpha \cdot \eta)}
\]

We have

\[
\frac{\partial}{\partial e} \left[H_{p_1 + q_1 + r_1 + s_1} \right]_{\alpha_1}
\]
On The Derivatives and Partial Derivatives...

\[N! \sum_{k=0}^{N} \frac{(-1)^{k-1}}{p(N-k)!} \frac{H_{\alpha_1, \alpha_2; \alpha_1, \alpha_2; \alpha_1, \alpha_2; \alpha_1, \alpha_2}{}_{p+q, q+1}^{r_1, r_2, r_3, r_4, r_5, r_6; p+q, q+1} \left[\begin{array}{c} x \cr \beta_1, \beta_2, \beta_3 \end{array} \right]_{\alpha_1, \alpha_2; \alpha_1, \alpha_2; \alpha_1, \alpha_2; \alpha_1, \alpha_2} \right] \]

(2.8)

REFERENCES