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I. INTRODUCTION 

  We are interested in the numerical solution of initial-value problem for neutral functional differential equations 

(NFDEs), which take the form: 
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where  ],[)( 0

1 tCtg   and the function )(.),(.),( yytf   satisfies the following 

conditions:- 
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for any ],[ 0 Nttt , ],[, 1

21 NtCyy   and ],[, 0

21 NtCzz  . 

 

Under the conditions 1H   and 2H  the problem (1) has a unique solution  )( xy   [1]. The equations of 

type (1) have applications in many fields such as control theory, oscillation theory, electrodynamics, 
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biomathematics, and medical science. Numerical methods for the problem (1) were discussed extensively by many 

authors; see [2-26]. 

 

This paper is concerned with the numerical solution of neutral functional differential equations (NFDEs). Based on 

the ultraspherical  -stage continuous implicit Runge-Kutta method is proposed. In section 2, we will adapt a finite 

Ultraspherical expansion to approximate 
t

ti

dssf )( and (.)f  on the interval 1)1(0,  NiI i . Also, 

an easily implemented numerical method for NFDEs will be derived. Finally, in section 3 we present some 

numerical examples; which show that the presented method provides a noticeable improvement in the efficiency 

over some previously suggested methods. 

 

II. THE NUMERICAL METHOD 

2. 1 The Description of the method  

 Let )(: 10 Nttt   define a partition for ],[ 0 Ntt , with the step size 

iii tth  1 . 

Each subinterval ],[ 1 iii ttI  is divided by the Chebyshev collocation points: 
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This method is based on a finite Ultraspherical expansion in each subinterval 1)1(0,  NiI i . Consider the 

approximation )(
~

tf   of  )(tf  for   1)1(0,10,  Nihtt ii   as follows: 
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where   
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(4) 

Here )(][ xCr


 is the r-th Ultraspherical polynomial. As especial cases, at 0 give Chebyshev 

Polynomials of the first kind )()(]0[ xTxC rr  , at 
2

1
  give Legendre Polynomials 
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)()(
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xPxC rr  , at 1  give Chebyshev Polynomials of the second kind )(
1
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A summation symbol with double prims denotes a sum with the first and last terms halved.  

 

Now, we can easily show that the following relations are true: 
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and   l  is the Kronecker delta. 

 From the relations (2), (6) and (7) , we obtained the following results: 
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We notice that the matrix B  of  El-Gendi's method [27], is the same matrix 

 
0,

]0[][ 2  sjjsbB . On the interval ],( 1ii tt , rewriting (1) in the form: 
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Suppose the approximations of )(ty  and  )(tz  are given for itt   . On ],( 1ii tt , we define the  -

stage  method ][ UM  , as follows 
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2. 2 The Algorithm of  -stage method  

 

The described method represents a generalization of the methods given by Jackiewicz [7-8], for 

3,2,1  and 0 . The algorithm of the  -stage method is given below:- 

 

STEP 1: Input   1)1(0,,,  NjIhN jj . 

 

STEP 2: Put 0i  

STEP 3: Compute )(
~

ijty and )(
~

ijtz on 1)1(1,  NjI j  , by solving the system of  -equation (12). 

STEP 4: Store the computed values )(
~

ijty and )(
~

ijtz on 1)1(1,  NjI j  . 

 

STEP 5: If  1Ni  go to step 6, otherwise set 1 ii and go to step 3. 

STEP 6: Output the results )(
~

ijty and )(
~

ijtz 1)1(0,  Ni . 
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III. NUMERICAL EXAMPLES 

In this section, we present the result of some computational experiments by applying our UM  method. 

 

Example 1: (Jackiewicz [10]) 
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Here   ))2(cos1(5.0)( ttt   .  The exact solution is )3(ln)( tty  . 

 

 

Example 2: (Jackiewicz [10]) 
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Here the exact solution is )(ln)( tty  . 
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Example 3: (Jackiewicz [10]) 
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Here the exact solution is
tety )( . 

 

 

Example 4: (Jackiewicz [10]) 
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Here the exact solution is
)2(sin)( tety  . 
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In tables (1)-(4), we give E for 2-UM method and E for the best method of Jackiewicz; 10 CC  method 

[10], where E denotes the global error at the end point Nt . 

 

Example 5: (Kappel-Kunish [15] and Jackiewicz [10]) 
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Here the exact solution is given by  
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Here, the first derivative has a discontinuity at  0t  and   1t . 

          In example 5, we give E for the method 2-UM, 5-UM, 8-UM and 10 CC  in Table (5), the  - UM methods, 

for large , make a little improvement in the computed results, the reason is due to there exist discontinuity for the 

first derivative of )(ty at  0t  and 1t . These results indicate that the  - UM method is better than 

the one-step methods of Jackiewicz [10]. 
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Example 6: (Castleton-Grimm [4] and Jackiewicz [8])       
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where 
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Example 7: (Castleton-Grimm [4] and Jackiewicz [8])       
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where ))(()(,))(()( 22 tytytztytytu  .  

The theoretical solution is  )sin()( tty  . 

 

Example 8: (Pouzet [16] and Jackiewicz [8])           
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The exact solution is  tty )( . 
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In Tables (6)-(8), we give the exact solution )( nty  in the second column, and )(hyn  which denotes 

the computed value )( nh ty  at every ntt  , the computed value of )(hyn  are represented in two lines, 

the first line for 2-UM and the second line for the method of Jackiewicz [8]. The results given in Tables (6) and (7) 

are much better than those obtained by Castleton-Grimm [4] and also, those obtained by Jackiewicz [8]. The results 

given in Table (8) are much better than those obtained by Jackiewicz [8]. 

When solving the nonlinear equations, the computations are terminated when two successive 

approximations differed by less than 310 h . 

 

IV. CONCLUSIONS 

In this paper we construct a method based on the Ultraspherical approximation. This method can be applied to 

solve different types of NFDEs. The experimental comparison, presented in this paper, shows that this method is 

more efficient than the previously introduced methods. In addition, the  - UM method can be easily implemented 

on computer compared with the Lagrange multipliers and their integrals which given by Jackiewicz [10]. 
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